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a b s t r a c t

In recent years, implementation of aggressive and strict clean air policies has resulted in significant
decline in observed PM2.5 concentration in the BeijingeTianjineHebei (BTH) region and its surrounding
areas (i.e., the “2 þ 26” region). To eliminate the effects of interannual and seasonal meteorological
variation, and to evaluate the effectiveness of emission abatement policies, we applied a boosted
regression tree model to remove confounding meteorological factors. Results showed that the annual
average PM2.5 concentration normalized by meteorology for the “2 þ 26” region declined by 38% during
2014e2019 (i.e., from 96 to 60 mg/m3); however, the BTH region exhibited the most remarkable decrease
in PM2.5 concentration (i.e., a 60% reduction). Certain seasonal trend in normalized PM2.5 level remained
for four target subregions owing to the effects of anthropogenic emissions in autumn and winter.
Although strong interannual variations of meteorological conditions were unfavorable for pollutant
dispersion during the heating seasons of 2016e2018, the aggressive abatement policies were estimated
to have contributed to reductions in normalized PM2.5 concentration of 19%, 10%, 19%, and 17% in the BTH,
Henan, Shandong, and Shanxi subregions, respectively. Our study eliminated the meteorological
contribution to concentration variation and confirmed the effectiveness of the implemented clean air
policies.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Rapid industrialization and urbanization in China over the past
several decades have resulted in sharply increased energy con-
sumption, and the associated air pollution has changed dramati-
cally (Tian et al., 2007). In recent years, severe and frequent
episodes of PM2.5 (fine particulate matter with aerodynamic
diameter of <2.5 mm) pollution that threaten public health have
become notable problems in China (An et al., 2019; Zhang et al.,
2012). Epidemiological studies have documented that cardiovas-
cular mortality, lung cancer, and respiratory infection are associ-
ated with long-term or short-term PM2.5 exposure (Crouse et al.,
2012; Guo et al., 2016; Maji et al., 2018; Pascal et al., 2014; Pope
et al., 2011).

In January 2013, the concentration of hourly PM2.5 was at its
e by Pavlos Kassomenos.
highest level ever recorded in Beijing (886 mg/m3), which captured
worldwide attention. Thereafter, China’s State Council released the
“Action Plan for the Prevention and Control of Air Pollution” for
long-term air quality improvement (Chinese State Council, 2013).
Although significant reductions of the annual average and peak
PM2.5 concentrations were achieved in key regions during
2013e2017 (An et al., 2019; Ding et al., 2019), PM2.5 concentration
remained at a high level during heavy pollution episodes, especially
in the BeijingeTianjineHebei (BTH) region (Zhang et al., 2019b). To
further reduce PM2.5 concentration during heavy pollution epi-
sodes through interregional prevention and control, the Ministry of
Ecology and Environment of the People’s Republic of China released
the “2017 Air Pollution Prevention and Control Action Plan for the
BeijingeTianjineHebei region and its Surrounding Areas” (MEP,
2017). Simultaneously, a number of regulatory measures were
implemented to reduce pollutant emissions, e.g., the closure of
small polluting factories, replacement of coal by natural gas for
winter heating, and restrictions on vehicular use through license
plate rules.
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The issue of greatest concern for the government, policymakers,
and public is the effectiveness of the policies and measures intro-
duced. However, meteorology drives the daily, seasonal, and
interannual variations in pollutant concentrations (Barmpadimos
et al., 2011; Grange et al., 2018; Liang et al., 2015; Zhang et al.,
2017). For example, during 2014e2019, high concentrations of
PM2.5 in Beijing were usually accompanied by lowwind speeds and
high humidity, especially in winter (Fig. S1). It is difficult to inter-
pret the actual changes of pollutant concentrations within obser-
vational records, which complicates evaluation of those strategies
implemented for air quality management. Therefore, it is essential
to decouple the effects of meteorology on pollutant concentrations.

