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Abstract
The Yinyan porphyry tin deposit in western Guangdong is spatially associated with quartz porphyry and granite porphyry. LA–
ICP–MS zircon U–Pb dating defined an emplacement age of 78.5 ± 0.4 Ma for the quartz porphyry and 79.2 ± 0.9 Ma for the
granite porphyry. LA–ICP–MS cassiterite U–Pb dating yielded Tera–Wasserburg lower intercept ages of 78.5 ± 0.6, 78.6 ± 1.2,
and 78.2 ± 0.7 Ma, for cassiterite from a cassiterite–sulfide vein, cassiterite–sulfide ore, and a cassiterite–topaz–quartz stringer,
respectively. Re–Os dating of molybdenite from seven different veins yielded an isochron age of 77.0 ± 0.5 Ma. All these new
age data are indistinguishable within analytical uncertainty and, therefore, indicate a genetic relationship between the Sn
mineralization and the porphyry magmatism in the Yinyan deposit. The REE tetrad effect and very low Nb/Ta and Zr/Hf ratios
indicate that the quartz porphyry and the granite porphyry are highly evolved. The U–Pb dated cassiterite is enriched in Fe, W,
and U and in high field strength elements (HFSEs) such as Zr, Hf, Nb, and Ta. The high Fe, Nb, and Ta contents may be
responsible for the dark luminescence of cassiterite in CL images. The Zr/Hf ratio of cassiterite may potentially be used to
distinguish the mineralization type. Cassiterite from pegmatites has lower Zr/Hf ratios (~ 5–6) in comparison with granite/
greisen-related (~ 9–30) cassiterite. Cassiterite from the early hydrothermal stage typically contains higher amounts of Ti, Nb,
Ta, Zr, and Hf than that from the late hydrothermal stage. In combination with published geochronological data of other Sn–W
deposits in the western Guangdong Province, two Sn–Wmetallogenic events at ca. 85 and 77–80Ma have been identified. These
two metallogenic events are part of a larger-scale 75–100 Ma Sn–Wmineralization event in South China, which we suggest was
probably related to the subduction of the Neo-Tethyan oceanic plate.
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Introduction

South China is renowned for its Mesozoic granite magmatism
and associated large-scale W–Sn mineralization (Hua and
Mao 1999; Zhou et al. 2006; Sun et al. 2012). The temporal
and spatial distribution patterns between the W and Sn min-
eralization in South China are different (Fig. 1b). TheW (±Sn)
deposits mainly cluster in the Nanling Range and the newly
defined Jiangnan Tungsten Belt (Mao et al. 2017), and the
corresponding mineralization ages are mainly in the period
150–160 Ma (Mao et al. 2008, 2013) and 121–153 Ma
(Mao et al. 2017; Kong et al. 2018). In contrast, the Sn
(±W) deposits are distributed mainly in the Southeast Coast
and southwestern–southern parts of South China, and they
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formedmainly in the period 135–145Ma (Yan et al. 2017; Liu
et al. 2018) and 80–100 Ma (Cheng et al. 2016; Zheng et al.
2017a, b), respectively. It is worth noting that the 80–100 Ma
Sn deposits located in southeastern Yunnan, Guangxi, and
western Guangdong, including the world-class Gejiu,
Dulong, and Dachang tin-polymetallic deposits, contribute
most of the tin resources of China (Chen et al. 2015). In the
western part of Guangdong, there are many Sn–W deposits
that have formation ages of about 80Ma, similar to the world-
class Gejiu and Dulong deposits (Fig. 1b). These deposits are
represented by the Yinyan Sn deposit and Yinwuling and
Xishan W–Sn deposits, but little attention had been paid to
them until recently (Zheng et al. 2016, 2017a, b; Zhang et al.
2017b, 2018). However, as these deposits are located in the
junction zone of the Pacific and Tethyan tectonic domains
(Zhou et al. 2008), it has been a hot topic of debate which
tectonic setting was responsible for their formation (Cheng
et al. 2016; Sun 2016; Zhang et al. 2017b, 2018; Zheng
et al. 2017a, b).

The Yinyan Sn deposit, located in the western part of
Guangdong (Fig. 1b) and discovered by Geological Team
704 in 1979 (Zhu et al. 1989), is the first recognized typical
porphyry tin deposit in China (Guan et al. 1985, 1988; Huang

and Zhang 1989). With total Sn metal reserves of 0.14 Mt
(average grade of 0.36% Sn) accompanied by W and Mo as
by-products, the Yinyan deposit is the largest among the three
typical porphyry tin deposits in China, i.e., Yinyan in
Guangdong, Yanbei in Jiangxi, and Yejiwei in Hunan
(Zheng et al. 2016). Previous studies on the deposit were
carried out mainly in the 1980s and were focused on the geo-
logical characteristics of the deposit (Wu 1983; Li 1988), the
petrology and geochemistry of the host granites (Hu 1989;
Zhu et al. 1989), and fluid inclusions (Xie et al. 1988). The
geochronology of the mineralization-related porphyries has
also been studied but only the whole-rock/single mineral K–
Ar or Rb–Sr methods were used for dating and they yielded
scattered data ranging from 75.6 to 92 Ma (Guan et al. 1985,
1988; Hu 1989; Shen et al. 1996). Recently, Zheng et al.
(2016) obtained a molybdenite Re–Os isochron age of 78.8
± 2.6 Ma. Since these ages are not consistent with each other,
the timing of and the genetic relationships between the min-
eralization and the magmatism in the Yinyan tin deposit re-
main equivocal.

In this paper, we utilize cassiterite and zircon LA–ICP–MS
U–Pb dating together with molybdenite Re–Os dating to con-
strain the timing of Sn mineralization and granite magmatism
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Fig. 1 a Simplified tectonic map of China (after Pan et al. 2009). b
Distribution of major Mesozoic W–Sn deposits in South China and
northern Vietnam (compiled from Mao et al. 2008, 2013, 2017;

Cheng et al. 2016; Wang et al. 2019, with base map adapted from
Zhao and Wu 2007)
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in the Yinyan tin deposit. In addition, trace element geochem-
istry of porphyries and cassiterite is used to constrain the de-
gree of magma differentiation and to reveal the mineralization
features. Finally, we put forward a geodynamic model for the
Late Cretaceous Sn–W metallogenic event in western
Guangdong and South China in general.

Regional geological setting

The South China Block consists of the Yangtze Block to the
northwest and the Cathaysia Block to the southeast (Charvet
et al. 1996). Our study area is located in the southwestern part
of the Cathaysia Block (Fig. 1b) and has undergone multiple
tectonic overprint which resulted in the formation of complex
structural patterns dominated by a NE to NNE trend (Peng
et al. 1995a; Zheng et al. 2015). The major fault is the NE–

SW to NNE–SSW trendingWuchuan–Sihui deep-seated fault
(also termed the Wuchuan–Sihui Shear Zone, Fig. 2), which
may extend over the depth of the lithosphere and underwent
strike-slip shearing at around 133 Ma (Shao et al. 1995). The
Wuchuan–Sihui deep-seated fault divides the study area into
the Yunkai Massif to the west and the Yangchun Basin to the
southeast (Peng et al. 1995b; Yu et al. 1998).

