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a b s t r a c t 

Understanding where nitrate is mobilized from and under what conditions is required to reduce nitrate 

loss and protect water quality. Low frequency sampling may inadequately capture hydrological and bio- 

geochemical processes that will influence nitrate behavior. We used high-frequency isotope sampling and 

in-situ nitrate sensing to explore nitrate export and transformation in a karst critical zone. Nitrate was 

mobilised during light rainfall, and transferred from soil layers to the karst matrix, where some ni- 

trate was retained and denitrified. Nitrate isotopic composition changed rapidly during the rising limb 

of events and slowly during the falling limb. The main nitrate source was synthetic fertiliser (up to 80% 

during event flow), transported by conduit flow following high rainfall events, and this contribution in- 

creased significantly as discharge increased. Soil organic nitrogen contribution remained constant indi- 

cating at baseflow this is the primary source. Isotope source appointment of nitrate export revealed that 

synthetic fertilizer accounted for more than half of the total nitrate export, which is double that of the 

secondary source (soil organic nitrogen), providing valuable information to inform catchment manage- 

ment to reduce nitrate losses and fluvial loading. Careful land management and fertilizer use are neces- 

sary to avoid nitrate pollution in the karst agroecosystem, for example by timing fertilizer applications to 

allow for plant uptake of nitrate before rainfall can flush it from the soils into the karst and ultimately 

into catchment drainage. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The critical zone (CZ) is the near-surface layer that ranges from

he top of plants through to the base of the groundwater zone;

t serves as the main region within which biogeochemical pro-

esses interact to sustain terrestrial ecosystems ( Banwart et al.,

013 ; Brantley et al., 2006 ). As an essential nutrient, nitrogen (N)

as a critical influence on organisms within the CZ. Understanding

he fate and behavior of N in the CZ is important to manage poten-

ial N losses from the terrestrial environment. As one of the major

athways for active N to enter the ecosystem, application of syn-

hetic and organic N fertilisers to agricultural land is essential to
∗ Corresponding author. 

E-mail address: siliang.li@tju.edu.cn (S.-L. Li). 
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upport food production for a growing population ( Gu et al., 2015 ;

hang et al., 2015 ). However, when applied in excess of crop re-

uirements, N can transfer from land to water and result in high

oncentrations of nitrate-N (NO 3 
−–N) in aquatic environments of

he CZ ( Cui et al., 2013 ). 

Karst geology accounts for 20% of the ice-free global terres-

rial environment and supports water sources for approximately

ne quarter of the world population ( Ford and Williams, 2013 ;

ullivan et al., 2019 ). The hydrology of karst is complex due to the

ultiple porosities of the geology which facilitate conduit, fracture

nd matrix flows and results in unique dual hydrological flows (e.g.

apid flow by conduit porosity and diffusion flow via fractures and

he karst matrix), which may distinguish it from other kinds of CZ

 Ford et al., 2019 ; Kordilla et al., 2012 ). Hydrological response to

ainfall events in karst areas is often quick, and rapid exchange be-

ween surface and underground streams promotes the transfer of

https://doi.org/10.1016/j.watres.2020.116388
http://www.ScienceDirect.com
http://www.elsevier.com/locate/watres
http://crossmark.crossref.org/dialog/?doi=10.1016/j.watres.2020.116388&domain=pdf
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pollutants, e.g. nitrate, from agricultural to aquatic environments

( Epting et al., 2018 ; Jiang et al., 2009 ). However, low frequency

sampling, e.g. monthly or even weekly, fails to fully capture hy-

drological responses, and associated physical, chemical and biogeo-

chemical processes, typical of karst environments ( Huebsch et al.,

2014 ; Pu et al., 2011 ; Yang et al., 2019 ). 

Improved knowledge of nitrate source characteristics is needed,

and high-resolution understanding of source contribution dynam-

ics is also required to understand where and when nitrate is ex-

ported from nitrate rich or poor zones in the karst critical zone

(KCZ) and how land use influences the KCZ - thus helping to iden-

tify risk of elevated nitrate export periods ( Hartmann et al., 2014 ;

Huebsch et al., 2014 ; Sebestyen et al., 2019 ). For example, high-

resolution monitoring of fluvial nitrate export in karst in South-

western China showed that strong seasonal export was controlled

by land use: intense nitrate export coincided with summer crop

agricultural practices, particularly rice cultivation when water is

pumped from sinkholes or wells for seeding and transplanting

( Yue et al., 2019 ). Further nitrate export was controlled by changes

in catchment hydrology, particularly during intensive rainfall in the

wet season ( Yue et al., 2019 ) and here the transition from dry to

wet conditions could offer particular insight. 

Understanding where nitrate comes from is not possible from

monitoring only concentration profiles in receiving waters due to

loss of material from nitrate reprocessing, source mixing, and vari-

ation in hydrological flow pathways ( Hu et al., 2019 ; Huebsch et al.,

2014 ; Jarvie et al., 2018 ). Isotopic approaches have been used

widely in landscape studies over the past few decades to iden-

tify nitrate sources and transformations based on the distinct iso-

topic compositions of sources and changes to that during repro-

cessing ( Gooddy et al., 2016 ; Jiang et al., 2009 ; Musgrove et al.,

2016 ; Wong et al., 2012 ). High frequency nitrate isotopic composi-

tion during high risk periods (e.g. rainfall events), may provide in-

sightful understanding of nitrate biogeochemistry, ( Hu et al., 2019 ;

Husic et al., 2019a , 2020 ), but this approach is not common. By

coupling this modeling approach with an understanding of the sys-

tem hydrology ( Parnell et al., 2010 ), the dynamic contribution from

each source can be clearly profiled at high resolution to help iden-

tify nitrate mobilization within a catchment. 