Chemical transport models have been used widely to assess the
impact of emission control measures on pollutant concentrations
(Cai et al., 2017; Cheng et al., 2019; Daskalakis et al., 2016; Tang
et al., 2017; Wang et al., 2014; Zhang et al., 2019a). However, the
considerable uncertainties in emission inventories and the inherent
problems of chemical transport models inevitably lead to under/
overestimation of pollutant concentrations that cannot be neglec-
ted (Chen et al., 2019; Geng et al., 2015). Various statistical models
offer alternative ways to detrend meteorological effects
(Barmpadimos et al., 2011; Grange et al., 2018; Liang et al., 2015),
e.g., multiple linear regression models (Zhai et al., 2019), general-
ized additive models (Barmpadimos et al., 2011; Dominici et al.,
2002), Bayesian hierarchical spaceetime models (Sahu et al.,
2006), and nonparametric kernel regression (Chen et al., 2018;
Liang et al., 2016; Zhang et al., 2017). Atmospheric dilution and
dispersion processes are known to be complex and nonlinear.
Consequently, the effects of interactions between pollutant con-
centrations and meteorological variables make the use of statistical
models burdensome.

More recently, to separate meteorological effects from the
observed changes in pollutant concentrations, methods adopting
decision trees have been developed, e.g., boosted regression tree
(BRT) models (Carslaw and Taylor, 2009) and random forest models
(Grange et al., 2018). A BRT model outperforms most traditional
statistical models in terms of predictive performance because it
incorporates the fitting and combining of many simpler models for
prediction purposes (Elith et al., 2008). The predictive power of a
BRT makes it suitable for modeling short-term pollutant concen-
trations. A BRT incorporates simultaneously two important ad-
vantages of tree-based methods: the ability to handle different
types of variable and the capacity to accommodate missing data
Fig. 1. Location of the study area and the classification o
(De’ath, 2007; Elith et al., 2008). Moreover, there is no need for
prior transformation of the data or the removal of outliers for
model fitting. A BRT can be used to model complex nonlinear re-
lationships between variables, and it allows the effects of interac-
tion between variables to be quantified and visualized (Carslaw
et al., 2012).

In this study, we applied a BRT model to conduct meteorological
normalization of PM2.5 concentrations in the BTH region and its
surrounding areas (i.e., the “2þ 26” region). This study 1) evaluated
the changes of observed and normalized PM2.5 concentrations from
2014 to 2019, 2) presented the temporal variations of observed and
normalized PM2.5 concentrations in four target subregions, and 3)
quantified the roles of meteorological conditions and anthropo-
genic emissions on PM2.5 concentrations in the heating seasons.
2. Meteorological normalization methods and monitoring
data

2.1. Study sites

The “2 þ 26” region comprises two municipalities (i.e., Beijing
and Tianjin) and 26 other adjacent cities surrounding Beijing. As
shown in Fig. 1, the 28 cities comprise Shijiazhuang, Baoding,
Langfang, Tangshan, Cangzhou, Hengshui, Handan, and Xingtai in
Hebei Province; Taiyuan, Yangquan, Changzhi, and Jincheng in
Shanxi Province; Jinan, Zibo, Liaocheng, Dezhou, Binzhou, Jining,
and Heze in Shandong Province; and Zhengzhou, Xinxiang, Hebi,
Anyang, Jiaozuo, Puyang, and Kaifeng in Henan Province. Most are
industrial cities that consume large volumes of coal and produce
enormous quantities of airborne pollutants. Additionally, the un-
favorable geography that is characterized by the Yanshan Moun-
tains to the north and the TaihangMountains to thewest is ideal for
secondary generation of PM2.5 in the “2 þ 26” region. The combi-
nation of the large volume of emissions and the special weather
conditions make this region one of the areas of China with the
poorest air quality.
2.2. Data

Daily data of surface air PM2.5 concentration during 2014e2019
in the 28 cities were collected from the China National Environ-
mental Monitoring Center. The daily average concentration of each
city was calculated by averaging the hourly value measured at all
f four geographical regions in the “2 þ 26” region.
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available “Guokong” monitoring sites within the city. Data from
“Guokong” monitoring sites are managed directly by the Ministry
of Ecology and Environment of the People’s Republic of China to
avoid local interference.