The Yunkai Massif is a Caledonian metamorphic massif
(Wang et al. 2007). The basement of Yunkai Massif is mainly
composed of the late Neoproterozoic–early Paleozoic (Zhou
et al. 2015; Han et al. 2017) Gaozhou Complex and Yunkai
Group, which are overlain by weakly metamorphosed to
unmetamorphosed Cambrian–Devonian strata (Wang et al.
1998). The Gaozhou Complex consists mainly of amphibolite
(locally granulite) facies, supracrustal rocks, and migmatites,
whereas the Yunkai Group comprises primarily meta-sedi-
mentary/volcanic rocks of greenschist facies (Zhong et al.
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Fig. 2 Simplified geological map of the Yunkai Massif and Yangchun
Basin, western Guangdong Province (modified after the 1:250,000
Yangchun geological map). The data sources of Sn–W deposits age are

shown in Supplemental Table D. The classification standard of the ore
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1996; Wang et al. 1998; Wan et al. 2010). Intrusive rocks are
widely distributed in the Yunkai Massif (Fig. 2). The most
widespread Silurian foliated/gneissic granites were formed
mainly at 415–450 Ma (Wang et al. 2007; Wan et al. 2010)
and underwent deformation and metamorphism during the
period 200–250 Ma (Chen et al. 2017; Ke et al. 2018).
Cretaceous granites are sporadically exposed, but all Sn–W
deposits in the Yunkai Massif are associated with them, for
instance, the Yinyan tin deposit and the Xiping Sn–Mo
polymetallic deposit.

The Yangchun Basin is an Indosinian graben basin (Yu
et al. 1998). The basement rocks in the Yangchun Basin con-
sist mainly of Cambrian low-grade metamorphic flysch and
sandy shales. The cover rocks comprise the Upper Paleozoic,
which mainly includes carbonate rocks, neritic clastic rocks,
and sandy shales. The uppermost strata are Mesozoic terres-
trial clastic rocks that sporadically are exposed (Yu et al.
1998). Unlike the Yunkai Massif, igneous rocks in the
Yangchun Basin are dominated by the Mesozoic granitic
rocks (Zheng et al. 2015), whereas Paleozoic granitic rocks
are rare. It should be noted that all W–Sn and Cu–Mo (±Fe)
mineralization in the basin is related to the Jurassic and
Cretaceous intermediate–felsic intrusions, and different types
of intrusions are associated with different mineralization types
(Zheng et al. 2015). For example, the Shilu Cu–Mo deposit is
related to ~ 104 Ma granodiorite (Zhang et al. 2017a), and the
Xishan and Yingwuling Sn–Wdeposits are related to ~ 79Ma
granites (Zhang et al. 2017b, 2018; Zheng et al. 2017a, b).

Geology of the Yinyan porphyry tin deposit

The Yinyan tin deposit (22° 21′ 04″ N, 111°18′ 03″ E) is
located 30 km west of the Wuchuan–Sihui deep-seated fault
(Li 1988). The exposed strata in the mine area are the
Neoproterozoic Lankeng Formation, which is a subunit of
the aforementioned Yunkai Group (Zhou et al. 1996) and
consists predominately of mica-quartz schists and biotite
gneisses. The intrusive rocks include quartz porphyry, granite
porphyry, and fine-grained monzonitic granites, but only the
former two are associated with the tin mineralization. The
body of the granite porphyry is concealed but about 30 quartz
porphyry dikes crop out at the surface (Fig. 3a, b). From the
surface downwards for about 50–100 m, the quartz porphyry
dikes progressively converge and finally merge into a single
tin-mineralized granite porphyry body (Li 1988). The quartz
porphyry consists mainly of quartz phenocrysts (10–20%) and
a felsitic matrix (Fig. 4a, b). The concealed granite porphyry is
composed of phenocrysts of K-feldspar (15–25%), plagio-
clase (10–15%), quartz (10–20%), minor biotite (< 2%), and
a fine-grained felsic matrix (Fig. 4d, e). Zircon, apatite, mon-
azite, hematite, magnetite, cassiterite, pyrite, sphalerite, and
chalcopyrite are common accessory minerals in both the

quartz porphyry and the granite porphyry (Fig. 4c, f). The
granite porphyry is characterized chemically by high contents
of SiO2 (75.3–75.4 wt%) and K2O + Na2O (7.35–8.04 wt%,
K2O > Na2O); low contents of Ca, Mg, and Fe; and A/CNK
values of 1.14 to 1.21 (Guan et al. 1988; Zhu et al. 1989).

A total of 65 individual tin orebodies have been defined in
the Yinyan deposit (Fu and Chen 1992). These orebodies can
be classified into three categories: (1) small-scale vein-style
cassiterite–sulfide orebodies that are hosted in the quartz por-
phyry dikes and in veinlets of the wall rock. These orebodies
are distributed at or near the surface and range from 50 to
125 m in length and 1 to 2.5 m in width, with a grade of
0.10–1.83% Sn (Wu 1983). (2) Tin-mineralized granite por-
phyries, which are the most important Sn orebodies in the
Yinyan deposit. These orebodies are located in the middle
and upper parts of the concealed granite porphyry body and
show a pipe-like shape in profile, and an ellipse-like shape in
plan view with an area of 0.06 km2 (Fig. 3b, c; Guan et al.
1988). Among these orebodies, the largest one is 633–780 m
in length, 578–653 m in width, and 11–274 m in thickness,
with an average grade of 0.53% Sn. This orebody has about
89% of the tin reserves of the Yinyan deposit (Fu and Chen
1992). Disseminated and stockwork ores are the dominant ore
types. (3) Sn–W–Mo orebodies hosted in the middle and lower
part of the granite porphyry intrusion (Fig. 3b). These orebodies
have most of the W and Mo resources in the Yinyan deposit.
The ores are characterized by veinlet dissemination. The major
metallic minerals in the ores from the Yinyan deposit are cas-
siterite, wolframite, molybdenite, bismuthinite, chalcopyrite,
pyrite, hematite, wood tin, and small amounts of galena,
sphalerite, magnetite, and xenotime. The main gangue
minerals are quartz, sericite, muscovite, chlorite, and
topaz, followed by fluorite, biotite, and K-feldspar.

The tin-bearing granite porphyry has undergone intense
hydrothermal alteration (Zhu et al. 1989). Four zones of alter-
ation can be recognized from bottom to top (Fig. 3b): (1) a
weak potassic alteration zone; (2) a protolithionite–quartz
greisenization zone; (3) a topaz–quartz greisenization zone,
which forms the main mineralized portion; and (4) a phyllic
alteration zone (Zhu et al. 1989). These alteration zones are
superimposed on each other (Wu 1983). Based on crosscut-
ting relationships andmineral assemblages, we have identified
six hydrothermal stages (Fig. 5), as follows.

Stage I (greisenization) This stage is characterized by wide-
spread greisenization of the granite porphyry and is the major
tin mineralization stage. The main gangue minerals are musco-
vite and quartz, along with a small amount of topaz. Quartz
phenocrysts can still be observed due to their resistance to al-
teration (Fig. 6a). Disseminated cassiterite and chalcopyrite are
the predominant ore minerals (Fig. 6b), while smaller amounts
of magnetite and hematite are also present. The cassiterite oc-
curs mainly as aggregates of anhedral–subhedral grains.
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Stage II (cassiterite–topaz–quartz veins) The greisenized
granite porphyry (stage I) was cut by the stage II 0.3–
2 cm thick cassiterite–topaz–quartz veins/stringers (Fig. 6c).
The main minerals in stage II include cassiterite and topaz,
followed by quartz, pyrite, and hematite. Cassiterite occurs
mainly as aggregates of euhedral grains (Fig. 6d) and the
crystals are larger than those of stage I.

