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e State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China   

A R T I C L E  I N F O   

Keywords: 
Orogenic gold deposit 
Stable isotope 
He-Ar 
Shangxu 
Bangong-Nujiang 
Tibet 

A B S T R A C T   

Shangxu is an orogenic gold deposit in the Bangong-Nujiang suture zone, central Tibet, China, formed in the 
Early Cretaceous orogene, related to convergence and collision between the Qiangtang and Lhasa terranes. The 
mineralization at Shangxu is hosted by Jurassic turbidite sedimentary rocks of the Mugagangri Group, and is 
associated with a regional fault system. Hydrothermal minerals develop muscovite, carbonate, sulfides and 
chlorite. Hydrothermal fluids record three main hydrothermal stages based on mineral paragenesis. The earliest 
is barren quartz stage (H1), which is pre-ore. During the early mineralization quartz-pyrite stage (H2a), defined 
by massive quartz veins with minor euhedral pyrite and gold, hydrothermal fluids had a δ18Ofluid of 6.1–6.4‰, 
δD of − 74 to − 116‰, δ13CCO2 of − 5.4 to − 7.6‰, and δ30Si of − 0.1‰. In the quartz-pyrite-sulfides stage (H2b), 
characterized by abundant quartz, granular pyrite, muscovite with minor chalcopyrite, galena, sphalerite and 
gold, fluids had a δ18Ofluid of 7–8.2‰, δD of − 109 to − 120‰, δ13CCO2 of − 9.6‰ and δ30Si of − 0.1 to − 0.2‰. 
During the ankerite-sulfide stage (H3a), distinguished by abundant ankerite, muscovite, sulfides with minor 
quartz and chlorite, hydrothermal system had a fluid with δ18Ofluid of 4.9–5.3‰, δD of − 125.3‰, δ30Si of 
− 0.1‰, δ13CCO2 of − 12.4‰ in quartz inclusion fluid and δ13CCO2 of − 2.7‰ in ankerite. The calcite-sulfide stage 
(H3b) is characterized by calcite, sulfides, with minor quartz and chlorite. Quartz formed earlier than calcite 
from a fluid having a δ18Ofluid of 6.4‰, δD of − 112.6‰, δ30Si of − 0.1‰, and δ13CCO2 of − 7.4‰, after which 
calcite precipitated from a hydrothermal fluid with δ18Ofluid of 5.5–9‰, δ13CCO2 of − 0.5 to − 2.8‰. Hydro
thermal fluids in H2b pyrite have 3He/4He ratios of 0.27–0.42Ra and 40Ar/36Ar ratios of 313–372. 

The stable isotope composition of hydrothermal fluids from the Shangxu gold deposit is similar to that of 
typical orogenic gold deposits. The early stage (H1), methane-bearing fluids were probably sourced from the 
basin sediments, leading to precipitation of early barren quartz veins and siderite alteration. From the quartz- 
sulfide stage (H2) to carbonate-sulfide stage (H3), hydrothermal fluids were likely derived from dissolution of 
the marine carbonate cement from sedimentary host rocks during metamorphism at depth. The decreasing δD 
and δ13C of the ore-forming fluids from early to late suggests mixing with δ13C-depleted oxidized graphite in 
sedimentary rocks, meteoric waters or reation between δD-depleted organic matters. Generally, these fluids were 
likely generated at depth through prograde metamorphic devolatilization of hydrous minerals in the deeper 
equivalents of the sedimentary rocks of the Mugagangri Group. Sulfur and gold, by inference, likely originated 
from sedimentary/diagenetic pyrite or the metasedimentary rocks between the greenschist and amphibolite 
facies, and migrated with the metamorphic fluids. During transportation to the site of deposition, gold-bearing 
fluids variably reacted with country rocks.   
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1. Introduction 

A number of Phanerozoic orogenic gold provinces are found in 
sedimentary rocks, particularly in turbidite sequences, such as in the 
Lachlan fold belt, Australia (Sandiford and Keays, 1986; Gao and Kwak, 
1995; Phillips and Hughes, 1996; Bierlein et al., 1998, 2000), the Otago 
metamorphic terrane (McKeag and Craw, 1989; Craw, 2000; Pitcairn 
et al., 2006) and the Reefton goldfield in New Zealand (Christie and 
Brathwaite, 2002); the Meguma Terrane in Nova Scotia, Canada (Kontak 
et al., 1990; Ryan and Smith, 1998; Sangster et al., 2007); the Juneau 
gold belt in southern Alaska (Goldfarb et al., 1991); the Mother Lode 
goldfield in California (Boehlke and Kistler, 1986); and the Muruntau, 
Kumtor and Sawayaerdun gold deposits in the central Asian and 
southern Tianshan belt (Drew et al., 1996; Graupner et al., 2006; Chen 
et al., 2010, 2012a). 

Gold has always been a main aim of mineral exploration along 
Bangong-Nujiang Suture Zone (BNSZ), Tibet (Tang et al., 2012; Song 
et al., 2014). More than 550 of gold occurrences and deposits have been 
found along this belt, including about 400 alluvial gold and 150 primary 
gold deposits/occurrences (Fig. 1; Li et al., 2017). Among them, gold- 
bearing porphyry copper mineralization dominates, such as Duolong 
and Ga’erqiong, which contain more than 20 million tonnage of Cu re
sources and 580 tonnage of Au resources (Tang et al., 2016, 2017), 
whereas the independent gold mines develop only a very few. Geological 
mapping and drilling from 2011 to 2013 in the central section of this 
metallogenic belt led to discovery of the Shangxu gold deposit and 
another two nearby gold prospects, Daze and Zuobu (Huang et al., 
2014). Mineralization in this region is tectonically controlled by a 
regional fault system, and hosted by the Jurassic turbidite succession of 
the Mugagangri Group. The latter is considered to record deposition in 
an accretionary prism above the suture between the Qiangtang and 
Lhasa terranes (Pan et al., 2012; Metcalfe, 2013; Zeng et al., 2017). 

Previous work on the deposit geology (Xiao et al., 2013; Huang et al., 
2014), mineralogy and lithogeochemistry (Fang et al., 2020a), chro
nology (Fang et al., 2020b), fluid inclusion and stable isotopes (Pei et al., 
2015, 2016; Xiao et al., 2017; Liu et al., 2018) of the Shangxu deposit 
identified that Shangxu is an orogenic gold deposit, formed in the Early 
Cretaceous orogene along the BNSZ. But the derivation of hydrothermal 
fluids and ore-forming materials still remain controversial. For instance, 
based on fluid inclusions and H-O isotopes of quartz, Pei et al. (2015) 
proposed a hydrothermal origin of metamorphic water mixing with 
formation/syngenetic water, and Xiao et al.(2017) considered a mixed 
source of metamorphic and meteoric water, whereas, Liu et al.(2018) 
surmised a deep mantle or magmatic reservoir, after studying C, S and 
Pb isotopes of the Shangxu deposit. 

