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Guangzhou, China

This review focuses on a vital part of Hg (Hg) atmosphere-natural
surface exchange field observational studies, namely the theory,
applications, strengths, and limitations of the various experimen-
tal methodologies applied to gauge the flux process. We present an
in-depth review, a comprebensive literature syntbesis, and method-
ological and instrumentation advances for terrestrial and marine
Hg flux studies in recent years. In particular, we outline the theory
of a wide range of measurement techniques and detail the opera-
tional protocols.

KEY WORDS: air-water exchange, flux footprint, flux mea-
surement tools, gaseous elemental mercury, mercury, micro-
meteorological techniques, terrestrial ecosystems

INTRODUCTION

Mercury (Hg) is a neurotoxic bioaccumulative trace element of human con-
cern due to potential high-level exposure of methylHg primarily by fish
Consumption.1 In the rather chemical inert elemental form (Hgo), it has ex-
traordinary volatility among the heavy metals.? Atmospheric transport of Hg"
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associated with a generally slow oxidation allows Hg to be (dry or wet) de-
posited in areas very far (hemispherical scale) from where it was originally
emitted to the atmosphere,? Therefore, Hg is considered a global pollutant.
Nevertheless, the turnover time of Hg in the atmosphere (~1 year) is short
compared to the oceanic* and terrestrial systems.”> Human activities have in-
fluenced its natural cycling in two interrelated ways: by altering the rate at
which Hg is transported between different environmental compartments and
by altering Hg into more labile, short-lived pools from those in which it was
originally deposited. This implies that transformation of deposited Hg into
volatile Hg species and secondary emissions of legacy Hg (deposited from
anthropogenic emissions in the past) to the atmosphere occurred—so called
re-emissions. Natural emission process and re-emissions are not distinguish-
able by analytical techniques and will here as elsewhere be treated together.
In turn, natural emissions can be sub-divided into inputs of geogenic Hg
sources such as volcanoes, weathering processes of Earth crust and forest
fires, and the recycling of deposited Hg from the oceans and terrestrial envi-
ronment. Together, these processes account for a large fraction (up to 60%
of the total) of the global atmospheric Hg budget.®

In contrast to anthropogenic Hg emissions consisting of a mixture of
Hg", semi-volatile gaseous inorganic Hg!!' compounds (gaseous oxidized Hg
[GOM] aka reactive gaseous Hg [RGM]. GOM will be used in this review as
it is a more appropriate term than RGM’) and Hg associated with aerosols
(Hg-p), natural emissions occur predominantly as Hg". The actual speciation-
fractionation of airborne Hg is essential to observe as it has a significant in-
fluence on depositional patterns to environmental surfaces. Dry deposition
occurs due to turbulent transport and is therefore highly dependent on sur-
face and meteorological conditions. Concerning Hg-p, coarse particles (d,, >
2.5 um) deposit faster than those belonging to the accumulation mode (0.1 <
dp, < 1 um). The corresponding velocity (wq, see Eq. 1) is generally in the or-
der GOM > Hg-p (0.1 < d,, < 1 um) > Hg". Dry deposition velocities of Hg"
are generally very low, such as < 0.1 cm s™! over bare soil, grasslands, snow,
and water surfaces.® Concerning Hg’, the transfer processes at the interfaces
of the lithosphere, atmosphere, hydrosphere, and biosphere are largely bi-
directional (i.e., potentially include both emission and dry deposition events).

To better understand the biogeochemical cycle of Hg in the natural en-
vironment, it is important to determine spatial and temporal variability in
the air-surface exchange of Hg® as it relates to environmental, physicochem-
ical, meteorological factors as well as surface characteristics. The interac-
tions between all these factors lead to highly variable Hg’ flux, making it
imperative to perform experimental studies in a diversity of surfaces (land-
scapes, oceans, etc.) over a sufficiently long time-scale to pinpoint crucial
regulating mechanisms. Over the last three decades, this field has attracted
substantial research activities. The state of knowledge has been summarized
in review papers including general overviews of Hg emissions from natural
sources”!? and more specifically for exchange of Hg between air and natural
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terrestrial surfaces,''~'3 Hg air-water flux over oceans,'*'> Hg air-surface ex-
change in polar regions,'®'” Hg emissions from volcanoes'® and biomass
burning® as well as the current understanding of dry deposition of at-
mospheric Hg species.® This review article focus on a vital part of Hg
atmosphere-natural surface exchange field observational studies, namely the
theory, applications, strengths, and limitations of the various experimental
methodologies applied to gauge the flux process. Here, we present an in-
depth review including a comprehensive literature synthesis and document
methodological and instrumentation advances for terrestrial and marine Hg
flux studies in recent years. In particular, we outline the theory of a wide
range of measurement techniques and detail the operational protocols.

Fluxes of Hg are expressed as emission or deposition rates per unit
surface area, typically in nanograms per meter squared per hour. The sign
convention treats an emission as a positive flux and a deposition as a negative
flux. The flux (Fg,) can be defined as the product of air concentration (Cg,
typically in ng m~3) and a bidirectional vertical surface-exchange velocity
(w, m s™):

Frg(2) = Cpg(2) - w(2) (D

There exists various experimental approaches to gauge Hg environmental
flux. Each approach has its niche:

1. Enclosure methods for small plots and small gas fluxes;

2. Optical long-path spectroscopic techniques (light detection and ranging
[LIDAR], in differential absorption mode [DIAL] or ultraviolet differential
optical absorption spectroscopy [UV-DOAS)) for point, line or small, well-
defined, strong areal sources;

3. Micro-meteorological (relaxed eddy accumulation, modified Bowen-ratio
and aerodynamic) methods for larger landscapes with homogeneous sur-
face sources;

4. Bulk methods with major application for gas exchange over larger fresh-
and sea-water bodies.

In Figure 1 the approximate length- and time-scales within which the
various methods are operating are displayed. Each measurement method
noted has its share of benefits and drawbacks (see Table 1 for a summary).
Nevertheless, in addition to the given method categories, for specific areal
sources or meteorological conditions, other approaches have in some in-
stances been employed. Reviewed later in the section “Conservative tracers
for non-turbulent conditions” is a **Rn tracer technique used during peri-
odswith a stable nocturnal boundary layer and found to be suitable in situ-
ations where the fluxes are small, or the surface is highly heterogeneous.?
For relatively small, spatially heterogeneously distributed source areas, such
as working face landfills, simple models have been implemented.*!=* They
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FIGURE 1. Time- and length-scale niches of various methodologies to measure natural fluxes
of trace gases.

involve single point Hg air sampling up- and downwind the area source
combined with on-site meteorological data as input to predict dispersion
parameters. These models are not explicitly discussed in this review and
more information can be found elsewhere.?*?> However, they have points
of contact with the source area models relevant for micro-meteorological
techniques (see section “Footprint (source area) of MM-techniques”) and are
included in the summary of published articles on air-natural surface exchange
of Hg presented in Table 2. Description of techniques utilized for estimating
Hg emissions from natural high temperature processes (e.g., biomass wild-
fires or volcanic activity) is beyond the scope of this review and can be
retrieved elsewhere. 181920

STRUCTURE OF ATMOSPHERIC BOUNDARY LAYER

The trace gas exchange at the Earth’s surface creates local concentration
surplus or deficit in the adjacent air layers. Usually, these effects are dis-
tributed very fast (in the timescale of min to hr) throughout the planetary
boundary layer (PBL) by turbulent mixing. An idealized PBL thus represents
a well-mixed closed chamber and the surface flux can be described accord-
ing to Eq. 2. However, in real conditions (especially during daytime), the PBL
is not constant in height and continuously mixes with overlying air layers
while growing.?” Additionally, horizontal advection cannot be neglected. The
lowest 10% of the PBL height, where most of flux measurements are made, is
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called the surface layer (SL) or Prandtl layer. The variability of flux with
height in SL is low and thus fluxes in the SL, for many reasons, are treated as
constant with height. The constant flux layer concept represents the basis for
several micrometeorological (MM) flux measurement techniques. The time
averaged statistics of air flow in SL over homogeneous surfaces are described
by Monin-Obukhov similarity theory (MOST; see section “Turbulent transport
in the planetary boundary layer”). However, it has been known for decades
that MOST formulae fail near rough surfaces such as urban areas, vegetation
canopies or surface waves. The failure is most often that turbulent fluxes are
higher than MOST would predict from the observed mean gradients. Even
a homogeneous surface has roughness elements that create characteristic
concentration and windfield patterns around them and therefore SL has to
be divided into inertial and roughness sub-layer.?® Due to the strong friction
effects, the airflow is mainly laminar within few mm above surface structures
(quasi-laminar boundary layer) while the roughness sublayer above includ-
ing a chaotic time-mean streamline pattern is called Lagrangian turbulence.?
Figure 2shows a visualization of PBL.

Similar to trace gases, energy in different forms is absorbed or emitted
at the surface. The energy exchange is of special importance for the under-
standing and determination of the trace gas fluxes for several reasons. First,
it determines the microclimatic state of a vegetated surface (e.g., radiation,
humidity, leaf, and soil temperature) and the overlying air layers (thermal
turbulence production) and, thus, influences the exchange processes deci-
sively. Secondly, the transport of mass related (sensible and latent) energy in
the air is supposed to be analogous to the transport of trace compounds.>
This analogy is helpful for the determination of exchange characteristics,
because the energy content of the air can usually be measured more easily
and accurately than trace gas concentrations. Moreover, there are indepen-
dent methods for the determination and verification of energy fluxes, which
do not exist for trace compounds. In contrast to trace gases, energy can be
transported in several different forms. The energy balance equation at Earth’s
surface is:

HA4+ME =R, — G—AS 2)

where R, is net radiation, G is conductive heat flux into soil, i/ and AE are tur-
bulent transport flux of sensible (enthalpy, appearing as temperature change)
and latent (evaporation of water) heat respectively with the air through the
top of the canopy. AS describes the energy storage change within the canopy
(the SI (le systeme International d’unités) unit for the individual terms is W
m™2). Short-wave radiation from the sun is the main external controlling
factor for the surface energy budget and creates a characteristic diurnal vari-
ation. Energy forms may also be transferred in reversed, which mainly hap-
pens during night when no solar radiation is coming in. The Earth’s surface



Downloaded by [University of Tasmania] at 04:25 09 January 2015

1688 J. Sommar et al.

FIGURE 2. Structure of planetary boundary layer (PBL). The surface layer (the lowest 10% of
PBL) is divided into roughness sublayer (influenced by single roughness elements) and inertial
sublayer (vertically and horizontally constant flux). For the definition of potential temperature,
0, See section “Turbulent transport in the planetary boundary layer” (Color figure available
online).

also emits thermal radiation in the long-wave range according to its tempera-
ture and absorption/emission properties. Whether it is transported mainly as
sensible or as latent heat strongly depends on the vegetation type and activ-
ity as well as on the availability of water. The Bowen-ratio (8 = H/AE 1) is,
therefore, a widely used parameter for characterizing vegetated surfaces. The
closure of the energy budget (i.e., the validity of Eq. 2) can be used to test
the quality of flux measurements if all components are determined individu-
ally. Alternatively, one unknown energy flux can be calculated as residual of

Eq. 2

ENCLOSURE METHODS

Chambers (and mass balance) methods rely on the conservation of mass and
therefore the most intuitive compared to the MM methods, which are based
on theories of turbulent transport in the atmosphere and have limitations
when meteorological conditions are unfavorable. However, chambers are
intrusive per se and modify the local meteorological conditions over the plot
studied. Eq. 3 shows the law of mass conservation:

CHg Z A FHg j (3)

The mass change (where Cp, is the Hg vapor concentration, typically in
ng m™) in a reference volume V is equal to the net inward flux through
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F

15

Ha, surft

FIGURE 3. Illustration of the mass conservation of a trace gas with concentration p. within
a reference volume V directly above the surface; Fy oy surface exchange flux, F,; fluxes
through volume boundary areas A4;. Modified from Ammann.''? (Color figure available online).