To elucidate nitrate dynamics during the more intense nitrate

export periods, important for informing global karst catchment

management, we coupled high-resolution nitrate dual isotopes

profiling with nitrate sensor time series to 1) understand how dif-

ferent sources of nitrate contribute quantitatively to export and

2) determine how this changes with differences in hydrology and

land management practices. We hypothesised that the controls on

more intense nitrate export will be spatial storage of nitrate, and

the extent to which these storage zones are connected with hydro-

logical flow pathways in the karst. 

2. Material and methods 

2.1. Study area 

This research took place in Chenqi (CHQ), a headwater catch-

ment of the Houzhai Karst Critical Zone Observatory (KCZO), with

a drainage area of 1.25 km 

2 and elevation of 1316 – 1500 m above

sea level ( Fig. 1 a). It is located in a subtropical monsoonal climate

zone with annual precipitation between November 2016 and Octo-

ber 2017 (the research period) of 1217 mm, which was slightly less

than the average precipitation for a typical year ( 1246 ± 315 mm)

( Yue et al., 2018 ). Approximately 86% of the annual precipitation

occurs in the wet season (May to October), particularly in June and

August for 2017 ( Yue et al., 2019 ). Geological strata in this head-

water catchment include dolostone, pure and thick limestone of

the Guanling Formation of the Middle Triassic, marlite, and Qua-
ernary soil ( Fig. 1 a) ( Chen et al., 2018 ). The typical geomorphology

n the study area is peak clusters with many valleys. Therefore, soil

hickness on hillslopes is thinner than in the valley floor where

oil deposition originating from the surrounding hillslope occurs

 Green et al., 2019 ). The soil thickness is 20 – 50 cm with clay

ontent of 24 – 32.5 g/100 g, total nitrogen of 1.24 –13.02 g/kg

nd organic matter content of 15.95 –192.9 g/kg ( Luo et al., 2019 ;

eng and Wang, 2012 ). 

Land use includes farmland (16.6% including 13.8% for dry land

nd 2.8% for paddy field), natural vegetation (82.8%) and other land

over, e.g. developed areas (0.3%) and bare rock (0.3%) ( Yue et al.,

019 ). The agricultural fields are mainly located on hillslopes for

ry land and in valleys for paddy field and vegetable cultivation

 Fig. 1 b). High intensity fertilizer application to land occurs from

ay to July for summer crops. Synthetic and organic fertilizers are

enerally used, with organic sources more commonly used to fer-

ilize paddy fields ( Yue et al., 2018 ). 

.2. Sampling and analyses 

Nitrate concentration ([NO 3 
−–N]) and water discharge (Q) at

he CHQ catchment outlet was measured using an in-situ sensor

pproach ( Chen et al., 2018 ; Yue et al., 2020 ). To avoid optical sen-

or interference from turbid event flow waters in the karst sys-

ems, nitrate ion-selective electrodes (NISE) sensors were used in

he study area. The NISE sensor can measure and compensate for

hloride present in the water to eliminate cross sensitivity between

itrate and chloride. In addition, discrete samples for validation of

ensor estimate of [NO 3 
−–N] were collected, and immediately fil-

ered for analysis. Linear relationship calibration between sensor

NO 3 
−–N] and laboratory measured [NO 3 

−–N] from discrete sam-

les was used and the uncertainty ( μC ) of calibration was eval-

ated - which ranged from 0.06 to 0.64 mg/L over the 18 months

onitoring period (further details in Yue et al. (2020) ). To help un-

erstand the dynamics of solute and water, temperature (T), con-

uctivity (EC), and dissolved oxygen (DO) were monitored using a

ulti-parameter sonde (Aqua Troll 600, In Situ Inc., Fort Collins,

SA). 

The most dynamic exports were previously observed during the

ransition from dry aquifer conditions to wet conditions, i.e. from

ay to middle of June in 2016 ( Yue et al., 2019 ). Thus, high fre-

uency sampling by autosamplers (TC-80 0 0E-II, China) with differ-

nt time intervals was implemented at Chenqi spring outlet dur-

ng rainfall events between 14th May and 3rd July 2017 ( Fig. 1 b).

he time interval between samples was typically one hour during

vent flow. As event flow subsided the time interval between sam-

les was increased, e.g. a transition to two, four and six hours be-

ween samples with the continued decrease in Q. Up to 24 bottles

ould be stored in dark conditions within the autosampler unit al-

owing daily collection. All samples were filtered immediately after

ollection in the laboratory using 0.45 μm cellulose acetate filters

efore storing at 4 °C to await isotopic analysis. The nitrate and hy-

rochemistry sensor data were used to assess variability in hydro-

hemistry and decide which collected samples would be analysed

or δ15 N and δ18 O of the NO 3 
−. Thus, 347 samples (63% of total

amples) were selected for nitrate isotope analysis within 1 month.

o help identify nitrate sources from synthetic fertilisers and ma-

ure, [Cl −] was also measured using a Dionex ion chromatography

Dionex Corp., Sunnyvale, CA, USA) with a precision of + /- 5%. 