In order to better constrain the origin and evolution of hydrothermal 

fluids, an integrated stable isotope study of the Shangxu hydrothermal 
vein system is presented here. In this paper, we systematically sampled 
and analyzed O, H, C, and Si isotopes in hydrothermal quartz and car
bonate from sub-stages of mineralization, measured the C isotope 
composition of graphite in sedimentary rocks and studied noble gases 
isotope (He-Ar) from fluid inclusions in pyrite. The isotopic data is used 
to propose a metallogenic model for the Shangxu deposit with impli
cations for other sediment-hosted gold deposits in the Bangong-Nujiang 
Suture Zone. 

2. Regional geologic setting 

The Bangong-Nujiang Suture Zone (BNSZ) extends over 2000 km 
across the central Tibet and records the evolution of the Bangong- 
Nujiang Tethyan Ocean from the Permian to the Cretaceous. Region
ally, the BNSZ separates the Qiangtang terrane to the north from the 
Lhasa terrane to the south (Fig. 1; Pan et al., 2012; Zhu et al., 2013), and 
is characterized by widely distributed ophiolitic fragments and thick 
successions of Jurassic flysch, melange, and volcanic rocks (Girardeau 
et al., 1984; Kapp et al., 2003; Geng et al., 2012, 2016; Pan et al., 2012; 
Metcalfe, 2013). 

The Shangxu gold deposit is situated in the central section of the 
Bangong-Nujiang suture, approximately 40 km north-east of Nima city 
(Fig. 2A). Regionally, the Upper Triassic Quehala Group is the oldest 
formation, comprising a set of abyssal flysh sedimentary rocks. It is 
overlain by the Early to Middle Jurassic turbidite of the Mugagangri 
Group, which hosts the gold mineralization, comprised of interbedded 
greywacke, siltstone and carbonaceous slate. The Mugagangri Group is 
overlain by the Upper Jurassic Shamuluo Formation, composed of 
quartz sandstone, slate and interbedded limestone, the Lower Creta
ceous Langshan Formation, consisting of limestone with minor inter
calated siltstone and silty mudstone, in turn overlain by the Lower 
Cretaceous Qushenla Formation of fluvial and lacustrine sedimentary 
facies, consisting of sandstone, conglomerate, and interlayered andesite, 
the Upper Cretaceous Jingzhushan Formation of conglomerate and 
pebbly sandstone, and the Miocene Kangtuo Formation, composed of 
conglomerate, sandstone and minor basic volcanic rocks. 

The Bangong-Nujiang Ocean probably closed during the Late 
Jurassic to the Early Cretaceous (~140–128 Ma, Kapp et al., 2003; Chen 
et al., 2004; Gao et al., 2011; Qu et al., 2012; Zhu et al., 2016; Fan et al., 
2018; Song et al., 2019). Affected by convergence of the ocean basin, 
strong deformation occurred to the Mugagangri sedimentary rocks 
simultaneously (Liu et al., 2017b), leading to gold mineralization in the 
Shangxu region (~135 Ma, quartz Rb-Sr dating, Fang et al., 2020b). 

Magmatic rocks, located about 20 km north of Shangxu, consist 
mainly of monzonitic granite, which is made up of alkali-feldspar, 

Fig. 1. Distribution of the major Au and Cu-Au deposits along the Bangong-Nujiang Suture Zone.  
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plagioclase, quartz and minor biotite, intruded during the Early Creta
ceous, between 126 and 113 Ma (Kapp et al., 2007). The Cu, Au, Pb and 
Zn mineralization scattered around these granitoids are thought to have 
a magmatic origin (Huang et al., 2017). About 30 km north-east of 
Shangxu, a granodiorite dike crops out, with an intrusion age of 
162–147 Ma, which is related to the Cu, Au mineralization in the Gao
baoyue region (Li, 2019). 

3. Deposit geology 

Mineralization in the Shangxu region is closely associated with faults 
and folds (Fig. 2B). Gold ores have a close spatial relationship with the 
regional Nima Fault, which is a part of the Rutog-Nima-Dongqen Fault, a 
first-order east to west crustal-scale thrust fault zone, defining the 
southern boundary of the Bangong-Nujiang Suture Zone (Geng et al., 
2012). On the north side of this boundary, the subparallel faults are 
considered to be the branches of the Nima Fault, serving as regional 
controls on the lower order structures. The third-order thrust faults in 
the Shangxu goldfield strike approximately NWW and dip at 45◦–80◦ to 
SSW, and the ductile deformation related to overthrusting are thought to 
coincide with gold mineralization (Huang et al., 2014). Geophysical 
surveys suggest these third-order gold bearing structures merge with a 

second-order NNE-dipping shear zone at depth (Liu et al., 2017a), cor
responding to the shortening and thickening of the accretionary prism 
after collision between the Lhasa and Qiangtang terranes (Kapp et al., 
2007; Pan et al., 2012). Shangxu, Daze and Zuobu gold mines are all 
located in a regional syncline whose axis strikes NWW (Fig. 2A). The 
structural geometry in the Shangxu deposit is dominated by an anticline- 
syncline pair, which is transected by the SSW-dipping faults. The axial 
separation between the tight anticline and syncline is approximately 
400 m and the fold axial surfaces are subvertical. The intersection of the 
fault feeder and fold, such as saddle reef, is a good place for gold to 
precipitate. 

The Shangxu deposit contains 6 t Au (Huang et al., 2014). In the 
major lode zone, where the orebody strikes 290–300◦ and dip at 48–75◦

to the south, mineralization is composed of brecciated quartz and mixed 
clay-rich breccia matrix, which changes outwards into intensely 
deformed and sheared country rocks (Fig. 3). These sheared structures 
usually appear between competent and less competent lithological units, 
such that they are always brittle-fractured and composed of cataclasite, 
breccia and fault gouge (Fang et al., 2020a.). Foliation is marked by 
alignments of fine-grained muscovite and quartz, which typically form 
planar fabrics (Fig. 4A). Pressure solution and dissolution seams are well 
developed (Fig. 4B,C). Pyrite crystals with quartz pressure shadows are 

Fig. 2. Regional (A) and local geology (B) of the Shangxu gold deposit (modified from Kapp et al., 2007; Huang et al., 2014; Liu et al., 2017a; Xiao et al., 2017). The 
Mugagangri Group in the Shangxu ore field contains 4 lithologic members: J1-2m1-the first member, composed of greywackes interbeded with carbonaceous slates 
and limestone lenticles; J1-2m2-the second member, mainly composed of greywackes; J1-2m3-the third member, composed of greywackes interbedded with carbo
naceous slates; J1-2m4-the fourth member, mainly composed of carbonaceous slates. 
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common in shear zones (Fig. 4D). Recrystallized, deformed and fibrous 
quartz grains are common (Fig. 4D–F). The mineral assemblage of ser
icite, quartz, carbonate and chlorite suggests a subgreenschist grade of 
metamorphism before gold mineralization. 