3

=
-

its boundary areas A;. The triangular brackets around Cy, signify a spatial
average over V. For an enclosure volume directly above the surface, Eq. 1
can be rearranged for the surface exchange flux Fyg, o, which is defined
upward by convention (i.e., the flux into the volume V through the bottom
area Ay, unit m?):

1 a

m
FHg,swf = FHg,O = A_O V& (CHg)v - Z Aj - FHg,z' (4)
i=1

This is depicted in Figure 3. The simplest application of Eq. 4 is represented
by the so-called static chamber method. The chamber is placed on the in-
vestigated surface and is closed against the surrounding air:

vV 9 0

Frg, surface = T <CHg)v = Denci - 3 (CHg>U 5)

In Hg research, however, flow-through (dynamic) rather than closed
(static) enclosures have been employed by numerous groups since the sem-
inal work by Schroeder et al.3? and Xiao et al.?® In general, the flow-through
dynamic flux chambers (DFCs) employed are of small size and cover a sur-
face area of <0.1 m?. The temporal derivative in Eq. 4 is, for this application,
set to zero by creating stationary conditions inside the enclosure. This is
obtained by a continuous flushing of the chamber at an appropriate rate,
replacing the air volume typically one or more times per minute.>* More
specifically, Eckley et al.®> recommended DFC turnover times of 0.3-0.8 min.
Enclosure techniques may not only be applied to bare soil, water or surfaces
with low vegetation but also to surfaces of individual plants (canopies, etc.).
The enclosures of the latter group (dynamic flux bags [DFB]) have typical
dimensions to include the canopy of a small plant or a section of a larger
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one.3*3? Concerning the application of DFC to bare soil surfaces, the investi-
gation by Gillis and Miller** showed that insertion of the chamber edges 1 cm
into the soil provided a reliable seal against air intrusion. Nevertheless, the
specific manipulation undertaken to achieve ground-chamber contact differs
between operators (e.g., Carpi and Lindberg,3* Gustin et al.,*! Rinklebe et al.,
42 Wallschlidger et al.®®), while it is in many publications vaguely described
or unaccounted for. Improper deployment of a DFC as a source of bias has
received little attention in studies concerning Hg. However, the broader liter-
ature covering enclosure studies of trace gas exchange address this matter in
more detail. ** The airflow in and out of the enclosure can be guided through
tubes, where the volume flow rate Q (typically in the unit m?® h™!) and the Hg
vapor concentrations can be easily measured, are maintained by a constant
flow rate (Q) of outside air through it. Generally air is sucked through the
chamber by a pump, but there are designs in which air is pushed through.?
Eqg. 4 is, in this case, approximated by:

~ 9

FHg,smface - A_ : (CHg,out - CHg,in - blam/e) (6)
0

where the indices in and out represent air entering and exit the enclosure
respectively. The operation of a DFC can readily be automatized by direct-
ing air to a Hg vapor analyzer using time-controlled magnetic switches in
such a way that samples for in and out air are collected sequentially.> The
blank term represents the spurious adsorption/desorption of Hg vapor at
inner walls. For DFCs, it is determined by sealing the open bottom to a
clean surface. The magnitude of the system blank (frequently reported in
the interval 0.1-0.5 ng m™2 h™)) sets a lower limit of the flux possible to
resolve by the method. In field measurements over substrates with very low
Hg content, observed fluxes are often at or below the DFC system detection
limit.*® Most enclosure studies employ mass flow controllers (MFCs in the Hg
analyzer as well as to regulate main flow) calibrated with dry air (at Ty and
Py, STP (standard temperature and pressure, 273.15 K and 100 kPa)). If this
is the case, concerning a DFC/DFB, a correction term for the density effect
of ambient air water vapor of 1.85R4TOC_HgF 0/ Po should be added to Eq.
6 following Lee?” (Rq is the ideal gas law constant for dry air, Py and T, are
the pressure and temperature at 100 kPa and 0°C, respectively, Cy is the
average ambient air Hg” mass concentration (at STP) over the flux averaging
interval and Fy»0 is the corresponding water vapor flux). Only if moisture is
removed can this correction be avoided. Analogous to all methods involving
non-synchronous gas analysis, deriving fluxes from temporarily separated
Chg,in and Cpgou sample collection are subject to significant uncertainties
under restrictive conditions, such as a high variability in ambient air Hg°
concentration. Consequently, Eckley et al.>> proposed the criteria to accept a
flux measurement only when |Cyg 0w — Crgl > |ACHg, inl, Where AC g i



Downloaded by [University of Tasmania] at 04:25 09 January 2015

Hg Exchange Between Natural Surfaces and Atmosphere 1691

represents the difference between the two Cpy i, samples surrounding a
Chigour Sample in time. Chamber materials with low blanks (i.e., after appro-
priate cleaning procedures) and high radiation transmission properties are
generally chosen, such as FEP Teflon durafilm®*% Propafilm-C3° Tedlar,3®
quartz,® Plexiglas,”>? polypropane,® and polycarbonate.> 5> Carpi et al.>®
advocated Teflon films considering the low blanks and transmission proper-
ties at shortwave radiation (UV-B (ultraviolet B, 280-315 nm)) in preference
to less expensive polycarbonate that, however, gained broad acceptance in
groups most active in this field.”>>”>® UV-B radiation has been implicated
as the wavelength band that is most significant in the soil emission pro-
cess. Graydon et al.° used intermittently film filters (for UV-A (ultraviolet A,
315400 nm) and UV-B) that draped highly transparent Propafilm-C cham-
bers to determine the importance of UV wavelengths on Hg flux.

As pointed out by Eckley et al.,*® a standard operating protocol and
design for DFCs does not exist, and as a result there is a large diversity in
methods described in the literature. The theory of flux chamber measure-
ments demands that the air moves through the chamber without a vertical
component,” and ideally in the form of a plug so that no stagnant air zones
are present. The layouts of DFC (for non-plant applications) are generally
rectangular parallelepiped (cylindrical and hemispherical designs have also
been used), where the difference in V and Q used spanned over an order of
magnitude and the resulting chamber turnover times varied by over 2-orders
of magnitude.® A general observation by many researchers is that Fyg g,y in-
creases with Q. Zhang et al.®” and Lindberg et al.®" applied a two-resistance
exchange interface model to simulate DFC measurement of the flux process
and recommended high Q (~1-2.5 m® h™!) and high V/A4, ratios not to un-
derestimate flux. Engle et al.? pointed out that low Q is acceptable when
sampling from a low Hg content substrate. Other than the different char-
acteristics of the soil substrates being measured, there are two major issues
causing uncertainties:

e Different flow rates yield different flux results for the same soil substrate.
Eckley et al.%> suggested the choice of an optimum Q coinciding with the
emergence of a regime of constant Crg our — Clhig in-

e The chamber design and the materials used for the chamber construction
affect the chamber aerodynamic behavior. In general, less attention has
been paid to facilitate a uniform air-flow over the surface investigated,
thereby eliminating zones of stagnant air.

Recently, Lin et al.% implemented a DFC of novel design for measuring Hg"
flux over soil that enabled precise control of internal shear properties by
the flow-through rate. In turn, a methodology that utilizes the measured
DFC flux to infer the flux under atmospheric conditions was proposed (see
section “Results of field measurements of Hg flux”).
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Another category of enclosures was primary developed to investigate
Hg in soil or snow gas in order to potentially estimate air-substrate Hg" flux.
Up to date, the number of studies in this field is comparatively scarce®?,
52, 0409 inyolving background and contaminated substrates. The devices,
ranging from wells and tube probes to flasks and chambers, are semistatic
or operated by actively drawing air from the substrate. In order to sample
the interstitial Hg" vapor present in pores and avoid significant dilution by
the intrusion of ambient air, the collection requires low gas-flow rates or
small gas samples. Johnson et al.%> inserting Teflon wells to two depths (~20
and ~40 cm) of contaminated soil and withdrawing 50 mL soil gas samples
with gas-tight glass syringes for Hg’ analysis. Hg" flux was calculated by
the soil profile method initially applied for CO,” with measured soil Hg
gas gradient (0C yg(g), soir/02) and soil characteristics influencing the effective
diffusion coefficient (DHgO, soil air typical unit cm? s™1) as input:

0 CHg(g), soil )

FHg = DHg", soil air * 9
The soil Hg" efflux calculated from DFC was more than one order of mag-
nitude higher than and not correlated with that obtained from the diffusion
model, indicating that the process was not diffusion-controlled. Sigler and
Lee® modified a flask sampling technique previously used for CO,”" to
sample (at ~30 mL min~!) and analyze Hg® at depth in soil. Soil gas Hg’
concentrations at ~2-cm depth were correlated with Hg® flux measured by
a DFC unit. The study of Sigler and Lee® revealed clear Hg? soil gas gra-
dients, where large changes were observed in the shallow layers (<10 cm)
underscore the importance of a fine, vertical resolution. In addition to the
application of a regular Plexiglas DFC, Wallschliger et al.>? measured Hg
(Hg" + (CH3),Hg) in contaminated floodplain soil gas by drawing air (at
1.5 L min™!) through Teflon-coated steel tubes directly into an Hg vapor
analyzer. The measured Hg concentrations were diluted by the intrusion of
ambient air due to the high flow rate and sample volume. In order to com-
pensate for this effect, an extrapolated Hg-soil gas concentration Cgg), soil
(to zero sampling volume) was obtained from consecutive samples at a spe-
cific plot depth showing a systematic concentration trend. A surface film
approach was used to semiquantitatively estimate Hg air-soil flux deriving
from laminar diffusion:

DHg“, soil air * (CHg(g),soil - CHg, otl'r)
FHg = > ®

where z (typical unit cm) is the thickness of the laminar boundary film and
finally Cpg, soir is the surface air concentration at the top of the film. In stud-
ies of Hg volatilization from heavily contaminated floodplain soils along the
river Elbe, Bohme et al.** applied a “gas suck-up chamber” to estimate the
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potential for Hg emissions of a site. More recently, Rinklebe et al.*? modified
this setup without ambient air inlet to a closed chamber equipped with an
air circulating system including a loop through Hg sampling traps during
sampling duration (1-2 hr). The chamber was fixed via a Teflon gasket to an
in-ground cylinder that prevents lateral flow of soil gas in to the sampling
plot. This method has some points in common with that of Di Francesco
et al.,”* which is restricted to heavy contaminated soil. For the sampling of
vertical profiles of gaseous Hg in snowpacks, Dommergue et al.®7% devel-
oped a tube probe device and observed elevated concentrations of Hg’ in
the firn air of a snowpack compared to those of ambient air during the an-
nual melting period in Canadian sub-Arctic. Snow-air fluxes were calculated
with a laminar diffusion approach (see Eq. 7) using the Hg" concentration
gradient in the upper 40 cm of the snowpack. For a closed chamber using
a conventional MFC to regulate air circulation, correction for air density ef-
fects should be implemented following Lee.*” This formula also applies for
corresponding micro-meteorological systems.

OPEN-PATH LASER OPTICAL SPECTROSCOPIC METHODS

Hg is the only noninert pollutant that exists in the atmosphere in atomic
form. Background mixing ratios are in the order of sub-parts per trillion
(ppt). Because the whole transition oscillator strength is aggregated in a
single line apart from isotopic shifts and hyperfine structures at ~254 nm
(resonance transition 6s'S, — 6p3P1) rather than distributed on thousands of
vibrational-rotational transitions in a molecule (e.g., HgCl,), even such low
concentrations can be assessed by long-path optical spectroscopy.’* Several
commercial Hg vapor analyzers utilizing pulsed Zeeman modulation of the
254-nm resonance transition in HgO (Z-AAS) have similar detection limit,”
in addition the interference of other species exhibiting high optical cross
section at this line with the determinations of Hg" was eliminated. Besides
laboratory-based less portable apparatus for small volume “point” measure-
ments of ambient Hg concentrations with laser powered ring-down cavity
enhanced techniques’® and 2-Photon LIF,”” more versatile mobile LIDAR sys-
tems’® 8! have been developed by the Svanberg group at Lund University of
Technology, Sweden, to study geophysical Hg? vapor emissions from area
sources (mining sites, geothermal sites, fumaroles, etc.). In optical remote
sensing measurements of fugitive emissions from Hg-cell chlor-alkali plants,
in addition to DIAL® recently also commercial systems (Opsis AB, Furulund,
Sweden) utilizing UV-DOAS have been employed.®

DIAL and DOAS measurements of Hg’ evasive flux are performed in
absorption and the Beer—Lambert law yields a simple connection between
the absorbed light fraction and the path integrated concentration profile.
After the light, with an intensity of 7, has travelled a path length L, Io(A, L)
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is reduced to I(A, L) as expressed from Eq. 9 using the Beer—Lambert law:

=L
— [ (oug.p.T) - prg(®) + exO0,0) + 2 (A, 0))dE
I L)=1I\ L) e =0 + NV ©))

where oy, (A, p, T) is the absorption cross-section (cm? atom™!) of Hg’,
which depends on the wavelength A (nm), the pressure p (hPa) and the
temperature 7' (K), pg(£) the number density (cm™3) at the position ¢ along
the light path of total length Z (cm). Light scattering by Rayleigh-extinction
and Mie-extinction are described by the ¢ and €y coefficients respectively.
N(A) is the photon noise dependent on I(A, L).

In a DIAL system housed in a vehicle, a tuneable optical parametric os-
cillator laser system that is pumped at 20 Hz by a frequency-tripled injection
seeded neodymium-yttrium-aluminum-garnet (Nd:YAG) laser and equipped
with doubling and mixing crystal units is employed as a light source.?! In
a DIAL system designed to measure sub-ppt levels of Hg", Nayuki et al.%
used the third harmonic of a tuneable dye laser with LDS 765 dye pumped
by the second harmonic of an Nd:YAG laser as the source for the emit-
ted light beam. DIAL-Hg is performed using two wavelength, one on the
6s!Sy — 6p’P; absorption line (A,, = 253.65 nm) and the other slightly
off (o). The latter is at a longer wavelength to avoid interference with
a close-lying, weak oxygen absorption line.”” An internal calibration unit
using small Hg-vapor saturated cells with known lengths and temperatures
was used to monitor and compensate for small laser wavelength and line
width changes. The outgoing laser beam is directed coaxially with a ver-
tically mounted telescope and transmitted into the atmosphere via a large
flat mirror in a retractable transmitting/receiving dome on the roof. Stepping
motors are used to turn the dome and to tilt the mirror. The LIDAR signal
was then collected time-resolved to obtain a range-resolved measurement.
By forming the ratio between the on and off signals 7(X,,,)/I(Aqp), a DIAL
curve is obtained, being flat where no Hg is present and sloping downwards
in the presence of Hg. As visualized in Figure 4, each DIAL measurement,
in a certain direction, gives the range-resolved Hg concentration along the
laser beam. Two-dimensional images of the Hg distribution in the spreading
plume can be produced by scanning the laser beam in a vertical plane. Such
a sweep gathered in 3—5 min, yielding a cross-section of the distribution of
Hg in the air mass, which in-turn is area-integrated. Several sweeps with a
horizontal reference plane are required to enclose a point or an areal well-
defined Hg source. In order to calculate a flux integrated over an area, the
surficial Hg® concentrations have to be multiplied by the wind field orthog-
onal to the corresponding plane. In Bennett et al.,® the preferences using a
Doppler LIDAR system versus anemometer measurements of the wind pro-
file is discussed. In addition, wind directions within a 20-30° sector of the
scanning beam are less favorable for the flux calculation.



Downloaded by [University of Tasmania] at 04:25 09 January 2015

Hg Exchange Between Natural Surfaces and Atmosphere 1695

FIGURE 4. A Schematic of the operation of a differential absorption LIDAR system. Depicted
is a mobile DIAL when scanning with the laser beam in a vertical plane in order to obtain a
concentration cross-section of the mercury plume. The mercury flux is estimated by area inte-
gration of the concentration and multiplication by the wind speed component perpendicular
to the cross-section surface. To contain a source with areal extension, sweeps over different
sections of horizontal reference plane are required (Color figure available online).

MICROMETEOROLOGICAL (MM) TECHNIQUES

The MM techniques for flux measurements depend on transport processes
in the atmosphere and are affected by conditions of atmospheric stability.
In this section, the driving force of turbulent transport in PBL, its relation to
atmospheric stability, and the measurement area of interest are elaborated.
This is followed by a discussion of various MM techniques that have been
applied for Hg flux measurement to date.

Turbulent Transport in the Planetary Boundary Layer

Persisting atmospheric turbulence mainly occurs near the ground because
the surface provides the principal forcing effects for turbulent motion.?® The
first driving force is shear stress in the mean horizontal air motion that is pro-
duced by friction at the surface, which depends on windspeed and surface
roughness and being associated with the mean vertical gradient in the wind-
speed profile (9i1/d2), where u (m s™!) is the horizontal wind. The second
driving force for turbulence is buoyancy effect due to air density variations
with height. It occurs mainly during daytime, when the surface, together
with the lowest air layers, is heated by solar radiation. The warmer air at the
ground is less dense than the layers above and rises to induce a turbulent
turnover. This process is called thermal turbulence production or free convec-
tion. The buoyancy of an air parcel depends not only on its temperature (7,
but also on the pressure (p) and the humidity conditions. Over land surfaces,
the influence of humidity is usually small and often ignored.®® Therefore, the
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buoyancy can be quantified by the potential temperature 6 (K) referring to
a standard pressure py = 1000 hPa: 0 = T - (py/p)**°. The mean vertical
gradient of the potential temperature (96/92) determines the static stability
of an air layer. Thermal turbulence production occurs only if the gradient
is negative (unstable stratification). A zero gradient indicates neutral and a
positive gradient stable stratification. In the latter case, with dense cold air at
the ground and warmer layers above, the negative buoyancy force dampens
or even inhibits vertical turbulent mixing.

Turbulent motions can be decomposed into a mean part & and a ran-
dom fluctuating part @'. The application requires averaging rules (Reynold’s
postulates), such as a-b=a-b+da - b that is, in-turn, the basis for Eddy
Covariance technique described below in the following section (“Footprint
(source area) of MM-techniques”) According to the MOST,¥ the statistics
of SL turbulence with respect to z (height above surface), g/T (buoyancy
parameter, vertical acceleration due to density variations), «/w’(vertical sur-
face flux of momentum; mechanical turbulence), w’7T’(vertical surface flux
of sensible heat; thermal turbulence) as dependent variables with length,
time and temperature as independent dimensions can be described by the
single dimensionless parameter z/L. The characteristic length scale L (m) is
called the Obukhov length. Here expressed with air density correction due
to water vapor content:

_Mz'T'pm'r'Cp
k-g-H

L = (10)

where u- (m s™1) is the friction velocity /T/pu, (t being the flux of momen-
tum between the atmosphere and the surface), p ;- (kg m™) is the density
of air, & is von Kiarmdan’s constant (~0.4, representing the ratio between the
effective turbulent mixing length and the distance to the surface), g (m s™2)
is the acceleration due to gravity, 7' (K) is ambient air temperature, ¢, (J kg™
K™D is the specific heat of air at constant pressure, H (W m™) is the vertical
flux of sensible heat. In neutral conditions, z/L = 0; in stable conditions, z/L
> 0; in unstable conditions, z/L < 0. Obukhov length represents the height
of an air column in which the production (Z < 0) or loss (L > 0) of turbulent
kinetic energy by buoyancy force is equal to the dynamic production of tur-
bulent kinetic energy per volume unit at any measuring height z multiplied
by z. L is thus proportional to the height of the inertial sublayer but not
identical to it.?>