The fluvial filtrate was analyzed for δ15 N and δ18 O of NO 3 
− by

he denitrifier method ( McIlvin and Casciotti, 2011 ) and an Iso-

rime Continuous Flow Isotope Ratio Mass Spectrometer (CF-IRMS)

quipped with a Gilson GX271 autosampler and a Trace Gas Pre-

oncentrator unit (IsoPrime, GV, UK) at the State Key Laboratory of

nvironment Geochemistry, Chinese Academy of Science. Four in-

ernational nitrate (USGS-32, USGS-34, USGS-35 and IAEA-N3) and
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Fig. 1. Chenqi catchment (a) geomorphology, modified from Chen et al. (2018) and (b) land use in the Chenqi catchment ( Yue et al., 2019 ) . The yellow and black dashed 

lines represent elevation contours and catchment boundary, respectively. 
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wo laboratory reference materials were used for the calibration.

he analytical precision for the replicated samples was 0.3 ‰ for
15 N and 0.5 ‰ for δ18 O of nitrate ( n = 5). 

.3. Water yield and nitrate yield calculation 

The water volume (m 

3 ) and nitrate loading (kg) during each pe-

iod was calculated using the following equations, respectively: 

ater volume = 

N ∑ 

i=1 

Q i × 60 × 15 (1) 

itrate loading = k ×
∑ N 

i=1 

( Ci × Qi × 60 × 15 ) 

10 0 0 

(2) 

here C i and Q i are [NO 3 
−–N] (mg/L) and discharge (m 

3 /s) with

ime interval of 15 mins. Constant k is 10 −6 to convert units from

g to kg. N is the total number of measurements during the mon-

toring period with time interval of 15 mins. Water yield (mm/day)

nd nitrate yield (kg/km 

2 /day) were calculated using water volume

nd [NO 3 
−–N] loading. 

ater yield = 

(
water volume 

A × duration 

)
(3) 

itrate yield = 

(
nitrate loading 

A × duration 

)
(4) 

here A and duration are catchment area (m 

2 ) and event flow du-

ation (day). 

.4. Nitrate source appointment 

To quantify nitrate source contribution, Stable Isotope Analysis

n R language (SIAR) uses a Bayesian mixing model to calculate

ontribution from endmembers ( Parnell et al., 2010 ). This modeling

an consider more than two sources and incorporate a fractiona-

ion effect ( Li et al., 2019 ; Parnell et al., 2010 ; Xue et al., 2012 ).

our potential endmembers from the study area were collected

uring the study period and analyzed to determine their isotopic

omposition. To determine soil organic nitrogen (SON), four sam-

les were collected at 0–30 cm depth from four different land

ses in July 2017, including farmland, abandoned farmland, grass
nd shrub land, and forest ( N = 16). Values for wet deposition

WD, N = 10) were identified from research undertaken during

he same study period (in May to July 2017) ( Zeng et al., 2020 ).

ix synthetic fertilizers (SF) were collected in the study area. To

btain dual nitrate isotopic signature of manure and sewage waste

M&S), water samples were collected five times from a large paddy

eld within 10 days after application of M&S. 

To reduce the uncertainty in our calculations, the isotopic frac-

ionation during the denitrification process was considered in the

odeling. The isotopic fractionation of denitrification was obtained

rom the slope of the relationship between dual nitrate isotopes

nd ln (NO 3 
−) ( Eq. (5) ). Detailed information regarding Bayesian

sotopic mixing modeling (Stable Isotope Analysis in R, SIAR), is

rovided in the Text S1.1. 

.5. The isotopic fractionation of denitrification 

The fractionation of denitrification was calculated using the

ayleigh fractionation method: 

r = δ0 + ε ln ( f ) (5) 

here δr is the δ15 N or δ18 O value of the residual nitrate which is

lso the observed δ15 N or δ18 O values, δ0 is the initial δ15 N or δ18 O

alue of nitrate, f is the remaining fraction of nitrate, and ε is the

sotopic fractionation value ( Heffernan et al., 2012 ; Kendall et al.,

007 ). To calculate the extent of denitrification (1-f), the high ni-

rate concentration and low δ15 N or δ18 O value at the beginning of

eriod was used as the initial isotopic composition ( δ0 ). 

. Results 

.1. Hydrology varies with rainfall 

The catchment experienced typical low rainfall and dry condi-

ions before the study (November to the following April 2017, dry

eason). During the study, the gradual increase in rainfall inten-

ity and periods of concentrated rainfall changed this catchment

rom dry to wet conditions, and agricultural activity, e.g. tillage,

ertilizer application, occurred as normal ( Yue et al., 2019 ). To con-

ider carefully how catchment water storage influences nitrate ex-



4 F.-J. Yue, S.-L. Li and S. Waldron et al. / Water Research 186 (2020) 116388 

Fig. 2. (a) temporal variation of EC, [NO 3 
−–N] and discharge (Q) ( Yue et al., 2019 ); (b) temporal variation of nitrate dual isotopes and [Cl −] in CHQ catchment. Six different 

time periods of response are identified, and these are differentiated by different colors. 

Table 1 

Summary of rainfall (RF), duration (Dur), water level (WL), Temperature (T), discharge (Q), EC and DO in each period. 