Stage III (cassiterite–wolframite–molybdenite veins) The for-
mation of wolframite and molybdenite was initiated in this
stage. It is the main stage of W mineralization in the Yinyan
deposit. The stage III cassiterite–wolframite–molybdenite veins
are cut by stage IV veins of cassiterite and sulfides
(Fig. 6e). Wolframite, molybdenite, and cassiterite are
the major stage III ore minerals (Fig. 6f), while quartz
is the main gangue mineral. The abundant wolframite
forms aggregates of euhedral crystals, while cassiterite
is disseminated in the veins.

Stage IV (cassiterite–sulfide veins) This stage is characterized
by the formation of abundant sulfides and fluorides and is
another important stage of tin mineralization in the Yinyan
deposit. The major minerals are cassiterite, molybdenite,

pyrite, hematite, chalcopyrite, and quartz (Fig. 7a–d), follow-
ed by fluorite, topaz, sphalerite, and minor galena and wol-
framite. Cubes of pyrite, quartz geodes, and purple fluorite are
common in the stage IV ores. The cassiterite occurs mainly as
aggregates of subhedral–euhedral grains or as disseminated
anhedral crystals (Fig. 7b, d).

Stage V (deposition of colloidal minerals) This further impor-
tant stage of tin mineralization in the Yinyan deposit is
characterized by the formation of abundant wood tin
(rather than cassiterite) and colloidal hematite. The col-
loidal hematite and wood tin commonly form botryoidal
aggregates or concentric annular crystals, and they en-
close minerals that formed earlier, such as wolframite
and cassiterite (Fig. 7e, f). The occurrence of wood tin
may represent deposition of tin in an environment of
low temperature and pressure at the end of mineraliza-
tion (Lufkin 1977).

Stage VI (quartz–calcite veins) Quartz veins (Fig. 7g) and cal-
cite veins (Fig. 7h) that lack mineralization characterize stage
VI, and they represent the last hydrothermal stage in the
Yinyan tin deposit.
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Sampling and analytical methods

Whole-rock trace element analysis

One slightly altered quartz porphyry sample and seven spec-
imens of little altered granite porphyry were crushed to
200 mesh and then used for trace element analysis. Fifty mil-
ligrams of powdered samples were dissolved in a mixture of

HF + HNO3 in high-pressure Teflon bombs for 48 h at about
190 °C. Trace elements were analyzed on a PerkinElmer Sciex
ELAN DRC-e ICP–MS at the State Key Laboratory of Ore
Deposit Geochemistry, Institute of Geochemistry, Chinese
Academy of Sciences (SKLODG, IGCAS). Rhodium was
applied as an internal standard to monitor signal drift. The
analytical procedures are described in detail by Qi et al.
(2000). The international standards GBPG-1 and OU-6, and
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Fig. 4 Photographs and photomicrographs of quartz porphyry (sample
Y730, a–c) and greisenized granite porphyry (sample Y802, d–f) in the
Yinyan tin deposit. a Quartz porphyry specimen. b Photomicrograph of
the quartz porphyry (plane-polarized transmitted light). c Representative
metallic minerals in the quartz porphyry (reflected light). d Granite

porphyry specimen. e Photomicrograph of the granite porphyry (cross-
polarized light). f Major metallic minerals in the granite porphyry
(reflected light). Mineral abbreviations: Qz = quartz, Kfs = K-feldspar,
Pl = plagioclase, Ccp = chalcopyrite, Py = pyrite, Hem = hematite, Mag =
magnetite, Wol = wolframite, Sp = sphalerite
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the Chinese national standards GSR-1 and GSR-3, were used
for quality control. Analytical precision was typically better
than 5%.

LA–ICP–MS zircon U–Pb dating

One slightly altered quartz porphyry sample (Y730; Fig. 4a–c)
and one granite porphyry sample with greisenization (Y802;
Fig. 4d–f) were collected for zircon separation. After crushing
the rock samples, the zircons were separated using conven-
tional heavy liquid and magnetic separation techniques and
then handpicked under a binocular microscope. The selected
grains were mounted in an epoxy resin disk and polished
down to expose the largest crystal areas. Transmitted and
reflected light photomicrographs and cathodoluminescence
(CL) images were taken to reveal internal structures and allow
selection of the best laser ablation spots. CL images of zircon
grains were obtained using a JEOL JSM-7800F field emission
scanning electron microscopy (SEM) equipped with a
MonoCL4 cathodoluminescence detector at the SKLODG,
IGCAS.

LA–ICP–MS zircon U–Pb dating was conducted at the
SKLODG, IGCAS. Laser sampling was performed using a
GeoLas Pro 193 nm ArF excimer laser. An Agilent 7700x
ICP–MS instrument was used to acquire ion-signal intensities.
Helium was used as carrier gas and was mixed with argon via
a T-connector before entering the ICP–MS. Laser ablation
conditions were 3 J/cm2 of laser energy, 5 Hz of ablation

frequency, and 24 μm of spot diameter. Zircon 91500
(Wiedenbeck et al. 1995) was used as the external standard
for U–Pb dating and analyzed twice every 5–10 analyses. The
zircon standard Qinghu was used for quality control and
yielded a weighted mean 206Pb/238U age of 159.8 ± 1.4 Ma
(2σ, n = 7), which is in good agreement with the ID-TIMS
206Pb/238U age of 159.38 ± 0.12 Ma (2σ) within error (Li
et al. 2009). Trace element compositions of zircons were cal-
ibrated against multiple reference materials (NIST 610,
BHVO-2G, BCR-2G, BIR-1G) combined with Si internal
standardization (Liu et al. 2010). Raw data reduction was
performed off-line using the ICPMSDataCal program (Liu
et al. 2008, 2010). Common Pb correction was not necessary
for any of the analyzed zircon grains due to the low signal of
common 204Pb and the high 206Pb/204Pb ratios. Concordia
diagrams and weighted mean age calculations were made
using Isoplot 4.15 (Ludwig 2012).

LA–ICP–MS cassiterite U–Pb dating and trace element
analysis

Cassiterite from cassiterite–sulfide vein sample Y710 (Fig.
7a, b), cassiterite–sulfide ore sample Y716 (Fig. 7c, d), and
cassiterite–topaz–quartz stringer sample Y724 (Fig. 6c, d)
were separately selected for LA–ICP–MS U–Pb dating and
trace element analysis. The former two samples represent the
late hydrothermal stage (stage IV), whereas the last one be-
longs to the early stage (stage II). The procedures for

Stage I Stage III Stage II Stage IV Stage V Stage VI  

Greisen Cst–Tpz–Qz Cst–Wol–Mol Cst–sulfide Wtn–Chem Qz–Cal

Stage  

Minerals  

Muscovite

Quartz

Topaz

Cassiterite

Magnetite

Hematite

Wolframite

Molybdenite

Pyrite

Galena

Sphalerite

Fluorite

Wood tin

Colloidal hematite

Calcite

Chalcopyrite

Explanation Post-magmatic
alteration

Oxide stage Sulfide stage Colloid stage Post ore

Fig. 5 Simplified paragenetic
sequence of mineralization in the
Yinyan tin deposit.
Abbreviations: Qz = quartz, Cst =
cassiterite, Tpz = topaz, Mol =
molybdenite, Wol = wolframite,
Wtn =wood tin, Chem= colloidal
hematite, Cal = calcite
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cassiterite separation, grain mounting, and microscopical and
CL/BSE photography were similar to those described above
for zircon.