We correlated the PM2.5 data with meteorological data of the
corresponding period to investigate meteorological confounding.
Meteorological data, collected from the National Meteorological
Information Center, included temperature (T, �C), relative humidity
(RHU, %), precipitation (P, mm), sunshine duration (SSD, h), air
pressure (PRE, Pa), surface temperature (GST, �C), wind speed (WS,
m/s), andwind direction (WD). Thewind directionwas divided into
16 directions: N, NNE, NE, ENE, E, ESE, SE, SSE, S, SSW, SW,WSW,W,
WNW, NW, and NNW. Datawere analyzed in R using the deweather
package (Carslaw and Taylor, 2009).

In this study, we compiled a PM2.5 and meteorological data set
covering 61,348 d. There were 1094 missing PM2.5 data, primarily
during 2014 in Hebi, Puyang, and Xinxiang. Therefore, we only
considered the period 2015e2018 when analyzing air pollution in
the heating seasons. The heating season in China refers to the
period from October of one year to March of the following year.
2.3. Modeling and meteorological normalization

The flow diagram presented in Fig. 2 shows that the data
modeling and analysis comprised two steps: the BRT model was
built first and then meteorological normalization was conducted.
The modeling process requires three main parameters, e.g.,
learning rate, number of trees, and interaction depth. In this study,
the learning rate of 0.1, number of trees of 1000, and interaction
depth of 6 were used.

All observed data were divided randomly into two groups: a
training set that accounted for 80% of all data and a testing set that
Fig. 2. A diagram of
comprised the remaining 20% of the data. The training set and input
independent variables were used to grow a sequence of trees. The
independent variables included temporal variables (weekday,
week, month, and trend term) and meteorological parameters (WS,
WD, T, RHU, P, SSD, PRE, and GST). The basic idea of a BRT is to fit
iteratively a collection of weak learners to form a strong learner
(De’ath, 2007). In boosting, the model grows a sequence of trees
starting from a constant prediction. In each following step, a new
tree is added progressively. For example, a new tree is fitted to the
residual of the first tree in the second step. Then, the reweighted
data are used to fit the next tree, and so on (Elith et al., 2008). This
forward stagewise process means only those fitted values predicted
poorly by the previous trees are reestimated, while existing trees
remain unchanged. This process can be represented as follows:

yi ¼
XK
k¼1

fkðxiÞ; fk2F (1)

yð0Þi ¼0

yð1Þi ¼ f1ðxiÞ¼ yð0Þi þ f1ðxiÞ

yð2Þi ¼ f1ðxiÞ þ f2ðxiÞ ¼ yð1Þi þ f2ðxiÞ:::

yðtÞi ¼
Xt
k¼1

fkðxiÞ¼ yðt�1Þ
i þ ftðxiÞ (2)

where yi is the sum of models with k trees, yðtÞi is the model at

boosting round t, yðt�1Þ
i is the reserved tree added in the previous
analysis model.
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round, and ftðxiÞ is a new tree.
In this study, the iterative process was repeated 1000 times. The

predictions were aggregated by averaging to produce an overall
prediction. In this work, the training and testing sets were used to
validate the performance of the BRT model through a cross-
validation procedure. Model evaluation was based on common
statistical indices that included the root mean square error (RMSE),
Pearson correlation coefficient (R), fraction of predictions within a
factor of two (FAC2), mean bias (MB), mean gross error (MGE),
normalized mean bias (NMB), normalized mean gross error
(NMGE), coefficient of efficiency (COE), and index of agreement
(IOA) (Carslaw, 2015). The formulas of these indices, in which Oi
and Pi represent the i-th observed and predicted values for a total of
n observations, respectively, are given as follows:

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Pn

i¼1ðPi � OiÞ2
n

!vuut (3)

R¼ 1
ðn� 1Þ

Xn
i¼1

�
Pi � P
sP

��
Oi � O
sO

�
(4)