RF Dur WL T Q EC DO 

mm day m °C × 10 −3 m 

3 /s μs/cm mg/L 

Period Ⅰ 56.3 21.9 2 . 73 3 . 09 
2 . 63 ± 0 . 10 16 . 7 17 . 8 

16 . 3 ± 0 . 3 1 . 1 12 . 2 
0 . 34 ± 1 . 5 801 1219 

559 ± 148 3 . 2 4 . 6 
2 . 1 ± 0 . 7 a 

Period Ⅱ 40.8 13.1 3 . 19 5 . 11 
2 . 67 ± 0 . 26 18 . 0 22 . 3 

16 . 5 ± 1 . 7 2 . 7 72 
0 . 3 ± 7 . 7 723 1274 

446 ± 170 4 . 8 10 . 3 
0 . 5 ± 1 . 6 

Period Ⅲ 47.8 7.4 3 . 18 3 . 39 
3 . 12 ± 0 . 03 20 . 3 23 . 7 

16 . 9 ± 2 . 1 0 . 8 15 . 9 
0 . 3 ± 2 . 0 967 1393 

528 ± 164 4 . 5 8 . 3 
0 . 4 ± 1 . 3 

Period Ⅳ 79.4 3.0 5 . 18 7 . 02 
3 . 15 ± 1 . 15 17 . 2 18 . 2 

17 . 0 ± 0 . 2 65 332 
0 . 4 ± 85 . 5 521 1112 

312 ± 116 5 . 9 7 . 3 
1 . 4 ± 0 . 9 

Period Ⅴ 38.8 7.0 4 . 33 6 . 97 
3 . 29 ± 1 . 25 17 . 1 17 . 4 

17 . 0 ± 0 . 1 30 242 
2 . 3 ± 50 . 7 527 581 

391 ± 42 5 . 6 7 . 1 
4 . 9 ± 0 . 5 

Period Ⅵ 133.6 15.3 4 . 91 7 . 26 
3 . 28 ± 1 . 29 17 . 2 18 . 0 

16 . 9 ± 0 . 1 46 . 4 291 
1 . 3 ± 55 . 2 509 579 

414 ± 36 5 . 9 7 . 0 
5 . 1 ± 0 . 5 
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port dynamics, the field data was separated into six short periods

(Periods Ⅰ –Ⅵ , P Ⅰ – Ⅵ ) based on the time series of Q and water

level (WL) at a borehole well (W3 in Chen et al. (2018) ) ( Fig. 2 &

S1). The last three periods were the wet period, constituting 37.4%

of the research duration, but with 63.5% of the rainfall recharge.

The isotope sampling campaign captured the transition from dry

to wet conditions, apparent in changes in Q ( Fig. 2 ). 

Scattered rainfall showers occurred frequently and at least one

intensive rainfall event (more than 20 mm within 24 h) occurred

in each period, causing the discharge to rise, particularly in P Ⅳ
(74.5 mm/24 h). Although all periods experienced similar rainfall

between each period, the water yield can vary by more than eighty

times. For example, water yield during P Ⅰ and P Ⅲ ranged from

0.054 to 0.186 mm/day, whereas water yield during P Ⅳ and P Ⅵ
ranged from 2.07 to 4.5 mm/day ( Table 1 ), which suggests that

these periods can be separated into ‘transitional periods’ (P Ⅰ –P Ⅲ )

and ‘wet periods’ (P Ⅳ – P Ⅵ ). 
.2. Time series of [NO 3 
−–N] and hydrochemistry 

Hydrochemical summaries for each period can be found in

able 1 and Table 2 . The [NO 3 
−–N] fluctuated considerably, rang-

ng from 1.9 to 10.1 mg/L with a mean of 4.5 mg/L ( Table 2 ). During

ransitional periods, the first short duration rainfall only produced

 small concentration increase ( Fig. 2 a) while after that a small in-

rease in Q produced an initial maximum [NO 3 
−–N] (9.4 mg/L).

ubsequently in P Ⅰ , [NO 3 
−–N] slowly decreased over a prolonged

eriod (7 Days). [NO 3 
−–N] progressively declined during P Ⅱ and

he range in [NO 3 
−–N] was much smaller than in P Ⅰ . Although

here was a relatively small increase to discharge in P Ⅲ , [NO 3 
−–N]

ncreased to 10.1 mg/L and stayed at similar concentrations until

ischarge increased in P Ⅳ in response to increased rainfall. 

Compared to transitional periods (P Ⅰ - Ⅲ ), [NO 3 
−–N] in wet pe-

iods have a lower range over successive rainfall events. [NO 3 
−–N]

axima were progressively lower at equal or lower Q and showed
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Table 2 

Summary of [NO 3 
−–N], water and nitrate yield, [Cl −] and dual nitrate isotopes ( Mean max 

min ± SD ) for each period identified in Fig. 2 . 