Footprint (Source Area) of MM Techniques

The most direct physical approach for the measurement of turbulent trace
gas fluxes is the application of Eq. 1 for a horizontal reference plane on a
certain height (2) with a vertical wind component (w) within the constant
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flux layer. However, the irregularity of turbulent motion implies a strong
variation of the instantaneous vertical transport in time as well as in space.
Hence certain averaging procedures have to be applied in order to get useful
flux estimates. Ideally, an ensemble average should be determined:

Fitg = (02 @), = (02 - Cr@), 0 = 002 Crrg ()

spatial ~ temporal

1D
under stationary conditions, where turbulent motion over a homogeneous
surface represents an ergodic system, signifying that the ensemble average
is about equal to the respective spatial or temporal average. In MM-flux
studies, the time average is typically applied, since it allows determining a
representative flux with a sensor system fixed at one single point within
the inertial sublayer. The contribution of sources at different distances from
the sensor “footprint” is a complex function of the sensor height, surface
roughness length and canopy structure together with meteorological con-
ditions (wind speed and direction, turbulence intensity and atmospheric
stability).®® A simple rule of thumb is the concept of cumulative footprint®*°
that uses analytical solutions of the diffusion equation for near-neutral condi-
tions and averaged wind velocity (iz, m s™%). In this ideal simplified case for
low canopies, the cumulative normalized contribution to flux measurements
(CNF, %) can be expressed as:

X

CNF () = / u(z—d) o e [l g it e [t (12)
. kx?
0

where x is distance from the sensor (m), z is measurement height (m),
u~ is friction velocity (m s™1), d is displacement height (m; see section
“Aerodynamic (AER) method”), & is von Kiarman’s constant. Eq. 12 roughly
predicts 80-85% of the flux “seen” at z comes from within a distance (xp)
of 100 - z upwind, with the largest contribution occurring at a distance x,
~10 - z; in unstable conditions z/L < 0, the footprint is somewhat smaller
and in stable conditions z/L > 0, considerably larger. In most MM studies on
Hg flux, it is not specifically stated if a footprint model is utilized (e.g., for
compensating for limited fetch). If so,*-°0919* Gaussian dispersion estimates
were generally applied.?2%95% In long-term studies of Hg" flux over forest
canopies, Bash and Miller”'?” used the footprint climatology by Amiro,”
relying on observations of the stratification and the standard deviation of the
lateral wind component. Both long-term and short-term observations have
changing atmospheric conditions in the data set. Every new atmospheric
condition leads to a different footprint and there is a need for a large set
of footprint calculations. Fritsche et al.”* used the model of Kljun et al.,””
which presents a scaling procedure that provides a tool to estimate footprint
variations in time for a given measuring height and roughness length, without
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the need to re-calculate the footprint every time the atmospheric conditions
change. The model can be retrieved online.!*

Eddy Covariance (Eddy Correlation) Technique

The eddy covariance (or eddy correlation [EC]) technique estimates Hg flux
according to Eq. 11 as the integral covariance of the time series w(#) and
Crg(D) over a suitable time interval At:

, 1
F]]g = w/CHg = COV (w, Cllg) = E / U)(l')C][g dr = (13)
At

N-1
1

=~N_1 [(we — We) (Crig, k — Crig. k)]
k=0

1 N-1 1[Nz Nl
= — wpC - = w C
7t e (T )

To apply Eq. 13, the distribution of the different eddy sizes (fluctuation
periods) and their contribution to turbulent mixing must be known. The time
average interval At has to be long enough to cover the contribution of the
largest eddies while keeping the temporal resolution of the measurements
sufficiently high (typically at 10 Hz) to detect the contribution of the smallest
eddies. The choice for At is depending on stratification and measurement
height. However, using a constant averaging time of 30 min during the whole
day will not introduce significant error and is now in general recommended.?
Hence, a turbulence frequency spectrum over more than four orders of
magnitude (~0.0005-10 Hz) has to be resolved. This is accomplished by a
fast three-axis sonic open-path anemometer that determines the direction of
vertical wind velocity. Such a three-dimensional (3D) anemometer is required
as knowing all three orthogonal wind components (u, v, w) provides the
capability to align EC measurements with the mean wind streamlines, forcing
 and W to zero (planar-fit method!!). Today there is fast (>10 Hz), sensitive,
portable, and reliable equipment for measuring only a few trace gas fluxes
(with open-path, e.g., CO,, H,O, CHy, and with closed path laser system,
e.g., N,O, O3) by EC. The strict requirements for an Hg" analyzer of high
sensitivity, temporal resolution and precision combined with compactness to
make it viable for EC application have turned out be extremely challenging
to all fulfill. Although advocated by Bauer et al.””»'%? with 2-photon laser
induced fluorescence (LIF) technique, its application as an Hg sensor for
Hg’—EC flux has so far not been realized.'*® Recently, Fain et al.”® and Pierce
et al.'% reported progress towards using a cavity ring-down spectroscopic
(CRDS) sensor for a future Hg’-EC flux application.
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Relaxed Eddy Accumulation (REA) Technique

The lack of a fast response and sensitive Hg vapor sensor for the EC method
can be substituted by using fast response solenoid valves in a conditional
technique named relaxed eddy accumulation (REA). REA is a simplified
version of eddy accumulation (EA'?%). The basic idea of EA is to interpret the
vertical turbulent covariance flux (Eq. 13) as a weighted mean concentration
with the vertical windspeed (w) as weighting factor. Since w shows positive
(updrafts, 1) and negative (downdrafts, |) values, they must be separated in
order to obtain the net weighting factors:

- 1
FHg=w/cHg=N(Z ul - Cg— Y lwl-cHg) a4

w >0 w <0

Air associated with updrafts and downdrafts is sampled by a pump into
two bins at a flow rate proportional to |w|. Introducing weighted mean
concentration for each of the bins Cp, , and C, | measured at the end
of the sampling period with high resolution (but not necessarily fast re-
sponse) Hg analyzer or extracted online onto manually handled traps. Since

Dowolwl =2, _olwl= %Z;\;l w;| = % |w|, Eq. 14 can be rewritten:
F —@ c¥ - CcY ~ 0.40, (CY - Cc? (15)
Hg — > Hg, t Hg, | HPw Hg, t Hg, |

where the last term is wvalid for a Gaussian distribution
(Jw|/ow = &/2/7 = 0.798) and o, (m s represents the standard de-
viation of w. In practice, technical limitations in valve technology make EA
hard to apply. Therefore, a “relaxed” version of EA was introduced, ' where
the average concentration of updraft and downdraft air is determined with-
out a weighting by the vertical windspeed. The flow control is more easily
handled compared to EA, where the performance of proportional sample
flow control solenoids is not able to meet all requirements. Equation 14 has
also been adopted for REA and the effect of the non-proportional sampling
was expressed through an empirical factor b:

FHg:b'Uw(CHg,T_CHg,i) (16)

The b-factor is well defined with a value of 0.627 (/27 /4 for an ideal Gaus-
sian joint frequency distribution (JFD) of w and C.!” However, turbulent
transport, especially over rough surfaces, often violates the underlying as-
sumption of a linear relationship between w and €.'%® Excursions from the
linear relation occur due to non-Gaussian behavior of turbulence and result
in smaller b-factors in the parameterization.!” For many experimental data,
b was found to range from 0.54 to 0.60,''%13 which restricts the use of a
fixed factor. Therefore, most investigators determine b in situ from EC and
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REA measurements of a suitable scalar quantity x (e.g., sensible heat flux
(H) or CO; flux) according to:

w/X/

by = ——2>
T ow (0 —X0)

a7

The loss of proportional sampling in the REA technique—compared to the
original EA concept—results in an increase of the coefficient in Egs. 16 to
17 from 0.4 to approximately 0.6. Hence the concentration difference that
has to be measured is reduced by a factor of about 1.5. This effect can
be partly or fully compensated by the use of a threshold (deadband) at
w = 0 (alternatively at the mean value for vertical wind calculated from
e.g. moving average filters), where neither the up-draft nor downdraft
sampling is active. The wind-deadband is normally recursively scaled
with oy and <a-|w/oy |, where « is typically 0.5 (dynamic deadband).
In addition to diminishing the relative contribution of error from the
chemical analysis, the use of a deadband reduces the frequency of valve
switching that improves sample segregation significantly and alleviate the
potential risk of smearing of small eddies inside the sample tubing. In
addition to reducing the numerical value of b, employment of a dynamic
deadband also makes the value largely independent on the friction ve-
locity and atmospheric stability, resulting in an approximately constant
b114:

Frg = 0.420,, (CHg, (w > Uw/Z) — Cg, | (w < —aw/Z)) (18

The fast response vertical anemometry to sense upward and downward
air motions is in REA combined with fast switching of intake air to isolate
the air from the upward and downward motions. The concentration scalar
material carried in the isolated upward and downward moving air is then
accumulated into separate reservoirs or sampled from the isolated lines.
Three basic criteria need to be fulfilled:

1. Sampling must be done at constant flow rate,

Sample segregation must be at an accurate timing, and

3. Addition due to contamination or loss of the Hg form of interest (e.g., Hg’,
GOM) due to reaction-absorption during sample passage in the system
should be minimized.

o

During the past decade, REA was applied toward measuring Hg? fluxes over
soils and canopies”! 9% 97115 and measuring GOM fluxes during polar Hg
depletion events in the Arctic.''® The REA-system employed by Bash and
Miller! is a modified version of that of Cobos et al.!’> according to a sug-
gestion of Bowling et al.!'” and Nie et al.!® to eliminate negative pressure
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FIGURE 5. Schematics of the Hg’-REA system employed by Bash and Miller® (a) and by
Olofsson et al.” (b). The Bash and Miller® system is modified from that of Cobos et al.!'®> The
location of Hg zero-air injection valve introduced by Bash and Miller® is indicated. (Color
figure available online).

that builds up behind the sampling valve. In a simple sketch of Bash and
Miller®! system (left panel of Figure 5), the additional valve marked as 3b is
a zero Hg concentration air three-way valve. The twin 2L Teflon reservoir
tanks used by Cobos et al.!'® to minimize fluctuations in pressure caused
by the valve switching become obsolete in the set-up of Bash and Miller.”!
These REA-systems are of a design with one inlet and without the capability
of allowing the isolation of a wind-deadband. By using a combination of two
three-way solenoid valves, controlled by a relay driver connected to an au-
tomatized Hg vapor analyzer (e.g., Tekran 2537A, Tekran Instruments Corp.,
Toronto, Canada), one sample line is routed through the analyzer while the
other is vented out of the system through a vacuum pump, then the REA
measurement can be accomplished. The non-simultaneous (sequential) sam-
ple collection and chemical analysis leading to that the numerical strength
of updraft versus downdraft samples is separated over the averaging period
At = 30 min. Cobos et al.'”® set the b-factor to a constant b = 0.56 dur-
ing experiments while Bash and Miller”! used three months of sensible heat
flux (H) data from the experimental site to calculate b = 0.474 (R*~0.96)
according to Eq. (17).