LA–ICP–MS cassiterite U–Pb dating and trace element
analysis were performed synchronously at the State Key
Laboratory for Mineral Deposits Research, Nanjing
University, China. The system consisted of an Agilent 7900
ICP–MS coupled with a Resonetics RESOlution S-155 laser.
Helium gas carrying the ablated sample aerosol was mixed
with argon (carrier gas) and nitrogen (additional di-atomic

gas) to enhance sensitivity, and finally flowed into the ICP–
MS instrument. Prior to analysis, the system was optimized
using reference material NIST SRM610 ablated with a 29 μm
spot size and a 5 μm/s scan speed to achieve maximum signal
intensity and a low oxidation rate. Cassiterite grains were an-
alyzed using a laser energy density of 4.05 J/cm2, a spot size
of 67 μm, and a repetition rate of 6 Hz. NIST SRM 610 and
the in-house cassiterite standard AY-4 were used as external
elemental and isotopic calibration standards, respectively.
Cassiterite AY-4 has been well analyzed using ID-TIMS and
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Wol

Py
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Mol

Ccp

Qz

Ccp
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Mag

Hem
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Cst–Tpz–Qz stringer
Tpz

Mol

Wol
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Cst–Wol–Mol
       vein

Wol

Mol
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Ccp

Qz

Qz

a b

c d

e f
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Fig. 6 Representative ores and corresponding photomicrographs
(reflected light), and crosscutting relationships of veins in the Yinyan
deposit. a, b Disseminated ore with greisenization. c, d Greisenization
cut by cassiterite–topaz–quartz stringer. e, f Cassiterite–sulfide vein

cutting cassiterite–wolframite–molybdenite vein. Mineral abbreviations:
Qz = quartz, Tpz = topaz, Ccp = chalcopyrite, Cst = cassiterite, Hem =
hematite, Py = pyrite, Mag = magnetite, Mol = molybdenite, Wol =
wolframite
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has a U–Pb age of 158.2 ± 0.4 Ma (Yuan et al. 2011). NIST
SRM 610 was analyzed twice for every twelve analyses of
cassiterite, and AY-4 was analyzed twice for every six analy-
ses of cassiterite. More details about instrumental parameters
and operating conditions are given in Li et al. (2016). Raw
data reduction was performed off- l ine using the
ICPMSDataCal 10.1 program (Liu et al. 2010). Tera–
Wasserburg concordia diagrams were processed using
Isoplot 4.15 (Ludwig 2012). Data uncertainties of isotopic
ratios for individual spots are reported at the 1σ level, and
the errors of the Tera–Wasserburg lower intercept ages are
2σ (Li et al. 2016).

Molybdenite Re–Os dating

Sevenmolybdenite-bearing vein samples were selected for sep-
arating molybdenite. Molybdenite commonly coexists with
cassiterite, wolframite, and/or sulfides. The molybdenite was
scraped carefully with a penknife from ore samples and then
purified with magnetic separation and floating methods.
Thereafter, the molybdenite separates were carefully
handpicked under a binocular microscope to reach a purity of
> 99% and at last crushed to 200 mesh using an agate mortar.

Molybdenite Re–Os isotopic analyses were carried out in
the Re–Os laboratory at the National Research Center of
Geoanalysis, Chinese Academy of Geological Sciences,
Beijing. Molybdenite separates were digested by HNO3–
HCl in a Carius tube (Shirey and Walker 1995; Smoliar
et al. 1996). The tube was then placed in a stainless steel jacket
and heated at 230 °C for 10 h. Os was recovered by distilling
directly from the sample solution in the Carius tube and was
subsequently purified by microdistillation. The Re was sepa-
rated by solvent extraction and cation exchange resin chroma-
tography. More details of the analytical methods are given by
Du et al. (2004). Re and Os concentrations and isotopic com-
positions were determined using an Element HR–ICP–MS.
Average blanks during the analyses were 3.995 pg for Re
and 0.09 pg for Os. An average Re–Os age of 222.2 ±
3.4 Ma (95% confidence) was obtained for the molybdenite
standardGBW04435 (HLP) used in this study, consistent with
the certified value of 221.4 ± 5.6 Ma (Du et al. 2004). The
decay constant of 187Re of 1.666 × 10−11 y−1 (Smoliar et al.
1996) was used in the age calculations. The Re–Os isochron
ages and the weighted average age were calculated using
Isoplot 4.15 (Ludwig 2012).

Results

Whole-rock trace elements

The trace element contents of the quartz porphyry and granite
porphyry in the Yinyan deposit are summarized in Table 1.

The samples have moderate total rare earth element (REE)
contents (ΣREE = 153–251 ppm) and show flat chondrite-
normalized (Boynton 1984) REE patterns [LREE/HREE =
1.3–2.5, (La/Yb)N = 0.5–1.2] with strong negative Eu anoma-
lies (Eu/Eu* = 0.003–0.01; Fig. 8a) and the REE tetrad effect.
The REE tetrad effect is also supported by the quantification
parameter TE1,3 (Irber 1999), which is larger than 1.10 and
ranges from 1.12 to 1.21 (Table 1). In the primitive mantle-
normalized (Sun and McDonough 1989) trace element spider
diagram, the rocks show significant negative Ba, P, Sr, Nb,
and Ti anomalies and positive U, Th, and Ta anomalies (Fig.
8b). All samples have very low Nb/Ta (1.8–2.4) and Zr/Hf
(8.3–10.4) ratios (Table 1).

Zircon U–Pb ages

Zircon grains from the quartz porphyry sample (Y730) are
mostly colorless, transparent, and euhedral. They commonly
have lengths of 80–160 μm, widths of 20–50 μm, and length/
width ratios of 2:1 to 4:1. Most zircon grains exhibit gray to
dark luminescence in CL images (Fig. 9a), which may be a
result of high U contents. A total of 23 spots on 23 zircon
grains were analyzed for sample Y730, and the results are
listed in Supplemental Table A. Uncertainty on individual
analyses is shown at the 1σ level, and the weighted mean ages
are reported at the 2σ level. The analyzed zircon grains have
variable U and Th contents in the range of 12,625–
34,533 ppm and 1759–5778 ppm, respectively, with Th/U
ratios of 0.13 to 0.24. Twenty zircon grains defined a weight-
ed mean 206Pb/238U age of 78.5 ± 0.4 Ma (MSWD= 1.7; Fig.
9b), which is perfectly consistent with the concordia U–Pb age
of 78.5 ± 0.3 Ma (MSWD= 1.9; Fig. 9a). Two zircon grains
yielded older 206Pb/238U ages of 89.4 ± 2.2 and 91.6 ± 2.0 Ma
perhaps as a result of Pb loss. One inherited zircon grain
yielded a 206Pb/238U age of 263.8 ± 5.0 Ma.

Zircon grains separated from the greisenized granite por-
phyry sample (Y802) are smaller than those from the quartz
porphyry. Most are anhedral with various shapes, and they
display dark to gray luminescence in CL images. As many
of these zircon grains were too small to meet the experimental
requirements, only ten relatively large euhedral grains with
bright luminescence in CL images (Fig. 9c) were ana-
lyzed. The analyt ica l resul t s are presented in
Supplemental Table A. The U and Th contents of these
zircon grains are 247–1067 ppm and 173–1019 ppm,
respectively, with Th/U ratios of 0.48 to 0.96. Seven
zircon grains yielded a weighted mean 206Pb/238U age
of 79.2 ± 0.9 Ma (MSWD = 1.1; Fig. 9d), which is in
accord with the concordia U–Pb age of 79.3 ± 0.9 Ma
(MSWD = 0.94; Fig. 9c). The remaining three zircon
grains yielded 206Pb/238U ages of 129.3 ± 3.8, 145.6 ±
4.1, and 386 ± 19 Ma, which may imply they were
inherited.
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Cassiterite U–Pb ages

The representative CL and BSE images of cassiterite are
presented in Fig. 10. It is interesting to note that cas-
siterite crystals from the three different ore samples are
dark in CL image and white in BSE image. No clear-
cut zonation can be seen in either CL or BSE images
(Fig. 10). A total of 36 spots on 36 cassiterite grains
were analyzed for each of the three samples. The anal-
yses were performed on domains where there were no
mineral/fluid inclusions or cracks. The LA–ICP–MS U–
Pb data are summarized in Supplemental Table B and
illustrated in Fig. 11.