Periods (number of samples) NO 3 
−–N Water yield Nitrate yield Cl − δ15 N δ18 O 

mg/L mm/day kg/km 

2 /day mg/L ‰ ‰ 

Period Ⅰ (50) 4 . 6 9 . 4 
1 . 9 ± 2 . 2 0.074 0.28 5 . 8 6 . 6 

5 . 1 ± 0 . 4 7 . 1 8 . 9 
4 . 8 ± 0 . 9 1 . 1 2 . 1 

−1 . 8 ± 0 . 8 

Period Ⅱ (80) 3 . 5 6 . 1 
2 . 6 ± 0 . 7 0.186 0.82 6 . 0 10 . 7 

3 . 8 ± 1 . 7 6 . 5 14 . 2 
3 . 0 ± 2 . 4 2 . 3 7 . 0 

0 . 3 ± 1 . 4 

Period Ⅲ (47) 7 . 3 10 . 2 
3 . 8 ± 1 . 3 0.054 0.34 8 . 6 10 . 3 

4 . 5 ± 1 . 7 4 . 8 11 . 2 
3 . 3 ± 1 . 4 3 . 0 6 . 0 

0 . 8 ± 1 . 1 

Period Ⅳ (36) 6 . 2 7 . 8 
3 . 7 ± 1 . 1 4.5 23.6 5 . 7 8 . 9 

2 . 8 ± 1 . 5 4 . 0 7 . 5 
0 . 6 ± 1 . 8 2 . 6 4 . 6 

1 . 6 ± 0 . 5 

Period Ⅴ (61) 4 . 6 5 . 6 
3 . 9 ± 0 . 5 2.07 10.2 4 . 6 5 . 6 

2 . 3 ± 1 . 0 3 . 4 5 . 7 
−0 . 2 ± 1 . 6 1 . 2 3 . 0 

−0 . 8 ± 0 . 8 

Period Ⅵ (73) 3 . 5 4 . 1 
2 . 3 ± 0 . 4 3.27 9.9 3 . 2 5 . 0 

1 . 5 ± 0 . 7 3 . 4 5 . 3 
1 . 0 ± 0 . 9 0 . 4 2 . 0 

−3 . 2 ± 1 . 1 
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elatively stable concentrations of around 3.5 mg/L in P Ⅵ . Further,

 smaller amplitude of change in [NO 3 
−–N] was observed during

he falling limb of the hydrograph during wet periods than during

ransitional periods. 

During rainfall events, [NO 3 
−–N] increased after an initial dilu-

ion at the beginning of events ( Fig. 2 ). Given the short duration of

ising limbs of the hydrograph responses in this KCZ, there were no

ases whereby maximum [NO 3 
−–N] was earlier than maximum Q,

ndicating that nitrate was being diluted during all rainfall events

except the first one) and as discharge decreased [NO 3 
−–N] on the

eceding limb increased. Similar trends were observed in [Cl −] and

C ( Figs. 2 and S2, Table 2 ). High fluctuations and the highest

alues of DO, T and EC were all observed in transitional periods

 Tables 1 and 2 ), particularly T during P Ⅱ ( Table 1 ). 

.3. The isotopic composition of nitrate in the KCZ 

In general, as Q increases, dual nitrate isotopic composition de-

reases ( Fig. 3 ), with this relationship strongest in the wet periods.

itrate isotopic compositions were dynamic, ranging from −0.2 to

4.2 ‰ for δ15 N and from −3.2 to 7.0 ‰ for δ18 O. The range in

itrate isotopic compositions also varied in the six periods, with

uch variation in P Ⅱ and P Ⅲ ( Table 2 ). The greatest dual isotope

alues were all observed in P Ⅱ , whereas the lowest dual isotope

alues were found during rainfall events in different periods: P Ⅴ
or δ15 N and P Ⅵ for δ18 O. 

.4. Nitrate source proportions under various hydrological conditions 

uring rainfall events 

NO 3 
− originating from WD has δ18 O nitrate of more than 60 ‰

nd low δ15 N nitrate 
, which can distinguish this source from other

O 3 
− produced by microbial nitrification ( Zeng et al., 2020 ). The

sotopic compositions of four dominant endmembers collected

rom the study area during study periods (Table S1), were used in

he SIAR modeling ( Fig. 4 ). The nitrate isotopic composition during

he latter stages of P Ⅱ and in P Ⅲ was likely influenced by deni-

rification and so the corresponding isotopic fractionation was ac-

ommodated in the SIAR model for those time periods. 

The SIAR modeling showed that contribution of the four nitrate

ources varied dynamically during the study period. Wet deposi-

ion only contributed 10.5% (MPE) of nitrate export from the catch-

ent in transitional periods and its contribution decreased during

et periods. Although there are large rainfall events ( Figs. 2 a & 4 a)

uring wet periods, the highest contribution only occurred during

 Ⅲ when gradually increasing hydrological connectivity facilitated

nprocessed atmospheric nitrate export to the outlet. SF contribu-

ion during wet periods is higher than SON and M&S, particularly

uring event flows (with the MPE up to 79.8%). The contribution

f SON is relatively constant during the entire study period (about

2%), but decreases during rainfall events. M&S contributed pro-

ortionally more nitrate during base flow than event flows, but its

ontribution varied more during wet periods than transitional pe-

iods ( Fig. 4 d). 
SF contribution in wet periods increased with the amount of

ischarge, and this source exhibited a significant positive relation-

hip ( p < 0.0 0 01) with Q, which is unlike the SON ( p < 0.0 0 01)

nd M&S ( p < 0.0 0 01) proportional contributions that exhibited

 significant negative relationship with Q ( Fig. 5 ). There was no

ignificant relationship between WD and Q suggesting that this

ource may not be hydrologically controlled in this high [NO 3 
−–N]

atchment. 

The source contributions are shown proportionally and are cal-

ulated based on isotopic signature. Total N-nitrate of each source

xported from the catchment is calculated through scaling-up to

otal load by considering the volume of water discharged. For ex-

mple, SIAR modeling shows that SF was proportionally the largest

ontribution, at 42 ± 12% (Table S2). However, SF export consti-

uted more, at 54.2% of total nitrate export. Nitrate export from SF

as 2.2, 3.4 and 10.1 times greater than SON, M&S, and WD re-

pectively, based on MPE and Q calculations (Table S2, Figure S4). 