Gold mineralization at Shangxu is principally hosted by massive to 
laminated quartz veins, saddle reefs, breccias and disseminated sulfides 
(Fang et al., 2020a). From proximal to distal to gold mineralization, wall 
rocks show hydrothermal alteration, including sulfidation, carbonati
zation, muscovitization and chloritization. Sulfide alteration is best 
developed within 20 m of the main auriferous lodes. Disseminated sul
fides, nearby smaller quartz and carbonate veins, include pyrite, chal
copyrite, sphalerite, galena and minor marcasite, tetrahedrite, digenite, 
bornite, millerite, gersdorffite and cobaltite. Pyrite is the dominant 
mineral, typically representing more than 80% of the sulfides. More 
intense sulfidation is usually associated with gold mineralization, 
although it contains <5 vol% of sulfide minerals in both veins and 
disseminated mineralization. Carbonate porphyroblasts are composed of 
siderite that is partially to completely replaced by ankerite. These por
phyroblasts form a halo around the main lode, which extends up to 70 m 

away from the ore, decreasing in abundance outwards. Ankerite also 
forms veins or replaces feldspar and chlorite. The extent of the ankerite 
alteration halo is similar to that of the siderite, which spreads roughly 
80 m far from the major ore. Calcite and dolomite veins cut quartz veins 
and ankerite grains locally. Hydrothermal muscovite develops proximal 
to the auriferous lode and subsidiary quartz ± carbonate veins within 
more than 10 m and decreases in abundance outwards to disappear 
within 100 m from the ore. They form aggregates in quartz ± carbonate 
vein and replacement of the wall rock matrix and rock fragments. Hy
drothermal chlorite usually develops flaky texture in calcite veins and 
cracks. It’s also found in wall rocks as replacement of the rock fragments. 

4. Sampling 

The sampling strategy was designed following the paragenetic se
quences defined by previous workers and our study (Fig. 5). Barren 
quartz, related to the earliest hydrothermal activity (H1 stage), was not 
sampled. Three quartz-pyrite veins were sampled to represent the early 
mineralization stage (H2a). Three quartz-pyrite ± chalcopyrite ±

Fig. 3. Cross section (A-A′) of the Shangxu deposit, showing the location of drill holes and the overlapping alteration haloes surrounding the main auriferous lodes.  
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galena ± sphalerite veins represent the middle mineralization stage 
(H2b). Two carbonate-quartz-sulfide veins and six calcite veins were 
selected to represent the late hydrothermal stage (H3a, H3b). In addi
tion, six samples of graphite from wall rocks were selected for C isotope 
analysis. Five ore-related euhedral pyrite from the H2b stage and one 
pre-ore pyrite from the metamorphism stage were collected for He-Ar 
isotope measurements. 

5. Analytical methods 

Mineral separates were prepared from crushed and washed rock 
samples, followed by handpicking under a binocular microscope. Oxy
gen isotope analyses were carried out on 10 to 20 mg of quartz using the 
BrF5 method, followed by quantitative conversion to CO2 (Clayton and 
Mayeda, 1963). Hydrogen isotope composition of water, and carbon 
isotopes of CO2, was measured from fluid inclusions decrepitated from 
quartz at 600 ◦C. The released gases passed through a CuO cup at 600 ◦C 
and were frozen with liquid nitrogen from which hydrogen gas was 
released by reduction with zinc (Coleman et al., 1982). CO2 was 
collected, condensed and separated in a liquid nitrogen cooling trap for 
δ13C analysis. δ18O and δ13C values for carbonate were measured on CO2 
released from 5 to 10 mg powdered carbonate samples reacted with 
100% phosphoric acid (McCrea, 1950). Silicon was extracted from 
quartz separates using the fluorination technique following Taylor and 
Epstein (1962) and Jiang et al. (1994). The oxygen, hydrogen, silicon 
and carbon isotope ratios were measured using a Finnigan MAT 253EM 
mass spectrometer at the Analytical Laboratory in Beijing Research 
Institute of Uranium Geology, Beijing (ALBRIUG). The δ18O, δ13C, δ30Si 
and δD values are reproducible to ±0.2‰, ±0.1‰, ±0.06‰ and ±2‰, 
respectively. The carbon isotopic composition of graphite was measured 
using a Thermo-Finnigan CF-IRMS with a precision of 0.2‰ at Queen’s 
University, Canada. δ18O and δD are reported relative to the Vienna- 
SMOW, δ13C to the Vienna-PDB and δ30Si to the NBS-28 quartz sand
stone standard. 

He and Ar gases of fluid inclusions in pyrite were extracted using a 
vacuum crushing method as described by Hu et al. (1998). Noble gas 
isotope analyses were performed with a Helix SFT noble gasses mass 
spectrometer at the Institute of Mineral Resources, Chinese Academy of 
Geological Sciences, Beijing. The sensitivity of the Helix SFT was >2 ×
10− 4 amps/Torr at 800 μA for He, and >1 × 10− 3 amps/Torr at 200 μA 

for Ar. The Faraday resolution is more than 400, and the resolution of 
the multiplier is greater than 700, allowing complete separation of 3He 
and HD+. The system blank was measured according to the same pro
cedure for the sample analysis, and helium and argon blanks were below 
2 × 10− 11 cm3 STP and 1 × 10− 10  cm3 STP respectively. Gas abundance 
was measured based on the atmosphere standard, with 3He/4He of 1.4 ×
10− 6 (Ra) and 40Ar/36Ar of 295.5. 

6. Results 

6.1. Vein mineralogy and paragenetic sequence 

Mineralization at Shangxu evolved over three main hydrothermal 
stages, including a barren quartz stage (H1), a quartz-sulfide stage (H2) 
and a carbonate-sulfide stage (H3). The barren quartz stage (H1) is 
related to the formation of siderite spots, and usually contains no sulfide 
or gold (Fang et al., 2020a). The quartz-sulfide stage (H2) can be sub
divided into a quartz-pyrite stage (H2a) and a quartz-pyrite ± chalco
pyrite ± sphalerite ± galena stage (H2b). The quartz-pyrite stage (H2a) 
is defined as massive quartz and minor disseminated euhedral pyrite and 
gold (Fig. 6A). The H2b stage is characterized by abundant quartz, 
granular pyrite, muscovite with minor chalcopyrite, galena, sphalerite 
and gold (Fig. 6B). The carbonate-sulfide stage (H3) can be subdivided 
into an ankerite-sulfide stage (H3a) and a calcite-sulfide stage (H3b). 
The ankerite-sulfide stage (H3a) is defined by ankerite, muscovite, py
rite, galena, chalcopyrite and sphalerite, with minor quartz and chlorite 
(Fig. 6C,D). The calcite-sulfide stage (H3b) is dominated by calcite, 
pyrite, chalcopyrite, sphalerite and galena with minor quartz, chlorite, 
marcasite, bornite, digenite, tetrahedrite and millerite (Fig. 6E,F). 