Cassiterite from sample Y710 (stage IV cassiterite–
sulfide vein) coexists with hematite, wolframite, pyrite,
and molybdenite. The cassiterite grains are mostly
subhedral to anhedral, 100–500 μm in size, and pale-
yellow to dark-brown in color. Eight analyses were
discarded because of inclusions or undetectable Pb con-
tents. The remaining 28 spot analyses gave U concen-
trations of 8.22–406 ppm and Th contents of ≤ 0.02 to
2.12 ppm. These twenty-eight cassiterite grains defined
a Tera–Wasserburg U–Pb lower intercept age of 78.5 ±
0.6 Ma (2σ, n = 28, MSWD = 1.7; Fig. 11a), which rep-
resents the crystallization age of cassiterite in the
cassiterite–sulfide vein stage.

The cassi teri te from sample Y716 (stage IV
cassiterite–sulfide ore) is subhedral to euhedral with bi-
pyramidal crystals that occur as aggregates in the ore.
Intergrown minerals include pyrite and chalcopyrite,
along with minor wolframite, molybdenite, hematite, ga-
lena, and sphalerite. The cassiterite grains are commonly
pale-yellow to brown in color and 50–600 μm in size.
Six analyses were excluded owing to interference of
inclusion signals. The U and Th contents of the other
thirty analyzed cassiterite grains ranged from 25.1 to
228.6 ppm and from 0.06 to 1.54 ppm, respectively.
The isotopic data for these thirty grains yielded a
Tera–Wasserburg U–Pb lower intercept age of 78.6 ±
1.2 Ma (2σ, n = 30, MSWD = 2.1; Fig. 11b), which we
interpret to be the mineralization age of the cassiterite–
sulfide ore.

Cassiterite from sample Y724 (stage II cassiterite–topaz–
quartz stringer) are brown to dark-brown in color and 200–
800 μm in size. The coarse-grained cassiterite crystals of this
sample are generally bipyramidal, while the fine-grained crys-
tals are subhedral to anhedral. A few grains of hematite and
chalcopyrite coexist with the cassiterite. Eight analyses were
omitted from analysis because of inclusions. The remaining
28 cassiterite grains gave variable U and Th concentrations of
36.9–481 ppm and 0.005–1.43 ppm, respectively. These
twenty-eight grains yielded a Tera–Wasserburg U–Pb
lower intercept age of 78.2 ± 0.7 Ma (2σ, n = 28,
MSWD = 3.3; Fig. 11c), which represents the crystalli-
zation age of the cassiterite in the cassiterite–topaz–
quartz stringer mineralization.

Trace element compositions of cassiterite

The trace element contents of cassiterite from the three differ-
ent ore samples are listed in Supplemental Table C.
Concentrations of each element normally vary over several
orders of magnitude. On the whole, the most abundant trace
elements in the analyzed cassiterite are Fe (0.22–5.37 wt%
FeO), W (22.3–26,885 ppm), and Ti (< 0.01 to 2.15 wt%
TiO2) and to a lesser extent Nb (22.3–12,348 ppm), Ta
(4.39–5456 ppm), Zr (15.7–1908 ppm), and Hf (1.00–
160 ppm). Mn and Sc have relatively low contents usually
lower than 500 and 1000 ppm, respectively. It should be
pointed out that most analyzed cassiterite has U concentra-
tions of > 40 to several hundred ppm, which is unusual for
cassiterite.

Selected element pairs were plotted on log-scale scatter
diagrams (Fig. 12). There is an obvious positive linear corre-
lation between the contents of Zr and Hf (Fig. 12a). The plots
of Nb vs. Ta (Fig. 12b), Ti vs. Sc (Fig. 12c), and U vs. (Fe +
W) (Fig. 12d) also display positive correlations but with more
dispersion. Cassiterite from the early hydrothermal stage
(sample Y724, stage II) seems to contain more HFSEs of Zr,
Hf, Nb, Ta, and Ti than those from the later hydrothermal
stage (samples Y710 and Y716, stage IV) (Fig. 12a–c).

Molybdenite Re–Os ages

The Re–Os concentrations and isotopic compositions of mo-
lybdenite separates from seven different types of veined ore
are listed in Table 2. The Re and 187Os contents of molybde-
nite range from 13.4 to 161.6 ppb and from 0.011 to
0.132 ppb, respectively. The seven molybdenite separates
yielded model ages that range from 76.7 ± 1.1 to 77.8 ±
1.6 Ma, with a weighted mean age of 77.0 ± 0.5 Ma
(MSWD = 0.3). These samples also define a precise
187Re–187Os isochron age of 77.0 ± 0.5 Ma (MSWD= 0.55),

�Fig. 7 Photographs and photomicrographs (reflected light) of
representative ores in the Yinyan deposit. a, b Cassiterite–sulfide vein.
c, d Cassiterite–sulfide ore. e Wolframite enclosed by wood tin. f
Cassiterites surrounded by colloidal hematite. gNonmineralized quartz vein
cutting molybdenite–quartz vein. h Calcite vein. Mineral abbreviations: Cst
= cassiterite, Py = pyrite, Mol = molybdenite, Hem = hematite, Wol =
wolframite, Ccp = chalcopyrite, Mal = malachite, Wtn = wood tin, Chem
= colloidal hematite, Qz = quartz, Cal = calcite
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which is in excellent agreement with the weighted mean age
(Fig. 13). Furthermore, the zero value of the 187Os intercept
(initial 187Os) on the 187Re–187Os isochron plot suggests that

there was no significant common or initial 187Os in the ana-
lyzed molybdenite (Stein et al. 1998, 2001). Our results are
also consistent, within error, with the Re–Os isochron age of

Table 1 Trace element compositions (in ppm) of granites from the Yinyan tin deposit

Sample no. Y730 Y801 Y802 Y803 Y804 Y805 Y806 Y807
Rock type Quartz porphyry Granite porphyry