. Discussion 

.1. Nitrate export under various hydrological conditions in the KCZ 

The rapid response of WL or Q is typical of karst aquifers

 Hartmann et al., 2014 ; Opsahl et al., 2017 ). The occurrence of two

ainfall events and increased water level at the borehole well (W3,

ig. 1 ) in P Ⅱ suggested water recharge into the karst aquifer. The

elatively stable WL during P Ⅲ indicated that the recharge and

ischarge water from the catchment are balanced, nitrate is be-

ng flushed out the system. The rainfall during transitional periods

nly produced a slight fluctuation of WL and a small amount of

ischarge water ( Fig. 2 a) but higher [NO 3 
−–N] than wet periods,

ndicating that rainfall events can initiate further nitrate loss by

ushing ( Mueller et al., 2016 ). The slow decrease in [NO 3 
−–N] dur-

ng the transitional period indicated nitrate was transferred in a

elatively small amount of water via baseflow. 

The highest WL and Q occurred in P Ⅵ and P Ⅳ , respectively,

uggesting that accumulated water during transitional periods, and

ew recharged water into the karst aquifer system during wet pe-

iods, increased the WL leading to more water being discharged

rom the catchment with high Q during wet periods. Although

NO 3 
−–N] was diluted by the successive rainfall events during the

et period, the high Q yielded 1–2 orders of greater nitrate export

han the transitional periods, indicating active catchment nitrate

obilization ( Table 2 ). 

.2. The transformations of nitrate under various hydrological 

onditions in the KCZ 

The observed higher δ18 O-NO 3 
− and high simultaneous δ15 N-

O 3 
− during the latter stages of P Ⅱ and P Ⅲ and gradual decrease

n δ18 O-NO 3 
− values during wet periods suggested major nitro-

en biogeochemistry processes during different periods were var-

ed, such as denitrification and nitrification. Generally, denitrifica-

ion is likely to occur when there is high moisture in the soil layer
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Fig. 3. The relationship between Q and dual nitrate isotopes during transitional periods (a and b) and wet periods (c and d). The colors represent the periods identified in 

Fig. 2 . 
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( Friedl et al., 2016 ), and is therefore considered unlikely to occur

in the present study during transitional conditions with low mois-

ture. However, P Ⅱ and P Ⅲ were major periods for tillage of paddy

fields, which means that farmland would be submerged for rice

planting and water residence time would be longer. Thus, the ap-

plied N sources and ammonium absorption on the surface soil will

be transformed by microbes to nitrate which can be leached to

the karst matrix by vertical drainage ( Fu et al., 2015 ; Hattori et al.,

2019 ; Sebestyen et al., 2008 ). Anaerobic conditions, inferred from

low DO concentrations during P Ⅱ and P Ⅲ ( Table 1 ), would occur

in the submerged fields to favor denitrification. Thus, the observed

higher δ18 O-NO 3 
− and high simultaneous δ15 N-NO 3 

− during the

latter stages of P Ⅱ (slope: 0.6, p < 0.0 0 01) and P Ⅲ (slope: 0.4,

p < 0.05) suggest that the increased dual nitrate isotopic compo-

sition is driven by denitrification (as modelled in Fig. 6 a), which

can result in increased δ15 N: δ18 O ratios of 2:1, instead of specific

sources with enriched 

15 N or 18 O, e.g. M&S and WD ( Granger et al.,

20 08 ; Kendall et al., 20 07 ). The denitrification of nitrate in karst

conduits has previously been observed, using nitrate isotopes and

numerical modeling, to occur at higher rates than in groundwater

pathways ( Husic et al., 2020 ). Based on the Rayleigh fractionation
odel ( δ15 N & δ18 O nitrate vs. ln (NO 3 
−–N) in Fig. 6 b), the extent of

enitrification during the later stages of P Ⅱ and P Ⅲ was calculated

 Section 2.5 ) to range from 2.7% to 57.4%, with a mean value 23.9%.

his extent of denitrification is smaller than recorded at another

arstic aquifer, where a mean value of 32% denitrification was re-

orted in the study of 61 springs ( Heffernan et al., 2012 ). 

The minimum δ15 N -NO 3 
− value during P Ⅳ and P Ⅴ showed

imilar isotopic values (0.6 ‰ and −0.2 ‰ , respectively) to SF (Ta-

le S1), which suggests rapid nitrification (see Text S1.2 for isotope

ystematic explanation of nitrification) as soil became wetter, com-

letely nitrifying NH 4 
+ to nitrate ( Quan et al., 2016 ). Additionally,

he high nitrate yield during wet periods and the low concentra-

ion of NH 4 
+ (89% samples less than 0.1 mg/L) also supports the

sotopic interpretation of complete nitrification after P Ⅲ . Therefore,

he fractionation effect of nitrification for SF is unlikely observed

r negligible in the present study. As the catchment progressively

ecame wetter after PIII, nitrified nitrate in soil was more likely to

e transported from the source areas, reducing the residence time

n KCZ, and thus isotopic composition of nitrate at the spring out-

et would be similar to the original endmember and can be used

s an endmember of the nitrification signature in SIAR modeling. 
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Fig. 4. High resolution source proportional contribution from four sources (a) WD, wet deposition, (b) SF, synthetic fertiliser, (c) SON, soil organic nitrogen and (d) M&S, 

manure and sewage waste. The mean proportional estimate (MPE) and 75 & 95% confident intervals (CI) are shown. 