FAC2¼0:5 � Pi
Oi

� 2:0 (5)

MB¼1
n

Xn
i¼1

ðPi �OiÞ (6)

MGE¼1
n

Xn
i¼1

jPi �Oij (7)

NMB¼
Pn

i¼1Pi � OiPn
i¼1Oi

(8)

NMGE¼
Pn

i¼1jPi � OijPn
i¼1Oi

(9)

COE¼ 1:0�
Pn

i¼1jPi � OijPn
i¼1jOi � Oj (10)

IOA ¼

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

1:0�
Xn

i¼1
jPi � Oij

c
Xn

i¼1
jOi � Oj

; when

Xn
i¼1

jPi � Oij � c
Xn
i¼1

jOi � Oj

c
Xn

i¼1
jOi � OjXn

i¼1
jPi � Oij

� 1:0; when

Xn
i¼1

jPi � Oij> c
Xn
i¼1

jOi � Oj

; with c ¼ 2 (11)

The RMSE provides a reasonable overall measure of the devia-
tion between observed and predicted values. R is the measure of
the linear relationship between two variables; the closer the value
of R is to þ1 or �1, the stronger the correlation between the two
variables. An R value of zero means the two variables have no
correlation. FAC2 is a robust performance measure because it is
unaffected by outliers. The fraction of the model prediction needs
to satisfy the condition in Eq. (5). A model is considered to satisfy
the condition when the FAC2 value approaches 1 (Suleiman et al.,
2016). MB and MGE are two common measures used to quantify
the deviation between predicted and observed values. An MB of
zero indicates an ideal model. NMB and NMGE are the normalized
versions of MB and MGE, respectively. They also represent the
mean paired predictioneobservation differences. Unlike MB and
MGE, NMB and NMGE can compare pollutants that cover different
ranges of concentration. Both are unbounded at the positive (up-
per) end but bounded at �100% for NMB and 0% for NMGE at the
lower end (Yu et al., 2006). For both indices, a value of zero in-
dicates no over-/underestimation by themodel. COE is a measure of
the prediction accuracy of a model. A perfect model has a COE value
of 1; zero and negative COE values indicate that the prediction
accuracy of the model is no greater than and worse than the
observedmean, respectively (Legates andMcCabe, 2013). The IOA is
a relative and bounded measure proposed by Willmott (1982) that
is applied widely in model evaluation. IOA values range from �1
to þ1 with values toward the latter indicating better model
performance.

The meteorological normalization of daily PM2.5 concentration
in a specific city was derived by repeated prediction with a random
sampling of meteorological parameters. Specifically, the temporal
variables and meteorological parameters were selected at random
to form a new data set that was then used as input for the BRT
model to predict PM2.5 concentration. The process was repeated
1000 times. Finally, all predicted values were aggregated to calcu-
late an average, i.e., the so-called meteorological normalized PM2.5
concentration. The normalized concentrations for each city were
considered comparable over the studied years because they were
calculated under a comparable baseline meteorological equilibrium
of the city.
2.4. Contributions of meteorological conditions and anthropogenic
emissions to PM2.5 concentration variation

The interannual rates of change of PM2.5 concentrations, based
on their original concentrations, are affected by three factors, i.e.,
themeteorological conditions of a target year and the previous year
and the variation of anthropogenic emissions. Therefore, we com-
bined observed and normalized concentrations for accurate quan-
tification and evaluation of the meteorological and emission
abatement effects (Environmental statistics group in Center for
Statistical Science (2019)):

x2 � x1
x1

¼ x2 � ex2
x1

þ ex2 � ex1
x1

þ ex1 � x1
x1

(12)

where x1 and ex1 represent the observed and normalized PM2.5

concentrations of the previous year, respectively, and x2 and ex2
represent the observed and normalized PM2.5 concentrations of the

target year, respectively. Therefore, x2�ex2
x1

and ex1�x1
x1

reflect the
meteorological effects of the target year and the previous year,
respectively, on the rate of change of observed PM2.5 concentra-
tions, where positive and negative values represent unfavorable
and favorable meteorological conditions, respectively. Moreover,ex2�ex1
x1

reflects the effect of anthropogenic emissions of the target on
the rate of change of observed PM2.5 concentrations, where positive
and negative values represent increased and decreased anthropo-
genic emissions in the target year, respectively.