Ba 14.8 0.692 0.950 12.1 1.42 21.7 11.0 22.5

Th 28.0 18.4 19.8 15.9 15.3 23.9 20.7 23.9

U 22.1 14.0 18.3 14.6 13.8 16.0 14.2 17.9

Nb 55.2 26.3 24.8 44.6 10.2 44.7 35.4 52.8

Ta 30.0 12.7 11.2 23.2 4.24 21.8 14.8 24.1

Sr 13.1 12.2 9.28 18.9 7.65 8.37 14.9 9.71

P 138 45.1 44.6 45.3 49.0 45.3 46.0 44.9

Nd 23.6 38.4 33.7 22.9 20.6 26.4 24.8 30.6

Zr 63.8 72.5 70.2 57.5 32.6 73.0 51.1 63.8

Hf 7.18 6.95 6.73 6.97 3.21 8.41 5.35 7.07

Sm 8.37 13.8 11.4 8.53 6.75 9.12 8.86 9.72

Eu 0.009 0.024 0.014 0.019 0.015 0.009 0.025 0.029

Ti 63.5 186 123 125 135 125 127 61.7

Y 90.7 154 120 108 65.1 87.9 86.4 72.5

La 21.6 28.8 28.9 17.8 19.8 20.7 18.9 28.9

Ce 59.5 77.6 75.7 48.6 50.0 58.0 54.0 75.6

Pr 7.15 10.1 9.34 6.16 5.90 7.45 6.88 8.95

Nd 23.6 38.4 33.7 22.9 20.6 26.4 24.8 30.6

Sm 8.37 13.8 11.4 8.53 6.75 9.12 8.86 9.72

Eu 0.009 0.024 0.014 0.019 0.015 0.009 0.025 0.029

Gd 8.32 13.9 12.5 9.48 6.39 8.87 8.51 8.70

Tb 1.98 2.88 2.64 2.39 1.51 2.26 2.10 2.02

Dy 16.4 22.1 20.4 20.1 12.6 19.1 17.6 16.3

Ho 3.69 4.79 4.27 4.44 2.74 4.09 3.74 3.38

Er 11.8 14.6 12.7 14.2 8.83 13.0 11.9 10.6

Tm 2.36 2.62 2.31 2.94 1.82 2.62 2.46 2.20

Yb 17.8 18.4 16.2 22.3 14.1 19.8 18.7 16.4

Lu 2.74 2.71 2.41 3.40 2.14 3.00 2.84 2.54

δEu 0.003 0.005 0.004 0.006 0.007 0.003 0.009 0.010

LREE 120 169 159 104 103 122 113 154

HREE 65.1 82.0 73.4 79.3 50.1 72.7 67.9 62.1

Total REE 185 251 232 183 153 194 181 216

LREE/HREE 1.85 2.06 2.17 1.31 2.06 1.67 1.67 2.48

(La/Yb)N 0.82 1.06 1.20 0.54 0.95 0.70 0.68 1.19

Nb/Ta 1.84 2.07 2.21 1.92 2.41 2.05 2.39 2.19

Zr/Hf 8.89 10.43 10.43 8.25 10.16 8.68 9.55 9.02

TE1 1.25 1.16 1.17 1.18 1.17 1.22 1.22 1.20

TE3 1.14 1.08 1.11 1.18 1.15 1.20 1.19 1.17

TE1,3 1.19 1.12 1.14 1.18 1.16 1.21 1.21 1.18

Note: The subscript N represents chondrite-normalized. δEu = EuN/(SmN × GdN)
1/2 . TE1 = (CeN/(LaN

2/3 × NdN
1/3 ) × PrN/(LaN

1/3 × NdN
2/3 ))1/2 ,

TE3 = (TbN/(GdN
2/3 × HoN

1/3 ) × DyN/(GdN
1/3 × HoN

2/3 ))1/2 , and TE1,3 = (TE1 × TE3)
1/2 (Irber 1999)
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Fig. 9 Zircon U–Pb concordia diagrams and weighted mean ages and
cathodoluminescence (CL) images of representative zircon grains from
the Yinyan deposit. The circles on the CL images represent laser ablation

spots. a, bAges of zircon grains from quartz porphyry sample Y730. c, d
Ages of zircon grains from granite porphyry sample Y802
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in the Yinyan deposit. The normalization values of chondrite are from
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78.8 ± 2.6 Ma obtained by Zheng et al. (2016) for the Yinyan
tin deposit.

Discussion

Emplacement age of the highly evolved porphyries

Previous geochronological studies on porphyries in the
Yinyan deposit are based on whole-rock/single mineral Rb–
Sr or K–Armethods. Guan et al. (1985, 1988) reported whole-
rock K–Ar ages of 80, 83, and 92 Ma for three granite por-
phyry samples and a K–Ar age of 83Ma for biotite. Hu (1989)
provided a whole-rock + feldspar Rb–Sr isochron age of 86.9
± 6Ma for the granite porphyry. Shen et al. (1996) obtained an
isochron age of 75.6 ± 1.7 Ma for the granite porphyry, also
by using the whole-rock Rb–Sr method. As K–Ar and Rb–Sr
isotopic systems have relatively low closure temperatures and
thus can be easily reset or overprinted by late-stage hydrother-
mal alteration or tectonothermal events (Stein et al. 2001;
Romer et al. 2007), those previous geochronological data span
a wide range and may not reveal the true timing of magmatism
in the Yinyan deposit. Our new LA–ICP–MS zircon U–Pb
dating yielded weighted mean 206Pb/238U ages of 78.5 ±
0.4 Ma for the quartz porphyry and 79.3 ± 0.9 Ma for the
granite porphyry. These two ages agree well with each other
within analytical error. We suggest, therefore, that the quartz

porphyry and the granite porphyry in the Yinyan deposit were
both emplaced at 78–79 Ma.

The quartz porphyry and the granite porphyry in the
Yinyan tin deposit exhibit the typical REE tetrad effect in
the chondrite-normalized REE diagram (Fig. 8a), with the
quantification parameter (TE1,3) of the tetrad effect (Irber
1999) larger than 1.10 (Table 1). It is generally considered
that the REE tetrad effect is a characteristic of highly evolved
granite (Irber 1999; Jahn et al. 2001; Wu et al. 2007).
Moreover, the REE tetrad effect may indicate intense interac-
tion between residual melts and aqueous hydrothermal fluids
(probably rich in F and/or Cl) during the late stages of mag-
matic evolution (Jahn et al. 2001; Zhao et al. 2002; Wu et al.
2004). The presence of abundant fluorite and topaz in the
Yinyan ores implies F-rich hydrothermal fluids.

It has been suggested that whole-rock Zr/Hf and Nb/Ta
ratios can be used as reliable indicators of the degree of gra-
nitic magma differentiation (Bau 1996; Zaraisky et al. 2009;
Ballouard et al. 2016; Wu et al. 2017) because both ratios
would decrease with increasing magmatic differentiation
(Irber 1999; Zaraisky et al. 2009; Chen and Yang 2015;
Dostal et al. 2015; Ballouard et al. 2016). The quartz porphyry
and the granite porphyry in the Yinyan deposit have whole-
rock Zr/Hf (8.89–10.43) and Nb/Ta (1.84–2.07) ratios that are
distinctly lower than corresponding chondritic values of 34.3
± 0.3 and 19.9 ± 0.6 (Münker et al. 2003; Fig. 8c), which
indicates advanced magmatic differentiation. Furthermore,

Sample Y710 Sample Y716 Sample Y724

83.1 ± 2.280.9 ± 1.2

78.4 ± 1.4

a b c

d e f

Fig. 10 Backscattered electron (BSE; a–c) and corresponding
cathodoluminescence (CL; d–f) images of representative cassiterite in
the Yinyan deposit from samples Y710 (cassiterite–sulfide vein; a, d),
Y716 (cassiterite–sulfide ore; b, e), and Y724 (cassiterite–topaz–quartz

stringer; c, f). The cassiterite shows no clear zoning in either the BSE or
CL images. Red circles and numbers on the BSE images represent laser
ablation spots and the corresponding 206Pb/238U ages
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the Nb/Ta ratio of < 5 in peraluminous granites may reveal
magmatic–hydrothermal interaction (Ballouard et al. 2016).

Most primary tin deposits are spatially and temporally re-
lated to granitic rocks (Taylor 1979; Lehmann 1982, 1987;
Hosking 1988). These granitic rocks are often highly evolved
(Xu et al. 1984; Heinrich 1990; Lehmann et al. 1990;Wu et al.
2017) and display distinctive geochemical characteristics such
as pronounced enrichment in Th, U, Ta, F, and Sn and marked
depletion in Ba, Sr, Eu, Ti, Ca, and Zr (Lehmann 1990; Romer
and Kroner 2016). As discussed above, these geochemical
signatures also characterize the quartz porphyry and the gran-
ite porphyry in the Yinyan tin deposit.