Fig. 5. The relationship between source contribution and Q during wet periods. 
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The gradual decrease in the δ18 O-NO 3 
− values during wet pe-

iods displayed a similar trend to decreasing δ18 O-H 2 O after PIII

 Chen et al., 2018 ), which indicates that the exported nitrate used

xygen atoms from water during nitrification. Although we did not

easure δ18 O-H O in transitional periods, the reported range of
2 
18 O-H 2 O between P Ⅳ and Ⅵ is from −10.6 ‰ to −5.1 ‰ , sim-

lar to the range in δ18 O-H 2 O ( −9.1 ‰ to 5.8 ‰ ) in our previous

onthly samples from Houzhai catchment, which includes the

resent study area ( Chen et al., 2018 ; Yue et al., 2018 ). Therefore,

he reported range of δ18 O-H O between P Ⅳ and Ⅵ is represen-
2 
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Fig. 6. (a) the relationship of dual nitrate isotopes and (b) fractionation of denitrification of dual nitrate isotopes during later of Period Ⅱ and Ⅲ . 
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tative of the water isotopic composition of the catchment. From

the new recent convention ( δ18 O-NO 3 
−= 0.93 × δ18 O-H 2 O + 2)

( Boshers et al., 2019 ), the predicted range of δ18 O-NO 3 
− would be

−7.9 ‰ to −2.7 ‰ , which is lower than most of the sample data. 

Drainage of tilled land disrupting the clay base would also be

evident from increases in EC from higher dissolved solute concen-

trations (arising from weathering of rock fragments and submerged

farmland). The highest EC values in the later stages of P Ⅱ and P Ⅲ
are contemporaneous with the increase in dual nitrate isotopes.

Therefore, agriculture activities impact on nitrate transformation

and hydrochemistry in KCZ, particularly during transitional peri-

ods. 

4.3. Dynamics of nitrate export controlled by nitrate storage pool of 

KCZ and hydrology 

SIAR modeling demonstrated that nitrate contribution from WD

is higher than other large watersheds ( Li et al., 2019 ; Liu et al.,

2013 ) but lower than forested catchments ( Sebestyen et al., 2019 ;

Tsunogai et al., 2014 ). It is interesting that SON contributions re-

main relatively stable while there are high fluctuations in SF con-

tributions due to rainfall events. The typical geomorphology of

peak clusters in the study area and land use ( Fig. 1 ) could facili-

tate different nitrate pools. Anthropogenic sources such as SF and

M&S would be more likely on dry land and paddy fields. SF was

typically used for both, whereas M&S was mainly used for paddy

fields to improve feed quality due to the decreased number of live-

stock ( Yu et al., 2016 ). Valley areas with paddy fields and transi-

tional areas with dry land are ‘nitrate-rich’ due to anthropogenic

inputs, e.g. fertilizer application ( Green et al., 2019 ). Hillslope ar-

eas with forest or shrub represent the major ‘nitrate-limited’ ar-

eas with most nitrate from WD due to limited anthropogenic N

inputs and thin soil layers ( Osaka et al., 2016 ). Therefore, [NO 3 
−–

N] behavior during events should depend on flushed source ar-

eas ( Sebestyen et al., 2008 ). The interaction of spatial variation in

source area nitrate loading and transport time, rainfall intensity,

distance between source areas to the catchment outlet, and hydro-

logical connectivity (i.e. the nature of pathways and their efficiency

in hydrological transport) will interact to control loading to the

underground flow ( Husic et al., 2019b ; Vaughan et al., 2017 ). Ir-

respective of which nitrate pool is mobilised, most water will flow

through the soil layer (a proportion will bypass the soil matrix via

structural cracks) and lead to SON providing a continuous contri-

bution. 
.3.1. Localized flow pathways and nitrate mobilization drive nitrate 

atterns during transitional periods 

During transitional periods, surface soils on hillslopes were not

onnected to the stream via shallow subsurface flow paths dur-

ng low rainfall events ( Chen et al., 2018 ; Huebsch et al., 2014 ).

uring low intensity rainfall events, NO 3 
− flushed in the initial

ow should be local ( Blaen et al., 2017 ), e.g. from the valleys.

addy field areas, which are the major land use in valleys, there-

ore control the majority of nitrate mobilization. However, a con-

ribution from hillslope or transitional areas cannot be excluded

 Jencso et al., 2010 ): the antecedent accumulated nitrate would

lso leach from the soil layer and shallow groundwater with high

O 3 
− concentrations to the karst matrix and be exported from the

atchment outlet. This scenario is more similar to the transitional

eriods, P Ⅰ - P Ⅲ . 

Normally, karst springs have more constant water T than sur-

ace water, observed with T in wet periods (Figure S1). However,

he progressively increased water T at outlet from 16.3 °C in PI to

3.7 °C in P Ⅲ suggested the exported water at the outlet was more

ikely from surface or subsurface sources as water through soils or

arst matrix carries sensible heat. High fluctuations (diurnal vari-

tion) in DO also suggested water recharge from surface water as

echarge is the only source of DO supply to aquifers. In addition,

C also increased at the same time. Fluctuations of hydrochemistry

arameters mainly reflects recharge water within the catchment,

.g. from paddy fields, and also indicates low water storage dur-

ng these periods. Agricultural irrigation from sinkholes will reduce

he water supply from the hillslope areas to the outlet, and reduce

he dilution effect from the hillslope area water with low [NO 3 
−–

], e.g. among P Ⅰ and P Ⅲ . This resulted in accumulated nitrate in

he local area around the outlet in valley areas being leached -

bserved in P Ⅲ with no water level response to rainfall and high

NO 3 
−–N] ( Fig. 2 ). The high [NO 3 

−–N] and denitrified nitrate dur-

ng transitional periods all indicated that nitrate originates from a

nitrate-rich’ zone in the valley area around the outlet. 