Table 1
Test results of model performance.

Test set Training set

RMSE 30.97 28.14
R 0.83** 0.86**
FAC2 0.92 0.93
MB 0.08 0.00
MGE 20.67 19.41
NMB 0.00 0.00
NMGE 0.28 0.27
COE 0.77 0.80
IOA 0.83 0.85

Note: **P < 0.01 indicates that predicted values are significantly correlated with
observed values.
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3. Results and discussion

3.1. Evaluation of model performance

Nine statistical indices were used to evaluate our model in
different ways. The statistical results of model performance are
shown in Table 1. The high R values for the test set (0.83) and the
training set (0.86) indicate that the relation between the predicted
values and the observed values was significant. This conclusion is
also supported by the test r2 value of 0.69 and the training r2 of
value 0.75 shown in Fig. 3. FAC2 values of 0.92 and 0.93 were found
for the test set and the training set, respectively, which suggest that
our model satisfies the condition for the fraction of predictions. MB
values of 0.08 and 0 show that the bias produced by our model was
very small. Similarly, the lower values of NMB and NMGE indicate
that our model performed well. The differences in the COE and IOA
values for the test set and the training set were very small. It was
considered that our model had satisfactory prediction capability, as
verified by all the indices.

3.2. Observed PM2.5 trends in the “2 þ 26” region during
2014e2019

PM2.5, which is a major urban air pollutant, replaced PM10 as the
primary air pollutant in China in 2013 (Liang et al., 2016). In pre-
vious years, North China has experienced severe and persistent
Fig. 3. Evaluation of the performance of the boosted regression tree m
haze pollution episodes with large spatiotemporal coverage,
particularly on the North China Plain, and various environmental
regulations have been promoted from the central to local govern-
ments to improve air quality (An et al., 2019). Following such
measures, significant decreases were observed in PM2.5 concen-
trations during 2014e2019 (except 2017) in the “2 þ 26” region
(Fig. 4A). The annual average PM2.5 concentration in 2014e2019
was 94, 83, 76, 70, 60, and 57 mg/m3, respectively. Compared with
2014, the regional annual average PM2.5 concentration in 2019
represented a decline of 39%. In 2018, the highest decline in annual
average PM2.5 concentration was observed with a 14% year-on-year
decrease.

It can be seen in Fig. 1 that the 28 cities in the “2 þ 26” region
could be grouped into four target subregions, i.e., the BTH, Henan,
Shandong, and Shanxi subregions. To eliminate the interference of
PM2.5 concentration fluctuations and more accurately analyze their
seasonal differences, PM2.5 concentrations in the four target sub-
regions were standardized. The Standardization is defined as PM2.5
concentration minus the mean PM2.5 concentration, and then
divided by the standard deviation (i.e., (PM2.5-mean)/sd). The sea-
sonal trend of observed PM2.5 level for each subregion is shown in
Fig. 5A. There was significant seasonal trend in PM2.5 level in all
subregions, with higher levels in autumn and winter and lower
levels in spring and summer. Previous research has demonstrated
that this seasonality is attributable partly to unfavorable meteo-
rological conditions (Chen et al., 2019; Zhai et al., 2019; Zhang et al.,
2019b) and partly to heating effects (Liu et al., 2016; Xiao et al.,
2015).
3.3. Normalized PM2.5 trends in the “2 þ 26” region during
2014e2019

Recent studies have reported the impact of meteorological
conditions on observed pollutant concentrations (Carslaw et al.,
2012; Grange et al., 2018; Liang et al., 2016; Zhang et al., 2019a).
It is necessary to account for meteorological confounding factors
when evaluating air quality improvements and the effectiveness of
emission reduction policies (Carslaw and Taylor, 2009; Henneman
et al., 2017). We applied the approach proposed in Carslaw and
Taylor (2009) to remove the meteorological effects and to
odel by using cross-validation. (A) test set and (B) training set.