Cobos et al.'*® studied the evolution of Hg" flux over agricultural soil
in Minnesota planted with corn, while Olofsson et al.®? investigated modi-
fied (Hg contaminated) soil substrates in western Sweden (chlor-alkali waste
repository and sewage sludge amended salix field). Both studies report di-
urnal patterns in Hg vapor fluxes correlated with solar radiation. The work
of Bash and Miller”! is oriented toward long-term Hg" REA measurements
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from a 40-m tower over a red maple (Acer rubrum) forest in Connecticut.
During the growing season, there is a trend from net dry deposition in early
summer to net evasion in the late summer and early fall before complete
senescence.”” The REA-system employed by Olofsson et al.,”> shown in the
right panel of Figure 5, used separate inlets for updraft and downdraft air
samples and in addition a valve for wind-dead band. Every 30 seconds, the
band threshold = 0.5-|w/oy | was updated using wind data from the last
5 minutes. This system is in this aspect identical to earlier reports,®> 119 120
exhibiting an approximately constant b-factor of 0.42 as repetitively derived
from momentum or sensible heat fluxes. In contrast to the setup of Bash and
Miller,”! they (Olofsson et al.) used sub-sample loops that continuously cir-
culate air to the automized Hg vapor analyzers (Tekran® 2537A) from each
of the reservoirs buffering segregated air from updrafts and downdrafts, re-
spectively. The analyzer flow rates (0.75 L min~!) were considerably smaller
than the main sampling flow rate.!?! Hence, simultaneous and synchronous
sample collection and chemical analysis for Hg” were obtained. By using two
chemical analyzers working in tandem, where one is dedicated for updraft
and the other for downdraft analysis only, the performance of the instruments
needs to be carefully investigated in order to assess errors of three types:

1. Dissimilar performance of the two Hg sampling cartridges for each instru-
ment,

2. Bias between the instruments (instruments tend to have greater relative
accuracy [precision] than absolute accuracy'??), and

3. Spurious contribution from the sampling system due to light- and/or tem-
perature induced degassing/adsorption of Hg’.

Sommar et al.!? found that a dual analyzer system was unpropitious since
it suffered from an inherent variability and drift of sensitivity of the Hg" an-
alyzers, which was unpractical to compensate by calibration measures. In
turn, they developed a system of whole-air type drawing air at high velocity
to the Hg"-REA sampling apparatus, where only a sub-stream was condi-
tionally sampled, thus allowing for the rejection of samples associated with
w-fluctuations around zero (dead-band). Conditional sampling was executed
with 10-Hz resolution by two fast-response three-way solenoid valves in par-
allel configuration connected to zero Hg" air through their normally open
ports (see Figure 0).

The relative concentration difference measured by the REA technique is
directly related to the respective flux-concentration ratio (wy) in the following
way:

G~ Gl o = o
He, 1 Hg, | Hg, amb bo’w CHg,amb

)
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FIGURE 6. Schematics of the Hg®-REA design employed by Sommar et al.!?* (Color figure
available online).

In contrast to Hg" with low w,;, GOM exhibits high dry deposition velocities
approaching those of strong acids (HNO3 or HCD with almost negligible sur-
face resistance (R.).® Given the typical variability of the b-factor and of o,
Eq. 19 predicts satisfactory prerequisite of GOM for REA measurements. In
this case, REA concentration gradients exceeding 3% should be observed that
are resolvable by annular denuder samplers.'?* In the REA-system developed
by Skov et al.''® for GOM, the accumulation devices were placed directly
as air inlets before the conditional sampling valves, as indicated in Figure 7.
Hence GOM could be sampled without first passing long tubes, valves, or
pumps. However, with such an arrangement the accumulating units expe-
rience a fluctuating airflow. The performance of the impregnated annular
denuder to matrix GOM relying on diffusive transport through a narrow
cylindrical slit. In order to accomplish diffusive transport rather than a turbu-
lent one, the flow has to be laminar. The time it takes the build up laminar
flow put an upper limit of the sampling frequency of the 3D-anemometer.
As an optimum compromise between the meteorological measurements and
chemical sample collection, Skov and co-workers'® used an eddy capture
frequency of 1 Hz and a dynamic deadband threshold of (1/a)-|w/o | (&
= 2 or 3). The estimated uncertainty in the REA flux calculation was ~50%.
Primarily, the GOM-REA set-up was designed to study the behavior and fate
of GOM produced from atmospheric surface layer Hg" by reactions involving



Downloaded by [University of Tasmania] at 04:25 09 January 2015

1704 J. Sommar et al.

wi<l/aa,

’,‘

w>1/a0, w<-1/a0))

i

.0'“1:.:...:.
:":':‘-‘.-D-:-'.-'-:-:.,..
. \ 537
& !3'0'.’-;‘05 }f§:“‘: L '
:‘;' .-"'N' W"
Z
Ao, V. ‘\"f, ’y’”f} o | g

FIGURE 7. Simplified sketch of the REA-system used by Skov et al.''* to sample GOM flux.
(Color figure available online).

reactive bromine species during polar spring. Rather unexpectedly, both dry
deposition and emission of GOM were encountered. The emissions were
attributed to chemical formation of GOM at or near the snow surface (see
Table 2).

Micrometeorological Flux-Gradient Methods

MOST may be used to relate turbulent fluxes to mean quantities (mean
profiles and gradients) that can be measured accurately enough with slow
response instruments. According to MOST, mean vertical concentration gra-
dient 3C/dz can be expressed as:

k-z
C‘*

= o (2/L) 20)

vI&
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where C* is the trace gas concentration scale (—W/ u,) and ®. are
functions valid for stable (z/L > 0) and unstable (z/L < 0) conditions,
respectively. They were found to be generally equal for scalar quantities
(gases @, potential temperature ®p), but not for momentum (P,,) in
unstable conditions. An often-used form of ®,, is 1 / J1+y (z/L), called
Dyer-Businger relations,'?>'?° where the coefficient y is determined exper-
imentally. Under unstable conditions, ®¢ ~ ®5 ~ ®2. To get an analytical
formula for the profile C(2), the differential relationship in Eq. 20 has to be
integrated over z. It is only meaningful to integrate between two heights (z;
and z») within the inertial sublayer and therefore in general only a relation-
ship for a profile difference is obtained. In the simple case of neutral stability
(z/L = 0), a logarithmic profile function is obtained:

¢t fdr o
AC=— .| —=—"—In(n/z1) D
k z k

21

The corresponding logarithmic expression for momentum flux from a height
Zo up to a height z is

u(@ —ulz) =ulx = %ln(z/z)) (22)

where z( is the height of the extrapolated logarithmic wind profile where
u(zg) = 0 as illustrated in Figure 8. This is the so-called “roughness
length/height.” The general (non-neutral) profile function contains additional
terms, which represent the deviation from the ideal logarithmic shape:

*

- c
AC = " [In(z/z) — Ve (/L) + Ve (z1/1)] (23)

where W-functions are called integrated “stability correction functions” rep-
resenting the deviation from the neutral logarithmic profile (Eq. 21). The
turbulent trace gas fluxes can be related to a measured profile difference
by solving Eq. 23 for the scaling quantity C* and inserting it into the defini-
tion of trace gas concentration scale. This results in an integral flux-profile-
relationship:

U, - R _
w/C/z—( )AC 24)
In(z/z1) — Ve (/L) + Ve (z1/L)

Utr
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FIGURE 8. Schematic profile of wind speed u(z) in the inertial and roughness sublayer
(height z*) above and within a crop canopy, with indication of the displacement height 4 and
the roughness length z,. Solid blue line = real profile; dashed red line = ideal extrapolated
near-logarithmic profile function. (Color figure available online).

where vy is called “transfer velocity” since it has the unit of m s~!. The
corresponding differential flux-profile-relationship has the form:

W:_<u*-/e-z) oC 25)

b (z/1)) 0z
[ —
K¢

where K. (m? s71) in analogy to the similar form in Fick’s law for molecular
diffusion is called ‘turbulent diffusion coefficient’ or ‘eddy diffusivity’. The
relationship between W, and ®. is:

z/L
d
Ve (2/1) = f [1—¢C(§)]?§ (26)
2y/L

Two techniques for the measurement of Hg vapor fluxes according to Eq. 20
have been employed, namely the aerodynamic (pure profile) method and
the modified Bowen ratio (scalar analogy) method. These techniques differ
in the way v,,/K, is determined and will be discussed later.

The choice of appropriate measurement heights for the gradient tech-
niques requires careful consideration. First, the measurement level should
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FIGURE 9. Schematic source areas for a single point (EC, REA) and a profile (MBR, AER)
MM measurement system (Color figure available online).

have a large vertical distance in order to obtain sufficiently large concentra-
tion differences that can be resolved accurately with the available sensors.
According to the near logarithmic profile shapes (Eq. 21) the differences
are largest near the surface and decrease quickly with height. Therefore, it
would be desirable to set the lower measurement level close to the surface.
However, all MM measurements should be made above the roughness sub-
layer height z* (see Figures 2 and 8), which depends strongly on the size,
form, and distribution of roughness elements and has for tall vegetation and
forests a thickness ~1.5—2.5 of the canopy height (h).'?” Consequently, tall
vegetation,such as forests, the lowest level in the gradient methods often has
to be set within the roughness sublayer due to limitations of tower height and
sensor resolution. Below the roughness sublayer the profile equation (Eq.
20) is not valid and has to be corrected.?® A main problem for the gradient
methods is that each measurement level has its own distinct source footprint.
As shown in Figure 9, it is smaller and closer to the tower for low profile
levels than for the higher ones. Under spatial inhomogeneous conditions,
the profile levels may sense different surface types and no meaningful flux
may result.