Previous studies recognized a barren quartz stage prior to minerali
zation, a quartz-pyrite stage and a quartz-polymetallic sulfide stage 
related to gold and a post-mineralization calcite-quartz stage (Pei et al., 
2015; Xiao et al., 2017). Together with fluid inclusion and stabe isotope 
study, the evolution of fluid composition was determined (Table 1). 
Comparing with the previous paragenetic sequences, the quartz-pyrite 
stage and the quartz-polymetallic sulfide stage are integrated into the 
quartz-sulfide stage (H2) in this study. Previous study shows that the 
paragenetic evolution of this stage is continuous, with hydrothermal 
fluids evolving from relatively high temperature and salinity to lower 
values (Xiao et al., 2017), while similar mineral assemblages were being 

Fig. 4. Photomicrographs of structures at the Shangxu gold deposit. (A) planar fabrics of aligned sericite and quartz, overprinted by elongated and oriented siderite 
spots; (B) pressure solution and dissolution seams (yellow arrows) in host rocks; (C) pressure solution and dissolution seams (yellow arrows) and quartz pressure 
shadow around euhedral pyrite; (D) quartz subgrains and quartz pressure shadow around pyrite; (E) recrystallized and fibrous quartz grains; (F) quartz + ankerite 
pressure shadow around pyrite replaced by ankerite; Qz-quartz; Cal-calcite; Gra-graphite; Ser-sericite; Ank-ankerite; Sid-siderite; Py-pyrite. 
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precipitated (Fig. 5, Table 1). In addition, an ankerite-sulfide stage 
(H3a) is defined in this study. This is an important carbonate hydro
thermal alteration associated with gold mineralization, postdating H2, 
which leads to pervasive ankerite alteration of country rocks. Calcite 
(H3b) dominates after the ankerite-sulfide stage. 

6.2. δ18O, δD, δ13C and δ30Si of silicates 

The range of quartz δ18O value is between 16.7‰ and 19.5‰, with 
an average of 18.0‰ (Table 2, Fig. 7). δ18O values of early mineraliza
tion quartz (H2a), H2b stage quartz and late-stage quartz (H3) range 
from 16.7‰ to 17‰, 18.1‰ to 19.3‰ and 18.4‰ to 19.5‰, with 
increasing mean values of 16.8‰, 18.7‰ and 19‰, respectively. The 
inclusion fluid δD values in quartz are between − 74‰ and − 125‰ with 
an average value − 105‰ (Table 2). δD values of inclusion fluids from 
the early mineralized quartz (H2a) vary between − 74 to -116‰ 
(average − 88‰), H2b quartz range from − 109 to -120‰ (average 

− 115‰,) and that for the late stage quartz (H3) ranges from − 113 to 
− 125‰ (average − 119‰), respectively (Fig. 7). δ13C values for inclu
sion fluid CO2 in quartz show a gradual decrease from early minerali
zation quartz (H2a), − 5.4‰ to − 7.6‰, with an average of − 6.5‰ 
(Table 2). The H2b quartz has a lower δ13CCO2 value of − 9.6‰, whereas 
the H3a and H3b quartz yields the δ13CCO2 values of − 12.4‰ and 
− 7.4‰, respectively. The quartz silicon isotope composition is uniform 
with δ30Si values of − 0.1‰; one sample yields a lower value of − 0.2‰ 
(Table 2, Fig. 8). 

6.3. δ18O and δ13C of carbonates 

The late-stage carbonates (H3) have relatively consistent δ18O and 
δ13C values (Table 2, Fig. 9). A H3a ankerite yields a δ18O value of 
16.5‰, similar to those of H3b calcite, which range from16.5‰ to 20‰, 
with an average of 17.9‰. The δ13C value of H3a ankerite is − 1.3‰, 
comparable to those of the H3b calcite, which range from − 0.1‰ to 

Fig. 5. Mineral paragenesis of the Shangxu gold deposit and its corresponding stage; the circled numbers above the mineral bars indicate the number of mineral 
samples from each sub-stage; Qz-quartz, Ank-ankerite, Cal-calcite, Py-pyrite; Sfd-sulfide. 
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− 2.4‰, with a mean value of − 1‰. 

6.4. δ13C of graphite 

The graphite carbon isotope composition is uniform, with a narrow 
range of δ13C value between − 20.8‰ and − 21.3‰, with a mean value of 
− 21.0‰ (Table 2). 

6.5. He-Ar isotope of inclusion fluids in pyrite 

Analytical results for He and Ar are listed in Table 3. The concen
trations of 4He range from 35.88–101.01 × 10− 8 cm3STP/g for all 

analyzed samples. 3He/4He ratios of the ore-related H2b samples vary 
between 0.27Ra and 0.42Ra with a pre-ore sample from the meta
morphism stage of a 3He/4He value 1.03Ra (where Ra is the 3He/4He 
ratio of air, 1.4 × 10− 6). The 40Ar/36Ar ratios are between 308.8 and 
532.3. The ratios of 3He/36Ar show the greatest variability, ranging from 
460.74 × 10− 7 to 12636.31 × 10− 7. The F4He values are the ratios of 
4He/36Ar in samples and in atmosphere, which provide a good estimate 
of the atmospheric He contribution to the sample fluids (Kendrick et al., 
2001), ranging from 509.87 to 5276.59. The concentrations of 40Ar 
range from 30.14–222.17 × 10− 8 cm3STP/g for all fluids in pyrite and 
the 40Ar*/4He ratios (radiogenic 40Ar) are from 0.11 to 0.27, similar to 
the crustal 40Ar*/4He production ratios of 0.2. 

Fig. 6. Vein mineralogy of the Shangxu gold deposit. A. H2a stage quartz vein with gold grains in cracks; B. H2b stage laminated quartz vein with pyrite and gold in 
cracks; C. H3a stage ankerite-quartz vein; D. photomicrograph of an H3a stage ankerite- quartz- sphalerite- galena vein; E. H3b stage calcite veins; F. chalcopyrite, 
sphalerite and galena in a H3b stage calcite vein. Qz-quartz; Ank-ankerite; Cal-calcite; Au-native gold; Py-pyrite; Cp-chalcopyrite; Sph-sphalerite; Gn-galena. 

Table 1 
Paragenetic sequences and characteristics of hydrothermal fluids at Shangxu.  