Fig. 4. The interannual variations of PM2.5 concentration in “2 þ 26” region from 2014 to 2019. (A) Observed annual average PM2.5 concentration. (B) Normalized annual average
PM2.5 concentration. (**** indicates that the change of PM2.5 concentration is highly significant, *** and ** indicate that the change of PM2.5 concentration is significant, and ns
indicates that there is no significant change in PM2.5 concentration.)
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calculate the meteorological normalized PM2.5 concentrations. As
shown in Fig. 4B, the normalized PM2.5 concentration decreased
significantly every year across the entire region. The annual average
normalized PM2.5 concentration during 2014e2019 was 96, 81, 77,
70, 65, and 60 mg/m3, respectively. The highest concentration also
showed a steady decrease from 108 mg/m3 in 2014 to 66 mg/m3 in
2019. The interannual decline in the rate of highest PM2.5 concen-
tration during 2014e2019 was 18%, 4%, 15%, 0%, and 8%,
respectively.

After removal of meteorological effects, the PM2.5 level in the
four target subregions still varied seasonally (Fig. 5B). Compared
with the observed PM2.5 level, the normalized PM2.5 level
decreased significantly during 2014e2019. However, the normal-
ized PM2.5 level rebounded obviously in the BTH subregion in the
autumn and winter of 2016 in comparison with that in the autumn
and winter of 2015.This was largely consistent with a rebound in
the consumption of coal by the metal, steel, iron, and electricity
sectors in Hebei during the same period (Chen et al., 2018). As
shown in Table 2, the normalized annual average PM2.5 concen-
tration in the BTH, Shandong, and Henan subregions declined
steadily. Relative trends in the BTH, Shandong, and Henan sub-
regions were �10%/a, �10%/a, and �6%/a, respectively, during
2014e2019. However, the trend in Shanxi rebounded in 2015e2016
and plateaued in 2016e2017. The more remarkable decrease in
normalized PM2.5 level over a longer time span was found in the
BTH subregion. For example, it dropped from 139 mg/m3 in January
2014 to 56 mg/m3 in December 2019, representing a 60% reduction.
In this subregion, the normalized PM2.5 concentration in Beijing
also improved year by year. The annual average normalized PM2.5
concentration during 2014e2019 was 81, 73, 70, 60, 54, and 48 mg/
m3, respectively. These values are similar to those of Vu et al. (2019),
who reported that the normalized PM2.5 concentration in Beijing
during 2014e2017 was 85, 75, 71, and 61 mg/m3, respectively.
Despite the recent dramatic decreases in normalized PM2.5 con-
centration in the four target subregions, PM2.5 concentrations
remain at a level higher than the international standards, i.e., 35 mg/
m3 set by the US Environmental Protection Agency or 20 mg/m3 set
by the European Union (Chen et al., 2018).

3.4. Meteorological and anthropogenic effects on PM2.5 in the
heating seasons

We analyzed PM2.5 levels in the heating seasons in the “2 þ 26”
region. As shown in Fig. 6, the observed annual PM2.5 concentration
in the BTH, Henan, Shandong, and Shanxi subregions declined by
20%, 10%, 31%, and 9% during 2015e2018, respectively. The
normalized annual PM2.5 concentration in the BTH subregion was
66 mg/m3 in 2018, which represents a decline of 13% in comparison
with the 2015 concentration. The normalized annual PM2.5 con-
centration in the Henan subregion was 67 mg/m3 in 2018, which
represents a decline of 20% in comparison with the 2015 concen-
tration. The normalized annual PM2.5 concentration in the



Fig. 5. Seasonal trend of PM2.5 during 2014e2019 in the four target subregions. (A) Observed PM2.5 level. (B) Normalized PM2.5 level.

Table 2
Relative trends of annual average normalized PM2.5 concentrations in the four target
subregions from 2014 to 2019 (%).

