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Abstract: Mercury (Hg) deposited from emissions or from local contamination, can have serious health effects on humans and wildlife.
Traditionally, Hg has been seen as a threat to aquatic wildlife, because of its conversion in suboxic conditions into bioavailable
methylmercury (MeHg), but it can also threaten contaminated terrestrial ecosystems. In Asia, rice paddies in particular may be sensitive
ecosystems. Earthworms are soil-dwelling organisms that have been used as indicators of Hg bioavailability; however, the MeHg
concentrations they accumulate in rice paddy environments are not well known. Earthworm and soil samples were collected from rice
paddies at progressive distances from abandoned mercury mines in Guizhou, China, and at control sites without a history of Hg mining.
Total Hg (THg) and MeHg concentrations declined in soil and earthworms as distance increased from the mines, but the percentage of
THg that wasMeHg, and the bioaccumulation factors in earthworms, increased over this gradient. This escalation in methylation and the
incursion of MeHg into earthworms may be influenced by more acidic soil conditions and higher organic content further from the mines.
In areas where the source of Hg is deposition, especially in water-logged and acidic rice paddy soil, earthworms may biomagnify MeHg
more than was previously reported. It is emphasized that rice paddy environments affected by acidifying deposition may be widely
dispersed throughout Asia. Environ Toxicol Chem 2017;36:1202–1210. # 2016 SETAC
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INTRODUCTION

Mercury (Hg) is toxic to humans and animals, even at low
concentrations [1–3]. Mercury is released through natural and
anthropogenic processes [4], with anthropogenically released
Hg having a global distribution. Emissions from fossil-fuel
combustion travel long distances in air, and Hg also can be
locally distributed through contamination of water by industrial
processes [5,6]. In aquatic ecosystems, inorganic forms of Hg
will change into methylmercury (MeHg), by the methylating
activity of some microorganisms [7]. Methylmercury is more
readily accumulated by biological processes and is more toxic
than inorganic Hg, affecting neurological, physiological, and
reproductive processes [2,3]. Mercury bioaccumulation through
food webs has traditionally been perceived as a problem for
aquatic piscivores [3]. However, recent evidence demonstrates
that species at the top of terrestrial food chains can also be
affected, especially in contaminated areas [8–10].

The recent rapid industrialization of China has led it to be 1
of the largest Hg emitters in the world [6,11]. The burning of
fossil fuels is the largest source of emissions in the country, and

has a strong impact on the regional level of atmospheric Hg [12].
At the same time, mining and industrial processes can also lead
to high levels of Hg at more local scales [13,14]. In the latter
case, contamination in some areas—such as the Wanshan
Mercury Mine District in the province of Guizhou, China—can
be quite high, with levels of Hg far above the national limits for
environmental quality [15]. Apart from high levels of Hg, Asia
may be different from other regions of the world because of
differences in the ways that Hg flows through ecosystems. For
example, in some parts of China, human exposure comes more
from the ingestion of rice than from fish [16], because rice is
grown in wet, seasonally flooded soils that facilitate methyl-
ation [17]. Some research has shown that animals in rice paddy
environments, such as fish and aquatic invertebrates, may
accumulate Hg [18,19], but this topic has not yet been well
studied in the main rice-growing region of Asia.

Earthworms play an important role in the decomposition of
organic matter, the mixing of soil layers, and nutrient cycling,
and therefore provide crucial ecosystem services, as well as
being good indicators of ecosystem health [20]. Earthworms are
consumed by a variety of animals, especially vertebrates such as
reptiles, birds, and mammals [21–23], and thus may serve as a
vector for Hg transfer upward in the food web. Because of their
direct contact with the soil, earthworms are good research
organisms to understand how soil properties affect Hg
methylation and thus Hg bioavailability to animals. For
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example, research has shown that soil characteristics such as
low pH and high organic matter content can lead to high
methylation [7,24,25]. Earthworms offer a good model to ask
whether such properties influence methylation in rice-paddy
soils, which can be both acidic and organic matter-rich, and how
this process varies between contaminated sites, and those in
which the source of Hg is deposition. We know that earthworms
accumulate MeHg already in the soil, and in addition, recent
research has suggested that further methylationmay occur in the
earthworm alimentary canal [26,27], potentially making them
even more important in understanding Hg bioaccumulation.

We measured concentrations of total mercury (THg) and
MeHg in earthworms at progressive distances away from
abandoned Hg mines in the Wanshan Mercury Mining District
as well as in another region of Guizhou Province, China without
a history of mining. The present study describes the pattern of
Hg and MeHg across distances and in locations with different
soil properties, examines what percentage of Hg in earthworms
is methylated, and quantifies bioaccumulation factors. The
objectivewas to determinewhether earthworms are important to
the bioaccumulation of Hg in terrestrial, rice-based ecosystems.