Reference Pei et al. (2015) Xiao et al. (2017) 

Group S1 S2 S3 S4 S1 S2 S3 

Definition quartz stage 
(barren) 

quartz-pyrite 
stage 

quartz-sulfide 
polymetal stage 

calcite-quartz 
stage 

quartz-pyrite 
stage 

quartz-sulfide 
polymetal stage 

quartz-calcite 
stage 

Dominated mineral qz qz, py, gl qz, ms, py, cp, gn, sph, 
gl 

cal, qz qz, py, gl qz, py, gn, sph, gl cal, qz 

Corresponding stage in 
this study 

H1 H2a H2b H3b(partial) H2a H2b H3b 

FI type Ll Ll + C3 + C2 Ll + Lv + C3  Ll + Lv + C3 Ll + C3 Ll + Lv 

Th (ave.) ◦C 90–248 (144) 142–397 (235) 141–410 (247)  189–244 (218) 183–211 (208) 140–210 (180) 
Satinity% NaCl eq. 0.35–5.86 3.06–9.74 2.74–8.68  3.87–10.98 1.57–9.34 2.07–3.57 
Density g/cm3 0.85–0.98 0.61–0.96 0.55–0.97  0.87–0.96 0.85–0.93 0.87–0.93 
Pressue MPa 5.4–21.6 11.6–40.4 10.3–39  16.11–24.83 12.25–20.52 11.26–15.37 
D ‰ − 99 − 95 to -108 − 89 to -102  − 104 to -119 − 108 to -136  
Owater ‰ − 0.8 2.3–5.8 0–5  5.92–7.82 4.92–5.32  

Qz-quartz, ms-muscovite, cal-calcite, ank-ankerite, py-pyrite, gl-gold, cp-chalcopyrite, gn-galena, sph-sphalerite; Ll- liquid fluid inclusion, Lv- vapor–liquid biphase 
fluid inclusion, C2–CO2-containing biphase fluid inclusion, C3–CO2-containing triphase fluid inclusion 
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7. Discussion 

7.1. Temperature of the hydrothermal process 

At Shangxu, different types of fluid inclusions in auriferous quartz 
(H2a, H2b) are characterized by coexisting CO2-rich triphase and liquid- 
rich biphase inclusions (Pei et al., 2015; Xiao et al., 2017). The ho
mogenization temperature (Th) of the two inclusion types is similar, and 
the salinity of the CO2-rich fluid inclusions is generally lower than those 
of the liquid-rich fluid inclusions (Xiao et al., 2017). These observations 
were interpreted to indicate immiscibility or boiling when the quartz 
veins formed, and the homogenization temperature approximates the 
trapping temperature (Lu et al., 2004). Accordingly, we use the average 
Th from Xiao et al. (2017) to represent the hydrothermal fluid temper
atures during H2a and H2b stages (218 ◦C and 208 ◦C, respectively). Pei 
et al. (2016) calculated a Tt of 197 ◦C by S isotope sphalerite-galena 
fractionation for the H2b stage, consistent with the H2b average ho
mogenization temperature of 208 ◦C. 

Using Zheng (1999), the quartz-ankerite and quartz-calcite oxygen 
isotope fractionations yield temperatures of 127 ◦C and 823 ◦C, 
respectively. The latter high temperature is far from the temperature 
range measured from fluid inclusions, suggesting isotopic disequilib
rium between quartz and calcite in that sample (k11-184). The low 
temperature is compatible with the Th range of H3 stage (140–210 ◦C, 
Xiao et al., 2017). It is similar to Th (152–293 ◦C) from turbidite-hosted 
deposits in the Buller Terrane, New Zealand, where hydrothermal 

Table 2 
Oxygen, hydrogen, silicon and carbon isotopic compositions of quartz, inclusion fluids, carbonate and graphite from the Shangxu deposit.  

Sample Mineral Position Stage δ18OV-SMOW (‰) δ13CV-PDB (‰) δDV-SMOW (‰) δ30Si NBS-28 (‰) 

Qz Cal/Ank Qz Cal/Ank Gr Qz FI Qz 

K08-159 Qz + Ank Vein H3a 18.4 16.5 − 12.4 − 1.3  − 125.3 − 0.1 
K11-184 Qz + Cal Vein H3b 19.5 19.2 − 7.4 − 0.1  − 112.6 − 0.1 
SX1-1 Qz Vein H2a 16.7     − 74.6 − 0.1 
SX2-Q1 Qz Vein H2a 16.8  − 7.6   − 74.2 − 0.1 
401–34 Qz Vein H2a 17  − 5.4   − 116.2 − 0.1 
514–242 Qz Vein H2b 19.3     − 120.4 − 0.1 
012–62 Qz Vein H2b 18.1     − 109.1 − 0.2 
012–61 Qz Vein H2b   − 9.6     
K07-123 Cal Vein H3b  17.9  − 1    
Y12-18 Cal Vein H3b  16.9  − 2.4    
514–111 Cal Vein H3b  17.7  − 0.8    
012–260 Cal Vein H3b  16.5  − 1.2    
012–175 Cal Vein H3b  20  − 0.3    
012–261 Cal Vein H3b  17.4  − 1.2    
k12-350 Gr Host rock      − 21   
k12-195 Gr Host rock      − 21.3   
k12-202 Gr Host rock      − 21.1   
K11-119 Gr Host rock      − 20.8   
K 10-72 Gr Host rock      − 21   
k2514-212 Gr Host rock      − 21.1   

Qz-quartz, Ank-ankerite, Cal-calcite; Gr-graphite; FI-fluid inclusion. 

Fig. 7. δD and δ18O values of hydrothermal fluids from the Shangxu gold de
posit. Field for magmatic and metamorphic waters is from Taylor and Barnes 
(1997); the central Tibetan geothermal water is from Zheng et al. (1982); 
majority of the lode gold deposits is from McCuaig and Kerrich (1998); fluid 
composition at Shangxu from Pei et al. (2015) and Xiao et al. (2017). 

Fig. 8. Silicon isotopic composition of quartz from the Shangxu gold deposit. The major reservoirs for silicon are from Chen et al. (2012a) and Poitrasson (2017).  

X. Fang et al.                                                                                                                                                                                                                                    



Ore Geology Reviews 127 (2020) 103810

9

alteration haloes are dominated by carbonate, sericite, chlorite and 
sulfide alteration (Bierlein et al., 2004). During H3 stage, where fluid 
inclusions within a single fluid inclusion assemblage have similar vol
atile phase ratios, homogenization temperature is considered the mini
mum estimate of the trapping temperature. Thus, we use the average Th 
(180 ◦C) from Xiao et al. (2017) to represent the hydrothermal fluid 
temperature during H3 stage. 

7.2. Composition and origin of the hydrothermal fluid 

Several hypotheses for the origin of the hydrothermal fluids in 
orogenic gold deposits have been proposed: (1) metamorphic devolati
lization of hydrous and carbonate minerals during prograde meta
morphism (Kerrich and Fyfe, 1981; Phillips and Nooy, 1988; Barnicoat 
et al., 1991; Kerrick and Caldeira, 1998), (2) fluids evolved from 
devolatilization of magma (Burrows et al., 1986; Burrows and Spooner, 
1987), (3) metal-rich fluid sourced from mantle degassing (Groves et al., 
1988), or from melts formed in the metasomatic sub-continental litho
spheric mantle (Hronsky et al., 2012), (4) deep meteoric water circu
lation (Nesbitt, 1988; Menzies et al., 2014). 