2015e2014 2016e2015 2017e2016 2018e2017 2019e2018

BTH �19.5 �10.2 �5.0 �7.4 �9.5
Shanxi �13.6 7.5 0.1 �5.0 �20.1
Shandong �13.8 �10.5 �14.0 �10.2 �3.8
Henan �7.4 �6.1 �6.3 �5.7 �6.7
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Shandong subregion was 59 mg/m3 in 2018, which represents a
decline of 35% in comparison with the 2015 concentration. The
normalized annual PM2.5 concentration in the Shanxi subregion
was 55 mg/m3 in 2018, which represents a decline of 16% in com-
parison with the 2015 concentration. It is evident that the differ-
ence between the decrease of observed and normalized annual
concentrations was much larger in the Henan subregion than in the
other subregions. These differences and trends of normalized PM2.5
reflect the effects of meteorological conditions and emission con-
trol actions.

We separated the contribution frommeteorological effects from
that of anthropogenic emissions. The interannual changes of
meteorological conditions were notable in the heating seasons of
2016e2018 (Fig. 7A, C, and E). In the “2 þ 26” region, the worst
meteorological conditions occurred in 2016, followed by sharp
improvement in 2017 and subsequent deterioration in 2018.
However, the meteorological conditions in Beijing were favorable
for PM2.5 dispersion in both 2017 and 2018. We estimated that
variation in meteorological conditions during 2016e2018 contrib-
uted to observed reductions in PM2.5 of 20, 11, 3, and 9 mg/m3 in the
BTH, Henan, Shandong, and Shanxi subregions, respectively (Fig. 6).

Similarly, interannual changes existed in the contribution of
anthropogenic emissions to ambient PM2.5 concentrations in the
heating seasons. As shown in Fig. 7B, anthropogenic emissions
increased notably in the BTH subregion. Data from the National
Bureau of Statistics reported year-on-year increases of 323.63� 106
and 156.10 � 106 t in the production of pig iron and crude steel,
respectively, in the 2016 heating season in the BTH subregion
(Fig. S2). The anthropogenic emissions contributed to an increase of
5 mg/m3 in the normalized PM2.5 concentration during 2015e2016
(Fig. 6A). In 2017, aggressive and strict control actions were
implemented in the “2 þ 26” region, including the “Coal to Gas”
project, phasing out of small and polluting factories, implementa-
tion of the ultralow emission standards for power plants, and
staggered production for industries in the heating season (MEP,
2017). In the same year, the total coal consumption in the BTH
subregion hit its lowest level in over a decade (Environmental
statistics group in Center for Statistical Science (2019)). In com-
parison with the 2016 heating season, the BTH subregion experi-
enced a dramatic decrease in anthropogenic emissions in the same
period in 2017 (Fig. 7D). A reduction of 11% in the normalized PM2.5
concentration in the BTH subregion during 2016e2017 was the
result of the successful implementation of these control actions
(Fig. 6A). It is evident that the decreases in anthropogenic emis-
sions in the Henan and Shandong subregions (Fig. 7B and D) led to
year-on-year decreases in normalized PM2.5 concentration in the
heating seasons of 2015e2017 (Fig. 6B and C). Their trends can be
explained by the changes in the outputs of industrial products
during the same period. As shown in Fig. S2, the outputs of cement,
crude steel, and pig iron during 2015e2017 in the Henan subregion
declined by 19%, 3%, and 16%, respectively. In the Shandong sub-
region, the outputs of cement and pig iron during 2015e2017
declined by 13% and 10%, respectively. However, the normalized
PM2.5 concentration in the Shanxi subregion showed an opposite
trend (Fig. 6D), i.e., anthropogenic emissions increased in some
cities within the Shanxi subregion in the heating seasons of 2016
and 2017 (Fig. 7B and D). In the corresponding period, steady in-
creases in the outputs of crude steel and pig iron were evident
(Fig. S2). To accelerate the improvement of air quality, further
emission abatement measures, e.g., bulk coal management, the
control of total coal consumption and improved energy efficiency,
were required and implemented in 2018 (Chinese State Council,