.3.2. Recharge water from hillslope dilute [NO 3 
−–N] during wet 

eriods 

When the rainfall intensity increases, the hydraulic connectiv-

ty within recharge areas would increase and so connection with

tored nitrate ( Chen et al., 2018 ; Vaughan et al., 2017 ), increasing

itrate mobilization from transitional or hillslope areas depending

n the rainfall intensity. Valley or transitional areas may result in

ore variation in nitrate loading and isotopic signature than hill-

lope areas with low nitrate availability, and the resultant nitrate
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ool would reflect the mixing from these areas. Consequently, ni-

rate concentration and isotopic composition during wet periods

as less variable than in low intensity rainfall events, e.g. P Ⅰ -P Ⅲ . 

Hydrological studies of this karst area have identified that

eavy rainfall events in hillslope areas lead to a dual flow con-

ribution ( Fu et al., 2015 ; Peng and Wang, 2012 ), with the major-

ty of flow driven by vertical transfer to the karst aquifer system,

hich can in turn activate the conduit flow system ( Husic et al.,

019b ). Additionally, horizontal flow by subsurface or overland

ow transfers water to transitional or valley bottom areas to leach

he ‘nitrate-rich’ pool again ( Zhang et al., 2019 ). The active con-

uit flow from hillslope areas transfers low [NO 3 
−–N] water to the

utlet more quickly than water from the agricultural areas (high

NO 3 
−–N]) due to the thin vadose zone ( Zhang et al., 2019 ). There-

ore, the conduit flow or sinkholes (fast flow) with low [NO 3 
−–N]

ontributed more during the rising limb, with later nitrate mo-

ilised and vertically leached to the karstic aquifer network dur-

ng the falling limb. High [NO 3 
−–N] reflects mobilised transitional

one (e.g. dry land) nitrate export by slow flow. The persistent ris-

ng water level and discharge showed that new water was enter-

ng conduits, fractures, fissures, and the matrix (e.g. during PIV,

igure S1). This also explained why peak [NO 3 
−–N] lagged peak

ischarge: an increased contribution by slow flow causing high

NO 3 
−–N] in the falling limb. 

High Q did not always correspond to high MPE of SF (solid sym-

ols, Fig. 5 ). Fig. 5 indicates that the maxima Q of events (12th,

5th and 30th June during wet periods) corresponded to some

haracteristics of nitrate from base flow, which means this orig-

nated from the stored nitrate in the karst matrix or soil layer

e.g. Husic et al., 2019b ). Although the accumulated nitrate pool

n soil may not be fully leached during transitional periods, there

hould be little available after two heavy events (12th and 15th)

n contrast to the high nitrate yield in the wet periods. For exam-

le, the sharp increase in water yield and NO 3 
− yield during P Ⅳ

uggested that a large proportion of the nitrified NO 3 
− stored in

he surface soil was flushed out during heavy rainfall events occur-

ing in wet periods (e.g. Blaen et al., 2017 ; Sebestyen et al., 2019 ).

he progressively increasing water yield and NO 3 
− yield suggested

ransport of a large pool of accumulated NO 3 
− in KCZ, particu-

arly from the agricultural areas of the valley depressions. This is

ore obvious in P Ⅴ . Despite rainfall in P Ⅴ being lower than the

ollowing high rainfall event (79.4 mm) in P Ⅳ , a high-water yield

nd NO 3 
− yield occurred in P Ⅴ indicating that discharged water

nd nitrate came from antecedent storage. The significant relation-

hip between source contribution and discharge indicated that hy-

rologically controlled patterns of nitrogen leaching in karst ar-

as are more dependent on anthropogenic nitrogen, e.g. SF and

&S. Wet periods are important to hydrologically connect the ex-

ort channels among nitrate source zones, which has also been re-

orted in the karst aquifer system of central Texas ( Musgrove et al.,

016 ). However, it is still unclear whether intense rainfall during

ne event or successive rainfall events is the strongest influence

n hydrological connectivity in this KCZ. With the frequency of

ainfall events expected to increase as a result of climate change

 IPCC, 2014 ), there is a need to manage karst agroecosystems more

arefully to minimize nutrient loss from land and fluvial contami-

ation. 

. Conclusion 

This research highlights how dual nitrate isotopes can provide

epth of understanding of high resolution [NO 3 
−–N] time series in

arst aquifer system. With these tools we can identify the domi-

ant sources of nitrate and how they change with time, we can in-

er how nitrate is reprocessed, stored and transported in the high

eterogeneous KCZ, and we can quantify the load exported of each
ource. Our results supported our hypothesis that spatial storage

f nitrate and the extent to which these zones are connected with

ydrological flow pathways in the karst influences the nitrate load-

ng in emergent waters. The low rainfall events stored NO 3 
− in

CZ, while high rainfall events accelerated nitrate export, particu-

arly nitrate from SF. With such understanding we can support the

evelopment of land management practices, particularly the tim-

ng of fertilization to avoid application during successive rainfall

eriods. 
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