5.5.1. MobIFiED BOWEN-RATIO (MBR) TECHNIQUE

Modified Bowen-ratio (MBR) technique is performed under the assumption
of equality among the scalar transfer velocities (scalar analogy hypothesis):

T el e
’ _wT wly, wlieo  Fr
- Vir — - —

- = —fg 27
A0 ACm, ACco, ACh,
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MBR typically requires the measurement of the flux of some reference scalar
quantity (x) on which EC can be performed (e.g., H, CO,, AE, H,O), and the
two-height concentration gradient of that same quantity and Hg®. Turbulent
transport coefficients for the non-Hg" quantity (x) are determined from the
scalar fluxes and concentration gradients:

ACg (28)

From Eq. 28 it is obvious that the MBR application is problematic, when
the reference flux is small.'?® MBR has been employed by in measuring
Hg" fluxes over both contaminated”® and background forest soils,'?’, over
a boreal forest lake,'®* over young and mature forest canopies,'®! and over
wetland vegetation.!? In earlier works, researchers collected up to six repli-
cate manual samples from each level in Hg" gradient measurements with a
limited resolution of 1-3 hr with a precision of 1.4 4 0.3%,'*® but eventu-
ally employed an automated approach for which inlet bias were typically
<0.01 ng m™> using appropriately cleaned sampling lines and a single Hg
analyzer sampling sequentially at two heights.’?> Given the uncertainties in
the transfer velocity (v;,) determined for H,O and CO,, the probable error in
MBR Hg' gradient measurements was estimated at ~15%,'?%13 Two groups
at the Nevada Study and Tests of the Release of Mercury From Soil (STORMS)
flux intercomparison campaign (see section “Results of field measurements of
Hg flu”) also used MBR to quantify Hg fluxes over naturally enriched desert
soil. #4134 In an adjacent area (Carson River superfund site), Gustin et al.!®
utilized automatized Hg" and auxiliary MBR measurements at 2—4 heights to
estimate Hg” emissions from, for example, reprocessed mill tailings (0-150 ng
m~2 h™!). Poissant et al.'?? used a gradient setup installed on the prow of a
ship cruising coastal Lake Ontario and upper St. Lawrence River during July
1998. Using intakes at ~2.7 and ~4.2 m above water surface level, small me-
dian gradients (<0.04 ng m~3) were observed for all of the cruise sections.
Fritsche et al.”*13 employed both MBR and aerodynamic (AER) methods to
assess Hg" flux over temperate grassland along the Alps. CO, was used as a
reference species measured with EC. Vertical concentration profiles were es-
tablished by measuring at 5 heights. Tubings of equal length were connected
to a five-port solenoid switching unit and downstream a Hg vapor analyzer
(at 5 min per sample) was connected in series with a closed path infrared gas
(CO,, H,O) analyzer (at 1 Hz). Duplicate samples of Cye(2) were obtained in
the sequence z1-z4-22-25-23, where z7 and zs represent the lowest and high-
est level respectively, translating into a complete profile measurements every
50 min. A minimum resolvable gradient for Hg” was determined to 0.02 ng
m~3. Using the same instrument to determine the concentrations at all levels
removes the influence from the Hg analyzer’s systematic detection limit bias
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(typically ~0.1 ng m~2 for Tekran 2537 using 5-min sampling) on the resolv-
able gradient,'” but mentioned previously, a flux determination based on
gas sampling not overlapping in time are sensitive to fluctuating conditions
within the averaging period. For such MM-measurements, for example non-
stationarity in turbulence and intermitted concentration variations are thus of
concern. A general presentation of QC-QA (Quality Control-Quality Assur-
ance) measures for MM-systems including e.g. tests of developed turbulence
can be found elsewhere 2>80138

Considering speciated Hg (GOM and Hg-p) flux, Lindberg and Strat-
ton'?® utilized mist chamber technique to sample GOM gradients at a grass-
land and a forest site in connection with MBR technique. The mist chamber
technique has since then been found less suitable to determine GOM and has
in general been replaced by a KCl-impregnated annular quartz denuder tech-
nique.'?* Poissant et al.'* carried out synchronous gradient measurements of
GOM and Hg-p by means of automated Hg speciation systems (Tekran®) op-
erating in tandem at 1.5 and 3.0 m, respectively, as input for MBR-technique
using water vapor as a reference component to assess exchange flux over a
wetland adjacent to St. Lawrence River.

AER Method

In AER method, v, is calculated according to Eq. 24 as a function of u-
and L. Generally EC technique is used for determining #+ and L is in turn
calculated from Eq. 8. For a vegetated area, the zero-level for the wind field
is no longer the ground but within the plant foliage. Instead of the geometric
scale z, an effective aerodynamic scale 2z’ is introduced with z’(d) = 0 and
consequently z = 2’ 4+ d. The (a priori) unknown parameter  is called the
displacement height d. For low vegetation with a canopy height of », Eq. 22
is in geometric scale given by:

—d
u(2) = (u/k) In (ZZ d) (29)

0 —

where u(zy + d) = 0 and z, can be roughly determined by 2z, &~ [z + d]
— 2h/3.

Two groups at the Nevada STORMS flux campaign 1999 used the AER
method in connection with chambers*>* to measure Hg fluxes over natu-
rally enriched desert soil. The Gustin group utilized Hg vapor measurements
at four heights, air temperature and wind velocity at six heights to estimate
flux according to the Thornthwaite-Holzman’s gradient-flux equation (see
Eq. 32) vielding a fetch of ~250 m. The Edwards group choose two low
heights above the surface z; = 0.1 m and z; = 0.4 m to look at small
footprints, typically <50 m of fetch. The flux was calculated according to
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Eq. 30:

k(Crig(z1) — Crg(2))
In(z/z) — Yy (/L) + Yy (z1/L0)]

(30

FHgZ

The stability correction functions ¥ from Businger et al.!?> used in Eq. 30
have numerical forms depending on stability: ¥ = —4.7 - (z/0) for z/L
>0, ¥ =2 In((1+ x%/2) and x = /1 —15(z/L) for z/L < 0. A more
detailed account on the design and evaluation of this AER system is given
in Edwards et al.'¥” Two-, three-, and four-point profiling systems were
employed during the various field studies. They intermittently imposed a
correction factor of ~1.3 on Fyg according to Eq. 30.141 The gradient gas
sampling and measurement system was lined with Teflon (solenoid valve,
needle valve, pump, etc.). To avoid the creation of an artificial flux due
to flow distortion, the intakes were designed to decrease flow by splitting
the intakes into four inlets. The air sample was dried by Nafion bundle
(Perma Pure Inc., Toms River, NJ, USA) prior to chemical analysis. Hence, the
requirement for correction of water vapor content was avoided.*” Edwards
and co-workers reported a gradient resolution of ~0.01 ng m™ translating
into a method detection limit (MDL) of ~1.5 ng m™2h™! (u- = 0.1 m s}, 2,
= 0.15 m and z; = 0.4 m). Typically, flux was calculated with an averaging
time of 90 min. Lee et al.'*? used AER in a biannual study of Hg’ flux over
coastal saltmarsh vegetation in New England. Similar to Edwards et al.>
the use of a solenoid valve enabled two height levels sampling (here Az ~
1.9 m) by an automated Hg vapor analyzer (Tekran®). A resistance approach
including an aerodynamic resistance was used in the flux calculation:

9C 1o
Frg=—K(2 ’;’ = / dCug/ f XD (31

21

= (Crg (z) — Crig () / f e

where K (m? s™1) was determined with the EC data with correction for air sta-
bility following the functions of Businger and Dyer. The effect of sequential
compared to continuous sampling of the gradient was simulated for sensible
heat flux, whereby AER was found biased high with 6%. Mean flux bias were
estimated to 0.4 and 0.6 ng m™2 h™! for the two consecutive years based on
an averaged 1/dz/ f * dz/K(2) of 0.06 m s~ In eastern Asia, Kim et a]. 143144
performed AER measurements of Hg' flux over a vast rice paddy located on
an island proximate to the Yellow Sea. Hourly measurements at two heights
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(z1 = 1 m and z; = 5 m) were accomplished by two automatized Hg analyz-
ers (AM-2, Nippon Instruments Co., Japan) during spring of two consecutive
years. Kim’s group has also investigated fluxes over landfills'®>1%® and ur-
ban settings'®> with this technique. Kim and Kim'¥ introduced the percent
gradient concept 100 [(C 1e(z1) — Crg (Zz)) / Crg (Zl)] to readily assess if the
gradient observations exceeded the precision of their system of typically ~
2%. The Reinfelder group applied AER to study volatilization of Hg" in mar-
itime settings of New Jersey. Goodrow et al.'*® (part of the Reinfelder Group)
investigated the contribution of the land-applied stabilized dredged material
originated from New York/New Jersey harbor to local Hg emission budget
while Smith and Reinfelder'® studied Hg vapor flux from tidally exposed
salt marshes with sparse low vegetation. These authors used a modified
Thornthwaite-Holzman’s gradient-flux equation® to calculate Hg? flux:

Fiig = kity (Crig (20) — Crig (22)) [ [9w (/L) - In(22/21)] (32)

where ¢,, is a atmospheric stability correction factor accounting for the
change in curvature of the wind profile away from neutral conditions for
water vapor used as a proxy for Hg vapor. The gradient resolution re-
ported range from <0.02 to 0.09 ng m~> using a Tekran® 2537 analyzer.
The substrates investigated exhibited significant light-driven volatilization
of Hg'.

Marsik et al.’! employed gradient measurements at two heights with
an average inlet bias of 0.01 ng m™> over a mixed sawgrass/cattail marsh
in the Everglades, Florida. Van Heyst and co-workers used a similar system
to that of Edwards et al.'*® to quantify Hg’ fluxes over a snow surface in
Nunavut, Canada,'® and an agricultural field (soya bean/corn) amended
with biosolids.'>>!>* During the first half of 2008, Steen et al.'> investigated
Hg" flux over a snow-covered surface under polar night and day at a site
in the European high Arctic impacted by Hg depletion events (MDEs).!7:150
For a system similar to that of Edwards et al.,'3” Steen et al.'>® reported a
MDL of ~5 ng m~2 h~!. The measurements were biased by inconsistent Hg"
concentration profiles (z < 0.5 m) explained by a non-stationary turbulence
regime. AER and MBR methods have been compared for a full year over a
sub-alpine grassland in central Switzerland.”*'3 The time series of AER and
MBR Hg’ fluxes compared favorably in general. However, during spring and
summer AER fluxes were consistently higher, which derives from the very
small Hy,0 gradients measured. The computation of the GEM fluxes with the
AER and the MBR methods yielded random errors in the order of 43% and
14%, respectively. Nevertheless, it was suggested that the AER method yields
more reliable Hg" fluxes than the MBR method. Converse et al.'> used AER
and MBR technique to measure gaseous Hg fluxes over mixed vegetation in a
high-elevation meadow in seasonal campaigns during one year. Comparable
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fluxes were reported during spring and summer campaigns. However, when
the reference (H,O, evapotranspiration) flux for MBR was low during fall
and winter the AER method was found to be more reliable.