Fig. 6. Observed and normalized annual average PM2.5 concentrations in the heating seasons from 2015 to 2018 in the four target subregions. (A)BTH, (B)Henan, (C)Shandong and
(D)Shanxi.
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2018). In the previous three years, the “Coal to Gas” project has led
to a substantial decrease in bulk coal consumption from approxi-
mately 56 � 106 t/a to approximately 23 � 106 t/a in the “2 þ 26”
region (MEP, 2020). As shown in Fig. 7F, anthropogenic emissions
generally continued to decline in the 2018 heating season.
Accordingly, the normalized PM2.5 concentrations in the four target
subregions decreased owing to the continued abatement measures
(Fig. 6), despite the rebound in the outputs of cement, crude steel,
and pig iron in the 2018 heating season in the BTH, Shandong, and
Shanxi subregions (Fig. S2). For three years, emission control ac-
tions led to reduced normalized PM2.5 concentration by 15 mg/m3 in
the BTH subregion, contributing 19% of the total decrease in the
normalized PM2.5 concentration. In the same period, emission
control actions led to reduced normalized PM2.5 concentration by 7,
13, and 11 mg/m3 in the Henan, Shandong, and Shanxi subregions,
contributing 10%, 19%, and 17% of the total decrease in the
normalized PM2.5 concentration, respectively. These results indi-
cate that aggressive abatement actions have played a role in
reducing PM2.5 levels without meteorological confounding.

4. Conclusions

During 2014e2019, air quality in the “2 þ 26” region of China
has improved considerably. In this period, observed PM2.5 con-
centration has shown a dramatic decrease from 94 to 57 mg/m3,
driven by emission abatement policies intertwined with complex
meteorological confounding. Strong meteorological effects cause
confounding problems in air quality assessment. Thus, for mean-
ingful comparison of interannual variations of PM2.5 concentration,
it is necessary to decouple the meteorological effects. This study
applied a BRT model to separate and quantify the contributions of
meteorological conditions and anthropogenic emissions to the
variation of PM2.5 concentrations. Nine statistical indices verified
the satisfactory performance of the model.

After removal of themeteorological effects, it was found that the
normalized PM2.5 concentrations decreased significantly year-on-
year in the “2 þ 26” region. Overall, the annual average normal-
ized PM2.5 concentration declined by 38% from 96 mg/m3 in 2014 to
60 mg/m3 in 2019. The research area was divided into four target
subregions. Compared with observed PM2.5 levels, weak seasonal
variation still appeared in the normalized PM2.5 levels of these
subregions with higher levels in autumn and winter and lower
levels in spring and summer. The BTH subregion exhibited themost
remarkable decrease in PM2.5 concentration with a 60% reduction
from January 2014 to December 2019. Our results confirmed that
anthropogenic emissions decreased steadily in the heating seasons
of 2016e2018, even if the meteorological conditions were unfa-
vorable for pollutant dispersion. The aggressive emission control
measures contributed to a reduction of 19%,10%,19%, and 17% in the
normalized PM2.5 concentration in the BTH, Henan, Shandong, and
Shanxi subregions, respectively, in the heating seasons of
2016e2018.

The modeling work conducted in this study confirmed both the
effectiveness of the clean air actions introduced by the government
and the impact of strong interannual and seasonal variation of
meteorological conditions. However, several challenges remain to
be addressed. First, comprehensive evaluation of urban air quality
will require meteorological normalization for other pollutants.
Second, consideration should be given to the effect of changes in
emissions of precursor pollutants for further simulation analysis of



Fig. 7. Relative contributions of changes of meteorological conditions and anthropogenic emissions to PM2.5 concentration in the heating seasons from 2016 to 2018.
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ozone owing to its complex generation mechanism. Third, the
contributions of specific mitigation measures to air quality
improvement should be quantified. Such work would provide a
sound basis for the development of regional abatement policies.
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