7.2.1. Water composition 
Auriferous quartz δ18O values from the Shangxu gold deposit range 

from 16.7‰ to 19.5‰, δD values range from − 74.2‰ to − 125.3‰, and 

carbonates δ18O values range from 16.2 to 20‰ (Table 2), consistent 
with those of the typical orogenic lode gold deposits (Fig. 7; Kyser et al., 
1986; Goldfarb et al., 1991; Goldfarb, 1997; McCuaig and Kerrich, 1998; 
Jia et al., 2000, 2001; Kerrich et al., 2000; Kerrich et al., 2000; Ridley 
and Diamond, 2000; Beaudoin, 2011). The relatively high δ18O values 
are consistent with a low ore-forming temperature which would lead to 
significant isotopic fractionation between the fluid, mineral and sedi
mentary host rocks (O’Neil, 1986; Beaudoin, 2011; Chen et al., 2012b). 
Using Clayton et al. (1972), the calculated δ18O of hydrothermal fluids 
in quartz of H2a ranges from 6.1‰ to 6.4‰ (average 6.2%). δD values of 
inclusion fluids from H2a quartz vary between − 74 and − 116‰ 
(average − 88‰). This δ18O and δD composition may reflect either a 
magmatic or a metamorphic water source. Similarly, δ18O of hydro
thermal fluids in quartz from H2b and H3 stage are calculated to be 
7–8.2‰ (average 7.6‰) and 5.3–6.4‰ (average 5.9‰), respectively. 
The δ18O of water in equilibrium with carbonate, using the ankerite- 
water and calcite-water fractionations of Zheng (1999), yield δ18OH2O 
values of 4.9‰ and from 5.5‰ to 9‰ (average 6.9‰), respectively. The 
calculated δ18OH2O values of hydrothermal fluids at Shangxu, from 
4.9‰ to 9‰, are comparable to that for the most gold lodes deposits 
worldwide (δ18O = 5–16‰; Boehlke and Kistler, 1986; Goldfarb et al., 
1991; Kontak and Kerrich, 1995; Oberthuer et al., 1996; Bierlein and 
Crowe, 2000; Jia et al., 2003; Beaudoin, 2011). δD values of inclusion 
fluids from H2b and H3 are − 109 to -120‰ (average − 115‰) and − 113 

Fig. 9. δ13C and δ18O values of mineral and CO2 in fluids from the Shangxu gold deposit. Field for lode gold deposits is from McCuaig and Kerrich (1998); Archean 
gold deposits is from Ridley and Diamond (2000); marine carbonate is from Ohmoto and Rye (1979); magmatic and mantle carbon is from Deines et al. (1991); 
evolution trends for dissolution and decarbonation are from Shieh and Taylor (1969) and Ohmoto and Goldhaber (1997). 

Table 3 
Helium and argon isotopic data from fluid inclusions in pyrite from the Shangxu gold deposit.  

Samples Forming stage 3He/4He 4He R/Ra 40Ar/36Ar 40Ar 40Ar*/4He 3He/36Ar F4He 
(10− 7) (10− 8 cm3STP/g)   (10− 8 cm3STP/g)  (10− 7)  

k12-198 ore-stage  4.53  35.88  0.32  341.4 30.14  0.11  1841.07  2455.70 
k12-143 ore-stage  3.78  58.47  0.27  372.4 35  0.12  2351.62  3759.04 
k11-124 pre-ore  14.47  101.01  1.03  532.3 61.57  0.27  12636.31  5276.59 
514–208 ore-stage  5.92  78.49  0.42  308.8 222.17  0.12  645.84  659.19 
514–217 ore-stage  4.77  66.89  0.34  330.2 103.34  0.16  1019.50  1291.43 
514–212 ore-stage  5.46  54.77  0.39  313.3 203.35  0.21  460.74  509.87 

F4He = (4He/36Ar)sample/(4He/36Ar)air, 4He/36Ar in air is 0.1655; 40Ar* refers to the superfluous-argon after deducting the 40Ar in air, 40Ar* = (40Ar)sample295.5 ×
(36Ar)sample. 
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to -125‰ (average − 119‰), respectively (Table 2). Combined with δD 
data from Pei et al. (2015) and Xiao et al. (2017), the integrated dataset 
shows decreasing δD values from H2a to H3 (Fig. 7), approaching to the 
composition of central Tibetan geothermal water (Zheng et al., 1982). It 
is likely that the high topography during uplift of the Tibetan Plateau 
promoted penetration of meteoric water into the rock pile, analogous to 
that happening in the present-day Alpine schists, New Zealand (Koons, 
1987; Koons and Craw, 1991; Pitcairn et al., 2006). Hence, the low δD 
values (<80‰) could be interpreted to indicate mixing with meteoric 
water (Beaudoin, 2011), consistent with the low Th in the district. The 
low δD values could also result from extraction of fluids from several 
generations of inclusions. The fact that there is a gradual decrease in δD 
from H2 to H3 is not consistent with this hypothesis. On the other hand, 
reaction between δD-depleted organic matter in host rocks could also 
cause the low δD signature (Goldfarb et al., 1989; McCuaig and Kerrich, 
1998; Jia et al., 2001; Wong et al., 2017). Craw (2002) argued the low 
δD value in hydrothermal fluid could result from graphite deposition 
during mineralization, due to exchange with CH4-rich reduced fluids in 
shear zones. But in the Shangxu gold deposit, CH4 is not a dominant 
phase in hydrothermal fluids and graphite is not an abundant accessory 
mineral in the host rocks for gold veins. 

7.2.2. Source for silicon 
According to previous work, silicon isotopes will not be significantly 

partitioned during water–rock interaction (Douthitt, 1982; Ding et al., 
1994), so silicon isotope can be used to identify the source of hydro
thermal fluids in different ore deposits (Jiang et al., 1993, 1994; Zhou 
et al., 2007; Chen et al., 2012b). The δ30Si values of quartz at Shangxu 
are restricted to the interval − 0.1 to -0.2‰, with a mean of − 0.11‰, 
within the range of shales and sandstones, or igneous rocks, but 
distinctly different from those of Precambrian Banded Iron Formations 
or shallow sea radiolarian rocks (Fig. 8). To distinguish contributions of 
water from shales and sandstones versus water from igneous rocks based 
on merely measured silicon isotope values is difficult. However, if 
combined with the foregoing high δ18O signature of quartz veins from 
the Shangxu deposit, the sedimentary rock source is plausible. 

7.2.3. Sources of carbon 
The δ13CCO2 values in quartz veins are low, ranging from − 5.4 to 

− 12.4‰, similar to the range of − 3 to − 12‰ for the Bendigo goldfield in 
Australia (Cox et al., 1995; Gao and Kwak, 1995; Phillips and Hughes, 
1996), the Cambrian-Ordovician turbidite-hosted gold deposit of Mur
untau in Uzbekistan and the Carbonaceous phyllite-hosted gold deposit 
of Kumtor in Kyrgyzstan (− 5 to − 12‰, Drew et al., 1996; Ivanov et al., 
2000), and the carbon isotope composition for global orogenic gold 
veins from the Archean to the Cenozoic (− 26 to 13‰, with most values 
at modes of − 5‰ and − 22‰, Beaudoin, 2011). A magmatic or mantle 
degassing carbon source fails to fully account for the gold-bearing quartz 
stage at the Shangxu deposit, because the δ13C range exceeds that of the 
magma and mantle (Fig. 9). 