CONSERVATIVE TRACERS FOR NONTURBULENT CONDITIONS

The very stable boundary layer with prevalence during nighttime eludes
modeling attempts due to the limitation of existing formulations of turbu-
lence. An additional measurement method, the so-called **’Rn/Hg" method,
has recently been used for the measurement of Hg" fluxes at a grassland site
in Seebodenalp, Switzerland, and at the city center of Basel, Switzerland.?
It was used during periods with a stable nocturnal boundary layer (NBL)
and was found to be an effective method for the measurement of Hg® fluxes
in situations where the atmospheric conditions are nonturbulent, the fluxes
are small, or the surface is highly heterogeneous. One of the assumptions of
the method are that the lower NBL is reasonably well mixed so that poten-
tially different source areas for ?Rn (emitted primarily from soils) and Hg’
(emitted and exchanged by soils, plants, and anthropogenic sources such
as combustion processes) would not accumulate in different heights in the
NBL. The noble gas *?Rn is a decay product of 33U, has a relatively constant
emission rate from soils,'>® and has a half-life time of ~4 days. Accumulation
of #*Rn in the air is indicative of reduced vertical mixing in the atmospheric
boundary layer. Air concentrations of Hg" and 2*’Rn were sequentially sam-
pled with a 5-min resolution, whereby Hg" flux was calculated as the ratio of
Hg" to ?*?Rn concentration change in the NBL multiplied by the #*Rn source
strength:

- Fepy, (33)

The latter quantity (Fazp,) was measured with a small static enclosure con-
nected to a **’Rn ionization chamber. Periods with significant linear accu-
mulation of ?22Rn were used to delineate stable NBLs and to calculate Hg’
fluxes. Linear regression analysis of *’Rn concentration change over >6 h
was employed.

BULK METHODS FOR HG FLUX MEASUREMENTS OVER
WATER SURFACES

Methods for estimating air-water exchange of Hg (Hg") are generally bulk
or enclosure approaches although MM techniques have been used in a
few cases. Examples of the application of the both latter techniques for



Downloaded by [University of Tasmania] at 04:25 09 January 2015

Hg Exchange Between Natural Surfaces and Atmosphere 1713

air-water exchange studies have been given in previous sections. The bulk
methods are discussed below. The flux of a trace gas between air and water
is controlled by two main factors: the difference in concentration (ACpgo) of
the gas in air and in water and the overall gas transfer velocity (&, typically
in cm h™1):

FHg = /etotACHgo = Rior (CHgO, water — CHgO,m’r/HHgO) (34)

. /etotCHgo,m'r i _1
Hijgo 100

The right term in Eq. 34 including ACpy, is expressed as function of the
Hg" saturation level (S in %), where Hypgo is the (dimensionless) Henry’s
law coefficient for Hg®. This coefficient has recently been experimentally
determined as function of water temperature (7', K) and salinity.?>® A salting-
out effect was observed for Hg" in 1.5 M NaCl solution, where In(Hp0) =
5.28 — 1871.6/T. For pure water, the determination by Andersson et al.!>
compares favorably with that of Sanemasa.!%

In the two-film model originally proposed by Lewis and Whitman, " it is
common to express the total resistance as a sum of air and water resistances:

161

Riot = Ryater + Rair; 1/’@01 = 1/]ewater + 1/(/eairH) (35)

For a sparingly soluble gas such as Hg’, R, 4, is the dominant resistance and
ki in Eq. 34&35 can be approximated by the water-transfer velocity (Byuser)-
In the seminal work by Fitzgerald et al.'®? and Kim and Fitzgerald'®® esti-
mating Hg" flux over the equatorial Pacific, &y is calculated from Fickian
molecular diffusion of Hg (Djr40,water, cm? s71) across a stagnate surface film
(thickness z,):

Iewmer = DHgO,wmer/Zda SCHgO = V/DHgO,water (36)

Sc is the Schmidt number, which is the ratio of momentum diffusivity (kine-
matic viscosity of water, v) t0 D0, warer- The aqueous diffusion coefficient
Dpyg0,warer has not been experimentally determined and as such has to be
approximated by empirical molecular volume- or mass-based methods. Kim
and Fitzgerald'® used the Othmer-Thakar equation'®* while numerous of
later works on air-water exchange'®1% rely on the Wilke-Chang method-
ology described in Reid et al.'® Poissant et al.'*? estimated Scpg from a
linear and an exponential function for v'7% and D0 water, ' respectively,
which is similar to the approach of Costa and Liss.!”! This simplistic ap-
proach has been implemented in an early version of the GEOS-Chem global
3-D model for Hg!’? but in a later version,'” it was revised to include
the Wilke-Chang approximation. Schroeder et al.'”* applied a mass-based
approximation proposed by Liss and Slater!” for low molecular gases on
Hg’, accordingly D g0 ,water 18 inversely proportional to the molecular mass.
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Kuss et al.'”® performed molecular dynamic simulations of the diffusivity
of Hg" yielding Dyg0,warer (cm? s71) in freshwater and seawater fitted by
Arrhenius expressions of 0.01768 - exp(-2042.22/T(K)) and 0.02293 - exp(-
2136.03/T(K)), respectively. Their results fall in-between those obtained with
the volume and the mass approximations, which in-turn being significantly
higher and lower (~83 and ~78% at 20°C), respectively. Moreover, in fresh
water, the predicted Scygy was found to compare well with experimentally
derived Scco,!” in the temperature range of 10-25°C.

It is evident that the surface film model oversimplifies the gas exchange
dynamics.!”® Baeyens et al.!”” and Baeyens and Leermakers'® used a classi-
cal shear turbulence model and a wave breaking model to calculate air-sea
exchange of Hg over the North Sea and adjacent waters. Later works on Hg’-
gas exchange over (large) water surfaces using concurrent measurements of
Crgo, air and Cgo, warer normally rely on parameterizations of &uer obtained
from proxy tracers formulated in terms of wind speed at 10 m height under
neutral air boundary condition (z;¢,). Of these parameterizations, the three
most frequently used for sea surfaces are the three-segment, piecewise linear
110, relation developed by Liss and Merlivat,'®! the quadratic 4,4, function
proposed by Wanninkhof'®? and grade two polynomial u;4, function of
Nightingale et al.'®® For shallow water bodies (lakes, etc.), gas exchange
parameterizations, such as that of Wanninkhof et al.,'®* obtained empirically
from SF¢ tracer experiments over a lake are preferred. See Table 2 for the
gas exchange model used in the specific studies. The transfer velocity &,y
(270, 1s in practice calculated normalized for CO, at 20°C in either fresh-
water (Sc = 600; kggp) or in seawater (Sc = 660; kssp). The species-specific
Ruaer for Hg' is subsequently calculated (here in the case of sea water)
from:

SCH%,O

lewater(Hgo) = /6660 ( - ) (37)

660

where Scyg” is given at the appropriate temperature and if relevant recal-
culated to apply for seawater according to Wanninkhof.'®? The exponent n
in Eq. 37 is usually set at 0.5 (2/3 for the smooth segment in the model of
Liss and Merlivat'®!). A recent review has suggested that the model devel-
oped by Nightingale et al.'® best represents the simulations made for Hg
evasion.!

During the last decade, methods have been developed to obtain near
real-time analysis of Cpgo warer (dissolved gaseous Hg, DGM) in discrete
water samples, flow-through devices or in-situ the surface water. They rely
either on quantitative Hg® extraction procedures (using Hg’ free purging
gas)!®1% or by utilizing the phase partitioning equilibrium of Hg® between
air and water.'®19! The automatized DGM sampling systems developed by
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Andersson et al.””* and Kuss and Schneider™ have been operated during
extensive oceanographic cruises.'**19% The former system includes a jacketed
cylindrical extractor, which being continuously pumped by a high flow of
surface water entering at the top of the inner cylinder. A stream of pressurized
ambient air with considerably lower flow rate is dispersed as tiny bubbles
at the bottom of this water column by using a pore size PO glass frit. The
contact time obtained between the streams by the opposite flow operation
was sufficient for the gas exiting the system with respect to Hg® vapor to
attain phase equilibrium with the water. Moreover, the downstream water in
the outer cylinder acts insulating on the media in the inner one with respect to
heat transfer from surrounding air (at room temperature). The concentration
of Hg in the outgoing air (Ceq) is analyzed and used to calculate Crgo, warer
according to:

CHgO, water — Ceq/H( Tw) (38)

where Ty, is the temperature of the surface water conserved during the
extraction procedure. Using an automatized Hg vapor analyzer (Tekran®), an
analytical cycle for DGM is typically completed every 10 min. The sampling
efficiency of DGM was stated to ~99%. The latter system!**!%* employs a
static air head-space continuously sprayed with surface water in a glass bottle
equipped with a water drain during 1-h equilibrium time. Subsequently, the
drain is closed and the rising water level supply equilibrated air for Hg’
analysis without dilution or contamination by ambient air. Again, Eq. 38 is
utilized to calculate C'pgo, yarer corresponding to a time resolution of 75 min
of DGM determinations.