Timing of Sn mineralization in the Yinyan deposit

Cassiterite is the major ore mineral in most tin deposits as well
as an associated mineral in many tungsten deposits. The clo-
sure temperature of the U–Pb isotopic system for cassiterite
with a grain size of 1 μm is higher than 500 °C, and for a grain
size of 1 mm, it is > 860 °C (Zhang et al. 2011). Due to its
refractory nature, cassiterite is highly resistant to post-ore hy-
drothermal alteration, metamorphism, weathering, acid disso-
lution, and abrasion (Plimer et al. 1991; Gulson and Jones
1992; Jiang et al. 2004). The homogenization temperatures
of fluid inclusions in quartz from different types of ore in the
Yinyan deposit range from 260 to 450 °C (Xie et al. 1988).
These temperatures are significantly lower than the closure
temperature of the cassiterite U–Pb system, which means that
the U–Pb isotopic system of the cassiterite in the early veins
could not have been disturbed by late-stage hydrothermal
fluids. Therefore, our new cassiterite LA–ICP–MSU–Pb ages
of 78.5 ± 0.6Ma (cassiterite–sulfide vein), 78.6 ± 1.2Ma (cas-
siterite–sulfide ore), and 78.2 ± 0.7 Ma (cassiterite–topaz–
quartz stringer) are reliable. These ages are identical within
analytical uncertainties and represent the timing of tin miner-
alization in Yinyan deposit.

Molybdenite is a common ore mineral in most hydrother-
mal deposits. It has been proved that the Re–Os chronometer
of molybdenite is highly precise and accurate (Stein et al.
1997, 2001; Selby et al. 2002). More importantly, the Re–
Os isotope systematics of molybdenite cannot be disturbed
by younger hydrothermal, metamorphic, and/or tectonic
events, and it is therefore remarkably robust (Stein et al.
1998, 2001; Watanabe and Stein 2000; Selby and Creaser
2001; Bingen and Stein 2003). Therefore, our new
187Re–187Os isochron age of 77.0 ± 0.5 Ma defined by seven
molybdenite separates represents the age of the molybdenite
mineralization in the Yinyan deposit. Furthermore, the molyb-
denite Re–Os age is in agreement with the cassiterite U–Pb
ages within analytical errors. The consistency of these ages is
also in agreement with the fact that molybdenite and cassiter-
ite are paragenetic. Hence, we conclude that the Sn (–Mo–W)
mineralization in the Yinyan deposit occurred at 77–78 Ma.
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Our new cassiterite U–Pb and molybdenite Re–Os ages for
the mineralization agree well with the zircon U–Pb ages for the

magmatism within analytical errors. These data convincingly
indicate that the tin mineralization in the Yinyan deposit is
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Table 2 Re–Os isotope compositions for molybdenite from the Yinyan tin deposit

Sample Weight (g) Re (ng/g) Os (ng/g) 187Re (ng/g) 187Os (ng/g) Model age (Ma)

Measured 2σ Measured 2σ Measured 2σ Measured 2σ Measured 2σ

Y701 0.20247 145.1 1.7 0.0006 0.0004 91.19 1.10 0.1171 0.0009 77.06 1.33

Y719 0.20114 146.2 1.8 0.0001 0.0000 91.88 1.16 0.1184 0.0007 77.31 1.32

Y720 0.20075 161.6 2.4 0.0013 0.0000 101.6 1.5 0.1318 0.0013 77.82 1.58

Y721 0.20056 150.9 1.6 0.0002 0.0000 94.85 1.01 0.1218 0.0007 77.06 1.21

Y723 0.20039 87.33 0.72 0.0003 0.0000 54.89 0.45 0.0701 0.0005 76.65 1.10

Y727 0.20039 13.40 0.19 0.0001 0.0000 8.42 0.12 0.0108 0.0001 77.10 1.65

Y728 0.20133 114.9 1.1 0.0001 0.0001 72.22 0.67 0.0925 0.0005 76.83 1.13
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genetically related to the granitic magmatism, and the
magmatism and mineralization both occurred nearly simulta-
neously at ca. 77–79 Ma (Fig. 14).

Trace element geochemistry of cassiterite

Due to their similar charges, radii, and ion coordination to
Sn4+, significant amounts of Ti and other trace elements such
as W, Fe, Mn, Nb, Ta, Zr, Hf, and In, among others, can be
incorporated in cassiterite (Cohen et al. 1985; Möller et al.
1988; Neiva 1996; Lerouge et al. 2017). The plots of Fe +
Mn vs. Nb + Ta (Fig. 12e) and W vs. Fe (Fig. 12f) show no
significant correlations. Therefore, the commonly proposed
substitution mechanisms of W6+ + 2Fe3+ = 3Sn4+, (Fe,
Mn)2+ + 2(Nb, Ta)5+ = 3(Sn, Ti)4+, and Fe3+ + (Nb, Ta)5+ =
2(Sn, Ti)4+ (Černý and Ercit 1985; Černý et al. 1985; Cohen
et al. 1985; Möller et al. 1988) cannot be confirmed in the
cassiterite of the Yinyan deposit. The differences in the Nb,
Ta, Zr, and Hf contents of the early (stage II) and late stage
(stage IV) cassiterite may have resulted from the decrease in
temperature, which is supported by the previous study that
fluid inclusions in quartz from cassiterite–sulfide stage (stage
IV) have the lowest homogenization temperature of 260–
320 °C (Xie et al. 1988).

The trace element composition of cassiterite may reveal the
mineralization type and the environment of ore formation
(Steveson and Taylor 1973; Plimer et al. 1991; Murciego
et al. 1997; Hennigh and Hutchinson 1999). Fe and W are
both effective in distinguishing granite-affiliated cassiterite
from the cassiterite of SEDEX/VMS deposits (Taylor 1979;
Hennigh and Hutchinson 1999; Guo et al. 2018a). Cassiterite
from the Yinyan tin deposit has very high concentrations ofW
and Fe and falls within the field of granite-related tin deposits
(Fig. 12f) on the W vs. Fe bivariate discrimination plot (Guo
et al. 2018a). The Zr/Hf ratio of cassiterite can be used to
discriminate different types of mineralization (Möller and

Dulski 1983). Cassiterite from pegmatites is characterized by
Zr/Hf ratios of ~ 5, whereas cassiterite in hydrothermal min-
eralization has Zr/Hf ratios of ~ 30 (Möller and Dulski 1983).
The cassiterite from albite–spodumene pegmatites in the
Western Kunlun Orogen has Zr/Hf ratios of ~ 6, with a max-
imum value of 7.3 (Feng et al. 2019), whereas the Zr/Hf ratios
of cassiterite from the world-class Gejiu tin district vary from
12.5 for greisen-hosted cassiterite to 16.7 for granite-
disseminated cassiterite (Cheng et al. 2019). The Zr and Hf
contents of cassiterite from the Yinyan tin deposit display a
clear positive linear correlation (Fig. 12a), with Zr/Hf ratios
approximating 9.