The δ13C value of hydrothermal carbonate at Shangxu ranges from 
− 0.1 to − 2.4‰, with an average of − 1.0‰, which corresponds to 
seawater carbon (0‰, Ohmoto and Rye, 1979). Dissolution or decar
bonation reactions of carbonate during metamorphism produce CO2 
with δ13C values similar to, or more enriched in δ13C, than that in parent 
rocks (Shieh and Taylor, 1969; Ohmoto and Goldhaber, 1997). δ13C 
values of CO2 calculated from calcite range from − 0.5 to − 2.8‰ 
(average − 1.4‰), based on the calcite-CO2 fractionation of Ohmoto and 
Rye (1979). To calculate the δ13C values of CO2 from ankerite, we use 
the fractionation for dolomite-CO2 (Ohmoto and Rye, 1979) as an 
approximation to that of ankerite-CO2. The calculated δ13CCO2 in equi
librium with ankerite is − 2.7‰, similar to that for calcite. Collectively, 
the calculated δ13CCO2 display a small range from − 0.5 to − 2.8‰, 
similar to those of fluids forming the Archean gold deposits (− 6 to 0‰, 
McCuaig and Kerrich, 1998; Ridley and Diamond, 2000). In conjunction 
with the δ18O values, Fig. 9 illustrates dissolution of the marine 

carbonates is the most likely source of carbon. 
The δ13C values of graphite in sediments within the Shangxu district 

are around − 21‰ (Table 2). The spread δ13C values of CO2 in quartz 
fluid inclusions, between the local graphite and marine carbonate 
composition (Fig. 9), could be interpreted to indicate mixing of isoto
pically depleted oxidized graphite in sedimentary rocks with the car
bonic species originating from disseminated marine carbonate cement 
from the sedimentary host rocks. 

7.2.4. He-Ar isotope 
Pyrite is regarded as a good trap for noble gases and previous studies 

have shown that loss of He and Ar from pyrite fluid inclusions is negli
gible on a 100 Ma time scale (Burnard et al., 1999). The composition of 
fluids trapped in quartz is similar to that in pyrite where quartz is 
intergrown with pyrite during the same ore stage (Hu et al., 1998). In 
our study, all samples were collected from drill holes such that cosmo
genic 3He production in mineral lattice and fluid inclusions can be 
ignored (Simmons et al., 1987; Stuart et al., 1995; Burnard et al., 1999). 
Since Li-bearing minerals are absent from the Shangxu deposit, a source 
of 4He through radioactive decay of lithium can also be excluded. The 
F4He values, the 4He/36Ar ratio of samples relative to the atmospheric 
4He/36Ar value of 0.1655, reflect contribution from atmospheric He, and 
a sample with 100% atmospheric He has an F value of unity (Kendrick 
et al., 2001; Li et al., 2007). All F4He values of our pyrite samples are 
greater than 1, suggesting that atmospheric He is negligible. In addition, 
He contents in atmosphere are too low to influence the He abundance 
and isotopic composition of crustal fluids (Marty et al., 1993; Stuart 
et al., 1994), such that He isotopic composition of hydrothermal fluids 
reflects the original signature. 

In the 3He vs. 4He correlation diagram, pyrite samples plot in a field 
close to the crust (Fig. 10A), and the R/Ra ratios can be used to trace 
source of helium contained in hydrothermal fluids. The value for mantle 
He (Rm) ranges from 6 to 7 Ra (Dunai and Baur, 1995; Stuart et al., 
1995), whereas that of crustal fluids (Rc) typically ranges from 0.01 to 
0.05 Ra (Tolstikhin, 1978). In our study, the R/Ra values (Rs) of H2b 
samples range from 0.27 to 0.42, with a relatively high value of 1.03 of 
the pre-ore metamorphic sample. This R/Ra range is lower than that of 
mantle, and typical of crustal fluids. The R/Ra ratios can also be used to 
estimate the proportion of mantle and crustal components in fluids. 
Using a value of 6 Ra to represent pure mantle He (Rm), and 0.03 Ra as 
typical crustal fluids (Rc), a proportion of mantle He between 4 and 6.6% 
for the H2b samples and a higher mantle He content of 16.8% for the 
pre-ore metamorphic sample (k11-124) are estimated with the equation 
Hemantle = (Rs-Rc)/(Rm-Rc) × 100%. This indicates that He in the fluid 
inclusions in pyrite mainly came from a crustal source. 

The 40Ar/36Ar values of fluid inclusion in pyrite range from 309 to 
532. Compared with the atmospheric ratio (298), the higher 40Ar/36Ar 
ratios of samples indicate a higher concentration of radiogenic 40Ar 
(40Ar*) of mantle or crustal origin. The 40Ar*/4He ratios of samples 
range between 0.11 and 0.27, close to crustal production ratio of 0.2 
(Stuart et al., 1995), indicating the inheritance of Ar from the crustal 
components. In the R/Ra vs. 40Ar*/4He (Fig. 10B) and R/Ra vs. 
40Ar/36Ar diagram (Fig. 10C), the samples constitute a well-defined 
correlation similar to the Daduhe (east Tibet, China) and Jinshan 
(Jiangxi, east China) gold deposits, where hydrothermal fluids have a 
large crustal component (Li et al., 2007, 2010), suggesting the domi
nance of crust-derived fluids in the Shangxu gold mineralization process. 
In the 40Ar/36Ar vs. 3He/36Ar plot (Fig. 10D), the composition of 
Shangxu hydrothermal fluids coincides with the metamorphic water 
line, consistent with that of the Muruntau gold deposit. 

The pre-ore sample k11-124, with a relatively larger mantle 
component, is comparable to the gold deposits in the Jiaodong penin
sula, China, where gold mineralization is interpreted to have a relatively 
high proportion of mantle fluids (Shen et al., 2013; Goldfarb and San
tosh, 2014; Goldfarb and Groves, 2015). This might reflect more 
magmatic activities prior to mineralization during metamorphism in the 
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Fig. 10. (A) 40Ar/36Ar vs. 3He/36Ar, (B) 3He vs. 4He, (C) 40Ar*/4He vs. R/Ra and (D) 40Ar/36Ar vs. R/Ra diagrams for fluid inclusions in pyrite (modified after Hu 
et al., 1998; Mao et al., 2002; Li et al., 2010). Data sources: Murantau Au depoist (Graupner et al., 2006), Daduhe Au deposits (Li et al., 2007), Jinshan Au deposit (Li 
et al., 2010). 

Fig. 11. Genetic model for the Shangxu gold deposit, see text for detailed explanation.  
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Shangxu region, or leaking up the fault from the depth. 