RESULTS OF FIELD MEASUREMENTS OF HG FLUX

There have been a substantial number of field studies of Hg fluxes over vari-
ous surface types using several different measurement methods. In Table 2, a
large selection of such investigations reported in the literature has been listed
with brief supplementary information and sorted by substrate type. The data
sets vary largely in time duration from sporadic samples during a short period
to full-seasonal studies. Further on in this section, it is appropriate to talk over
intercomparisons of field flux methods. A number of groups have made side-
by-side comparison of the flux-gradient MM techniques.”*13%157 An extensive
field intercomparison campaign (Nevada STORMS) involving four groups us-
ing both MM and DFC techniques in one cluster and three groups using DFCs
only in another was conducted during fall of 1997.1> The MM techniques
compared favorably (averaged fluxes within 15% of each other) with the ex-
ception one setup consistently recording much lower fluxes. Given the highly
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heterogeneous soil concentration in the landscape, the result has been ex-
plained largely by spatial differences in fetch.*»>* The comparison of DFCs
with various design and standard operating procedures during the same cam-
paign showed that calculated Hg fluxes using different chambers varied over
an order of magnitude.>'> The significant difference (p < 0.05) between
DFCs was partially explained by substrate heterogeneity. Rinklebe et al.*?
and Magarelli and Fostier'” deployed replicate chambers in multiple site
studies and found a general high coefficient of variability between site repli-
cates (maximum 137-250%). The spatial variability has also been assessed
by monitoring flux from two colocated polycarbonate DFC systems inter-
faced by automatized Hg analyzers and subsequently moving one system
around while having one remain stationary.'”1%® In studies of litter-covered
background soils in the eastern United States, Kuiken et al.'?’ found fluxes
observed with the non-stationary DFC in comparison were slightly more
variable and for three out of six sites the mean flux observed by the two sys-
tems exhibited statistically significant differences. The MM systems applied
during Nevada STORMS campaign measured diurnal Hg fluxes about 3 times
higher than those measured with DFCs,*! while a subsequent intercompar-
ison study involving dry and wet conditions at the site showed that fluxes
derived from a small-volume polycarbonate DFC (air turnover time 0.2 min)
were not significantly different (p < 0.05) from those derived simultaneously
and within the footprint of a MBR system.!? One of the participating groups
of Nevada STORMS had previously found that MBR and a novel designed
DFC applied over a rural grassland in southern Quebec in general were well
correlated with a slight discrepancy during night.'”? Carpi and Lindberg?®
reported agreeable Hg" fluxes derived from MBR and DFC over a sludge
amended field. In multisite study over Canada, Edwards et al.'*” achieved a
good comparison between DFC and AER methods concerning low-emitting
homogeneous substrate sites. Gillis and Miller*® pointed out that airflow rates
through the chamber and chamber exposure to ambient wind could poten-
tially account for the poor agreement between DFC flux and that derived
from MM techniques. Moreover, Wallschliger et al.*3 found a significant cor-
relation between ambient wind speed and flux despite the fact that chambers
exclude most wind. Recently, polycarbonate DFCs with aerodynamic design
to create a regular air-flow field over the flux measurement zone have been
fabricated by two groups and verified by computational fluid dynamics com-
putational simulations.®>?"! Assuredly of similar shape, the DFC design of
Lin et al.% nevertheless comparatively enables an appreciably more uniform
flow field to establish. Capitalizing on the predictable surface shear proper-
ties inside this type of DFC (with a internal height and a length of 3 cm and
30 cm, respectively), a scaling procedure using overall mass transfer coeffi-
cients to link the measured flux (Fpgc) to atmospheric surface layer flux (Fuyy)
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was introduced:

)[486+ 3.625:10" (1t /2 Diig, air) :|

Ratm Q (CHg, out — CHg, in 1+3911'107%(L‘*/Z<)DHg-:tir)2/3

IeDFC A |:4 86 + 3.633:107%(Q/ Dy, air) i|
: 1+ 1.81810-2(Q/ Dirg, air)™”
(39
where kpre (m s™1) is the overall mass transfer coefficient in DFC, Ry, (m s™1)
is the corresponding coefficient under atmospheric conditions and Dyg 4 is
the diffusion coefficient of Hg? in air (1.194 x 107> m? s™1).

Fam = Fprc

SUMMARY

Hg is the only noninert element that besides the noble gases is predomi-
nantly in the gaseous atomic form in the atmosphere. Long-path optical laser
spectroscopy can be used to detect Hg? at high frequency to levels approach-
ing the ambient sub-ppt background mixing ratios. For decades, the DIAL
technique has proven to be efficient tool for 3D mapping of atmospheric
Hg" in Hg impacted sites yielding reliable integrated flux determinations. The
DIAL technique is however too imprecise for measurements of background
diffuse areal Hg" fluxes, for which enclosure or conditional MM techniques
and additionally bulk methods for water surfaces being employed. Benefiting
from smaller and easily field deployable equipment, the standard procedure
of sampling ambient air Hg" is by enhancement collection onto collectors
containing gold in manual or automated systems. Moreover, background
monitoring of Hg” without preconcentration can be performed by Z-AAS
instruments (e.g. Lumex RA-915AM, Lumex Ltd., St. Petersburg, Russia’>2%2),
Interfacing a flux sampling system with automatized Hg gas analyzer alle-
viates the otherwise tedious and time consuming work with processing a
large number of manual traps analytically. This implementation is however
associated with a significant cost, for which the expense of the analyzer is a
few to several times that of the essential flux system (see Table 1).
Enclosures, representing the smallest scale («1 m?), are by far the most
common tools in terrestrial field research. Open flow-through DFCs are the
most frequently employed. In contrast to many other trace gases (CHy, N,O,
etc.), closed (static or dynamic) enclosures have so far received very limited
attention for Hg’. In their simplest form including manual Hg gas analysis
by traps, enclosure methods are of relatively low cost. The enclosures are
portable and permit process studies and experiments with many treatments.
However, they also suffer from several disadvantages, including their intru-
sive nature, influence on the microclimate over the plot studies (“greenhouse
effect”), isolation from outside air. Given the small footprint of enclosures
and that Hg" gas exchange fluxes over terrestrial surfaces are profoundly
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variable in space and time, replication measurements are thus preferred but
often not carried out (see section “Results of field measurements of Hg
flux”). Another issue is that no standard design and corresponding operation
procedures have been implemented for field studies with DFCs. Although
a large number of field investigations with this technique have been per-
formed, many of the various flux data sets are not readily comparable due
to divergent operating parameters.

Given the lack of a fast response ambient Hg” sensor precluding the
possibility to perform Hg"-EC flux, the MM techniques employed for mea-
suring Hg gas fluxes on large landscape scales are restricted to REA and
flux—gradient methods. EC is the micrometeorologist’s preferred technique
because it is a direct measurement at a point. There is no problem with
different footprints for different measurement heights as there can be for
flux—gradient techniques, it is not impaired by a number of the simplify-
ing assumptions as other MM approaches such as similarity between the
eddy diffusivities for different entities, and it is independent of atmospheric
stability.

REA technique substitutes fast-response solenoid valves for a fast-
response gas sensor. Air is sampled at a constant rate at a point and is
directed into “up” and “down” bins (reservoirs) depending on the direc-
tion of the vertical wind. The gas flux is calculated as the product of the
standard deviation of w and the concentration difference between the bins,
multiplied by an in situ determined or empirical coefficient. Advantages of
the method include its insensitivity to different footprints for different sen-
sor heights and stability conditions, and the ability of preconditioning the
air samples before analysis. However, the implementation of fast response
solenoid valves, if not carefully configured, can introduce severe fluctua-
tion in sampling flow that violates the fundamental requirements of the REA
measurement. Other sources of systematic error are the potential offset in w-
measurements and improper time delay between the wind speed measure-
ment and corresponding conditional sampling (execution of fast-response
valves). The applicability of MM technique in measuring background Hg’
fluxes is strongly dependent on the minimum resolvable concentration dif-
ference (gradient) that can be achieved. It is thus very important to exercise
a stringent QA/QC-protocol on the gas sampling and chemical analytical
system. For REA, when the precision of the chemical analyzer is limited, it
is viable to increase the concentration difference between the updraft and
downdraft bins by disposal of air in a wind deadband G.e., for w < |wg)).

In flux—gradient approaches, fluxes are calculated as the product of the
eddy diffusivity and the vertical concentration gradient of Hg® or transfer
velocity and the difference in Hg® concentration between two heights (AER
method), or in the case of MBR-method as the product of a tracer flux
(typically that of heat, water vapor or CO, measured with EC) and the
ratio of concentration differences of tracer and Hg" between two heights
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measured simultaneously. In the AER method, the eddy diffusivity/transfer
velocity can be inferred from turbulence measurements made with a fast
response 3D anemometer. Corrections are needed to account for the effects
of atmospheric stability.

Precautions are ordered in applying flux—gradient techniques over
(high) canopies. In principle, measurements need to be conducted above
the roughness sublayer height. However, given small gradients in this zone
and limitations of tower height, often at least the lowest level has to be set
within the roughness sublayer to satisfy a limited chemical sensor precision.
In addition, the application of AER technique requires knowledge of d and
2o, which is not the case for MBR. On the other hand, in periods where the
tracer flux is small, AER tends to be more reliable than the MBR-technique.
Flux—gradient systems for Hg” normally employ interchange gear to mea-
sure concentrations at different heights with the same instrument resulting
in non-synchronous concentration measurements. However, the resolvable
concentration gradient obtained by employing two instruments operating in
tandem is often insufficient because the individual instrumental (squared)
errors are added in the calculation.

In contrast to enclosure techniques, the MM techniques allow spatially
averaged measurements over a large area without disturbing ambient condi-
tions and may serve as independent tests of process-based models, but are
in-turn technically more demanding and require detailed knowledge of the
prevailing micrometeorological conditions and the source area (see Table 1).
The personal expense for technical maintenance and support of a MM sys-
tem is likely to be higher. In general, enclosures can detect fluxes that are
smaller than the lower limit for MM techniques. Moreover, the flux measured
with a MM system will be the same as that at the bulk surface only if the
flux is constant with height. Changes of fluxes with height are expected to
be of consideration when obstructions exist in the upwind fetch, the surface
has non-uniform vegetation or roughness or if adjacent strong point sources
are present. Therefore, a MM sampling site must be chosen with care, still
often compromises are necessary in the measurements such as excluding
wind sectors and unfavorable meteorological conditions (inclusive of pre-
cipitation events during which the essential wind anemometer may exhibit
frequent malfunction). Obviously, MM techniques are best suited for estimat-
ing terrestrial net ecosystem Hg gas exchange as the measured flux includes
the contribution from the all present various surface (vegetation, soil, etc.)
processes. Given the biomes complexity, however, a broad seasonal record
of data is preferred to temporarily limited studies. As only dry deposition
can be measured by MM techniques, co-located sampling of wet deposition
is required to provide complementary information about inputs in order to
judge if an ecosystem acts as a sink or as a source of Hg. Contrary to enclo-
sures, there are thus site conditions and logistical considerations for which
MM techniques are not appropriate. Enclosure techniques have their main
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niche to gauge fluxes over defined surfaces or at spatial scales below the res-
olution possible with MM techniques. Nevertheless, by combining data from
appropriate sampling allocations, enclosure measurements can potentially
be used to estimate net Hg gas exchange over a large area.

Hg" is ubiquitous in the surface waters of the oceans and of fresh
water systems in concentrations exceeding those expected as if it were in
equilibrium with the atmosphere. In water, enclosures can only be used
during relatively calm conditions, which make direct surveys of the influence
of wind and waves on the Hg’ gas exchange less viable. This is particularly of
concern for the application for seawater surface, where the transfer of gases
between water and atmosphere is largely governed by events associated with
high wind speed and breaking waves. For larger water bodies, bulk methods
have been widely applied. They generally combine measurements of Hg? in
air and surface water with gas transfer-wind speed relationships obtained
for studies of proxy tracers. A significant source of uncertainty stems from
the aqueous diffusion coefficient of Hg?, which has not been experimentally
determined. The methods used in the literature for estimation produce largely
divergent results. In recent years, progress has been made to measure Hg’ in
surface water with automated techniques to better match the time-resolution
permissible by using on-line instrument for monitoring Hg® in ambient air.
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