It is interesting to note that the cassiterite in the Yinyan tin
deposit has very high U concentrations (Supplemental
Table B) and shows dark luminescence in CL images
(Fig. 10). Most of the cassiterite grains have U concentrations
that are > 40 ppm, with maximum U content of 481 ppm and
average U content of 141 ppm. To the best of our knowledge,
the U concentrations in cassiterite from other representative
Sn (±W) deposits around the world rarely exceed 40 ppm
(Zagruzina et al. 1987; Yuan et al. 2008, 2011; Zhang et al.
2017c, d; Guo et al. 2018a, b; Neymark et al. 2018; Cheng
et al. 2019). The high U concentrations in the Yinyan cassit-
erite may reveal high U contents in the ore-forming fluids,
which in turn would indicate that the precursor magma was
highly evolved because U is a strongly incompatible element.
CL zoning patterns under the SEM can reveal trace element
distributions in cassiterite (Hall and Ribbe 1971; Wille et al.
2018; Cheng et al. 2019). The intensity of the luminescence is
governed by the interplay between the luminescence activa-
tors (Ti and W) and quenchers (such as Fe) (Hall and Ribbe
1971; Farmer et al. 1991), e.g., the presence of Fe with W
suppresses the W-activated emission, while Fe occurring with
Ti enhances the probability of luminescence transitions (Hall
and Ribbe 1971; Farmer et al. 1991). Furthermore, quenching
combinations of (Si and Fe) or (Nb and Ta) in cassiterite may
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have a negative effect on the CL intensity (Hall and Ribbe
1971; Wille et al. 2018). Guo et al. (2018a) concluded that
the Ti content of cassiterite is the key controller of lumines-
cence intensity, whereas the activator W provides weak lumi-
nescence in SEM–CL images. However, Wille et al. (2018)
suggested the luminescence of cassiterite is quenched when
Fe is present with Ti. In the case of the cassiterite of the
Yinyan deposit, its high Fe, Nb, and Ta contents may be the
key factors that underlie the dark luminescence in CL images
(Fig. 10), but this needs to be confirmed by more comprehen-
sive studies.

Two Sn–W metallogenic events and the possible
tectonic setting in western Guangdong

There are many Sn (±W) deposits adjacent to the Yinyan tin
deposit, e.g., the Yinwuling, Xiaonanshan, Dajinshan, and
Xishan W–Sn deposits, and the Xiping Sn–Mo polymetallic
deposit (Figs. 1b and 2). Combining the zircon and cassiterite
U–Pb, andmolybdenite Re–Os geochronological data of these
deposits published in recent years (Supplemental Table D), it
is evident that there are two Sn–Wmetallogenic events in this
region, one at ca. 85 Ma and the other at 77–80 Ma (Fig. 14).

As early as the 1980s, it had been realized that the peak of
isotopic ages at 80–95 Ma in the Late Cretaceous represented
the most important period of tin mineralization in South China
(Xu and Zhu 1988). The world-class Gejiu and Dulong
(southeastern Yunnan) and Dachang (northwestern Guangxi)
tin-polymetallic deposits, together with the foregoing Sn–W
deposits in western Guangdong, all formed in this period. In
the past few years, and on the basis of numerous precise
geochronological data, Cheng et al. (2016) concluded that
80–100 Ma, with a peak at 83–90Ma, was the most important
period of large-scale Sn–W mineralization and associated
magmatic activity in the regions of southeast Yunnan and
northeast Vietnam. Zhang et al. (2017b, 2018, 2019) went
on to define an E–W-trending 80–100 Ma belt of Sn–Wmin-
eralization that extended from western Guangdong westwards
to southeastern Yunnan in South China. For comparative

purposes, we compiled the zircon U–Pb ages of granitic rocks
and the molybdenite Re–Os, mica Ar–Ar, and cassiterite U–
Pb ages of the associated Sn–Wdeposits in southeast Yunnan,
Guangxi, and western Guangdong (Supplemental Table D).
The data set clearly shows that all these Sn–W deposits and
the related magmatism formed in a period of 75–100 Ma (Fig.
1b).

Deciphering the tectonic setting of ore deposit formation is
likely to cause controversy. This issue is a particularly knotty
one in the case of Yinyan and neighboring Sn–W deposits
because they formed in the Late Cretaceous at a location that
was at the junction of the Pacific and Tethyan tectonic do-
mains (Zhou et al. 2008; Wang et al. 2011; Xu et al. 2018).
As mentioned above, the Yinyan Sn deposit and adjacent Sn–
Wdeposits in western Guangdong are part of an extensive 75–
100 Ma Sn–W mineralization belt, and one would expect,
therefore, that all these Sn–W deposits shared the same or
similar geodynamic settings. Nevertheless, the tectonic setting
of these deposits has remained a subject of hot debate. The
predominant view has been that the formation of these Sn–W
deposits was related to the subduction of the paleo-Pacific
Plate (Zhou and Li 2000; Zhou et al. 2006; Mao et al. 2013;
Zheng et al. 2015, 2016, 2017a, b; Cheng et al. 2016), but
more recently, it has been proposed that either Neo-Tethyan
subduction was responsible for the formation of these deposits
(Sun 2016; Zhang et al. 2017b, 2018, 2019; Sun et al. 2018;
Xu et al. 2018), or that Neo-Tethyan subduction was the main
controlling factor with some contribution from the Pacific
system (Wang et al. 2011). Here, we lean toward the Neo-
Tethyan model for the following reasons. Firstly, the 75–
100 Ma Sn–W mineralization belt is almost perpendicular to
the direction of the paleo-Pacific Plate subduction (Zhou and
Li 2000; Zhou et al. 2006; Sun et al. 2007; Mao et al. 2011,
2013; Liu et al. 2017), whereas this belt is parallel to the
northern subducting boundary of the Neo-Tethyan Plate dur-
ing Cretaceous (Sun 2016; Liu et al. 2017; Zhang et al. 2017a;
Sun et al. 2018). This is similar to the situation in South
America where the important Bolivian tin belt and the famous
porphyry Cu–Au belt are both parallel to the subducting
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boundary of the offshore plate (Mlynarczyk and Williams-
Jones 2005; Romer and Kroner 2016). Secondly, it has been
suggested that the E–W-trending Hainan marginal arc
belonged to the Tethyan tectonic realm in the Cretaceous
(Fang 2016). The magmatism and subduction-related orogeny
in the Hainan marginal arc reached a peak at the tran-
sition from the Early to the Late Cretaceous, and the
arc-related magmatic–sedimentary activities continued
until ~ 70 Ma (Fang 2016). The western Guangdong
Province is geographically close to the Hainan marginal
arc in the Late Cretaceous, and thus, the 75–100 Ma
Sn–W deposits were more likely controlled by the
Tethyan tectonic system. Finally, the 75–100 Ma Sn–
W mineralization belt is temporally (western part also
spatially) close to the ca. 62–76 Ma tin mineralization
that was controlled by the Tethyan tectonic domain in
the Tengchong–Baoshan region in western Yunnan (Xu et al.
2018), which makes it even more likely that the 75–100 Ma
Sn–W deposits in South China were also related to the
Tethyan tectonic system.

Conclusions

(1) The quartz porphyry and granite porphyry associated
with tin mineralization in the Yinyan deposit are highly
evolved and emplaced at ca. 78–79 Ma. The tin miner-
alization in the Yinyan deposit occurred at ca. 77–78Ma,
and it has close temporal and spatial relationships with
the porphyry magmatism.

(2) The most abundant trace elements in cassiterite from the
Yinyan deposit are Fe,W, Ti, and U, with lesser amounts
of Nb, Ta, Zr, and Hf. The high Fe, Nb, and Ta contents
of the cassiterite may be responsible for its dark lumines-
cence in CL images.

(3) During the Late Cretaceous, there were two Sn–W
metallogenic events in western Guangdong. One oc-
curred at ca. 85 Ma and the other at 77–80 Ma. These
two episodes are part of a large-scale 75–100 Ma Sn–W
mineralization event that geographically extended from
southeastern Yunnan through Guangxi to western
Guangdong. Neo-Tethyan subduction, rather than sub-
duction of the paleo-Pacific Plate, was responsible for
this large-scale Sn–W mineralization event in South
China.
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