7.3. Fluid evolution and ore genesis 

The turbidites of the Mugagangri Group were deposited along the 
sourthern Qiangtang continental margin (Zeng et al., 2017). The high 
gold background (14.32 ppb Au) of the regional slates and greywackes 
suggests a sedimentary enrichment in gold (Xiao, 2002; Deng et al., 
2015; Zeng et al., 2017). Gold could have been trapped in organic matter 
or in diagenetic/sedimentary pyrite (Large et al., 2015). In the Early 
Cretaceous orogene, convergence and accretion between the Qiangtang 
and Lhasa terranes, followed by strike-slip movement, caused extensive 
crustal compression and thickening in the fore-arc region along the 
continental margin (Fig. 11). 

At this time, due to deformation in the fore-arc turbiditic sedimen
tary sequences, burial to the depth induced prograde metamorphism, as 
shown by the hydrothermal fluid’s 40Ar/36Ar and 3He/36Ar composition 
(Fig. 10D), and the low R/Ra and 40Ar*/4He ratios. The earliest hy
drothermal fluids (H1) were barren in gold, and formed the siderite spot 
alteration. These fluids are interpreted to be derived from the basin 
sediments and are commonly methane-bearing (Irwin et al., 1977; 
Welhan, 1988; Hinrichs et al., 1999; Whiticar, 1999; Boetius et al., 2000; 
Dugdale et al., 2009). Auriferous fluids infiltrated the Mugagangri For
mation after the siderite alteration. Gold-bearing hydrothermal flows 
(H2) were likely produced by breakdown of hydrous minerals, such as 
chlorite, in sedimentary rocks during greenschist to amphibolite facies 
metamorphic reactions (Elmer et al., 2006; Fyfe, 2012; Pitcairn et al., 
2014; Goldfarb and Groves, 2015). After migrating along the Bangong- 
Nujiang crustal scale shear zone, quartz and pyrite precipitated from a 
moderate temperature (>220 ◦C), low salinity, CO2-rich fluid (H2a), 
which had a δ18Ofluid of 6.1–6.4‰, δD of − 74.2 to − − 116.2‰, δ13CCO2 
of − 5.4 to − 7.6‰, and δ30Si of − 0.1‰. 

With progressive crustal uplift and erosion, and progressive devel
opment of strike-slip faults caused cooling in hydrothermal fluids from 
H2a to H2b. Consequently, the hydrothermal fluids forming H2b stage, 
rich in CO2, incorporated CO2 from oxidization of graphite and from 
dissolution of carbon from disseminated marine carbonate in turbidite. 
Precipitation of quartz, pyrite as well as minor chalcopyrite, galena, 
sphalerite from a solution with δ18Ofluid of 7–8.2‰, δD of − 109.1 to 
− 120.4‰, δ13CCO2 of − 9.6‰ and δ30Si of − 0.1‰ to − 0.2‰ formed 
stage H2b. 

Following the main mineralization stage, uplift resulted in progres
sive cooling of the metamorphic hydrothermal fluids. Disseminated 
marine carbonate dissolved by auriferous fluids became a major source 
of carbon to the fluids. Hydrothermal stage H3a evolved to form massive 
ankerite, quartz, sulfides from a fluid with a δ18Ofluid of 4.9–5.3‰, δD of 
− 125.3‰, δ30Si of − 0.1‰, δ13CCO2 of − 12.4‰ in quartz inclusion fluid 
and δ13CCO2 of − 2.7‰ in ankerite-CO2. Crosscutting of quartz by 
ankerite suggests that quartz formed slightly before ankerite, which 
coincides with a change of the δ13C value. With temperature decrease, 
calcite, quartz and sulfides, without gold, started to precipitate from a 
lower temperature (<180 ◦C), low salinity hydrothermal stage H3b. 
δ18O and δ13C between H3b quartz and calcite are in disequilibrium, and 
the crosscutting of quartz by calcite suggests quartz formed before 
calcite. The H3b quartz formed from a fluid having a δ18Ofluid of 6.4‰, 
δD of − 112.6‰, δ30Si of − 0.1‰, δ13CCO2 of − 7.4‰, whereas calcite 
deposited from a fluid with δ18Ofluid of 5.5–9‰, δ13CCO2 of − 0.5 to 
-2.8‰. 

Based on sulfur and lead isotopes of the Shangxu deposit, Pei et al. 
(2016) proposed an ore-forming materials source from the flysch sedi
ments of the Mugagangri Group, whereas Liu et al. (2018) argued for a 
mixed origin of deep crustal-mantle magma and overlying flysch sedi
ments. Their studies reached to a consistent sulfide δ34S range, with 
diagenetic pyrite δ34S of − 3.1–2.2‰ and hydrothermal sulfides of 
− 4.5–4.6‰ (Pei et al., 2016; Liu et al., 2018). The δ34S of the Early to 
Middle Jurassic seawater sulfate varied mostly between 14 and 18‰ 

(Claypool et al., 1980; Canfield, 2004; Kampschulte and Strauss, 2004; 
Paytan and Gray, 2012), while the δ34S values of sulfides in deposits 
were typically 15–20‰ lower than the coeval seawater sulfate (Chang 
et al., 2008). Thus, diagenetic pyrite in the Mugagangri Group was most 
probably derived from seawater sulfate, and leached from pyrite with S 
isotope compositions around 0‰, which is similar to that of magmatic 
sulfides. According to this study, contributions from magma and mantle 
were limited. Hence, sulfur and gold, by inference, were most likely 
released from diagenetic pyrite during conversion from pyrite to pyr
rhotite at depth (Ferry, 1981; Large et al., 2011) or moblized from the 
sedimentary rocks at the greenschist to amphibolite transition (Pitcairn 
et al., 2014). 

8. Conclusions 

A stable isotopic study of hydrothermal minerals of the Shangxu gold 
deposit leads to the following conclusions: 

(1) δ18O and δD of hydrothermal fluids is compatible with meta
morphic water, mixing with meteoric water, or reacting with δD- 
depleted organic matter in host rocks.  

(2) Carbonic species in hydrothermal fluids from gold-bearing quartz 
stage (H2) were sourced from the dissolved marine carbonate 
cement, which mixed with depleted oxidized graphite in sedi
mentary rocks. During H3 stage, dissolution of the marine car
bonate cement became the main source of carbon.  

(3) He and Ar isotopes in hydrothermal pyrite inclusion fluids imply 
a major crustal origin. 

The stable isotope compositions of hydrothermal fluids at Shangxu 
are comparable to those of typical orogenic gold deposits. The stable 
isotope systematics (O, H, C, Si, He and Ar) provide a constraint on 
source reservoirs of hydrothermal fluids in the Shangxu gold deposit. 
Hydrothermal ore-forming fluids probably formed due to Early Creta
ceous orogeny and sourced from the depth, by devolatilization related to 
breakdown of hydrous minerals in the sedimentary rocks. 
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