MATERIALS AND METHODS

Site selection, sample collection, and preparation

All sampling was done in accordance with agreements
between the Institute of Geochemistry, Chinese Academy of
Sciences, and the districts of Wanshan and Leishan, Guizhou
Province, and followed the laws and regulations of the People’s
Republic of China. In the Wanshan Mercury Mine District, we
worked at 3 river catchments (the Xia Xi, Gao Louping, and Ao
Zhai rivers), which have large Hg tailings, now covered by
concrete (Figure 1). For each catchment, we selected 3 distances
from the tailing (0–1 km, 2–3 km, and 7–8 km). We selected the
0-km to 1-km distance to be as close as possible to the mines,
and the 7-km to 8-km distance because it is thought that the
water in rivers of these areas is safe for human consumption at a
distance of 8 km from the tailings [28]. Because contamination
in the area likely decreases exponentially away from the mines,
we selected 2 km to 3 km as the intermediate or medium
distance [28]. At each distance, 3 sampling sites were
established, 1 per river catchment. Each site constituted 4
10-m� 10-m plots, at least 100m from each other and within a
paddy field that was less than 500m from the catchment river.

Samplingwas also conducted in a control region, the Leishan
District of Guizhou, approximately 200 km from Wanshan,
where there is no history of Hg mining. Here we selected 3 sites
on separate rivers of approximately the same size as those in
Wanshan. Two of these 3 sites were 500m from each other, both
upstream of a confluence of the rivers on which they were
located. They were 5 km from the other site (Figure 1).

Sample collection was the same for all plots (Wanshan and
control). In each plot, 15 to 20 adult (i.e., clitellate) earthworms
were collected within 10 cm of the surface, with earthworms
being between 9 cm and 11 cm in length. Representative
samples of all earthworms were put into a 4% formaldehyde
solution for later species identification [29]. For identification, a
Nikon SMZ800 anatomical lens was used to observe both
external characteristics (body length, body width, segmentation,
pigmentation, first dorsal pore, setae, prostomium, male pore,
and spermathecal pore) and internal structures (gizzard, septa,
spermathecae, testis-sacs, seminal vesicles, prostate gland,
accessory gland, and internal ceca) [29]. From their pigmenta-
tion (heavily pigmented on the dorsal surface and lightly

pigmented ventrally), we believe the majority of earthworms in
this area were endogeic, living in the upper layers of the soil,
consuming mineral soil with a preference for material rich in
organic matter, and rarely coming to the surface [30]. These
species have also been classified as endogenic in some previous
research [31–33].

Earthworms were brought back to the laboratory in soil.
They were washed 8 times with deionized water, and then
depurated over wet filter papers for 48 h to purge their gut
contents [34]. The earthworms were washed again a further 8
times, placed in separate polythene bags (1 earthworm to a bag),
and placed in a freezer. Later the whole earthworm samples
were freeze-dried (EYELA model FDU-1100) and then ground
into homogenous powder using an agate mortar and pestle that
was cleaned between samples. All samples were then again
preserved in sealed polythene bags.

For soil sampling, each plot was further divided into 10
replicate 1-m2 subplots. Twelve samples of approximately 50 g
of soil from the 0-cm to 20-cm soil depth were collected from
within each subplot using a corer. The 12 samples from each
subplot were then mixed into a single composite soil sample;
there were 10 soil composite samples per plot. All soil samples
were stored in sealed polythene bags, placed in a cooler, and
then carried to the laboratory within 24 h. When collecting,
storing, and transporting the soil samples, we followed the
procedure recommended by US Environmental Protection
Agency (USEPA) method 1630 [34]. In the laboratory, all
soil samples were freeze-dried, ground in a ceramic disc mill,
and sieved to 150mesh [35]. During the grinding process for
both earthworms and soil, precautions were taken to avoid any
cross-contamination.

Fifteen earthworm samples (randomly selected from the
15–20 per subplot) and 10 soil samples were analyzed per plot
for THg, and 5 earthworm samples and 5 soil samples for MeHg
(with the specific samples randomly chosen). Results are
expressed on a dry weight basis. The 10 soil samples per plot
were also analyzed for soil physical–chemical properties.

Laboratory analytical methods

To determine THg concentrations, 0.2 g of the dry soil
sample was digested in a water bath (95 8C) for 5min, using a
fresh mixture of concentrated HCl and HNO3 (3:1,v/v), then
BrCl was added, and themixture was heated to 95 8C for another
30min [15,36]. A subsample of ground earthworm (0.3–1 g)
was digested using 10mL HNO3/H2SO4 (8:2, v/v) heated to
95 8C using a water bath for 3 h [37–39]. The Hg concentration
in all digested solutions was determined using BrCl oxidation
and SnCl2 reduction, coupled with cold-vapor atomic absorp-
tion spectrometry, using a F732-S spectrophotometer (Shanghai
Huaguang Machinery and Instrument) [15,40].

To determine the concentration of MeHg in soil samples,
0.5 g to 1.0 g of dry soil was weighed into 50-mL centrifuge
tubes and leached in 1.5mL 2M copper sulfate, 7.5mL 25%
HNO3, and 10mLCH2Cl2 [41]. TheMeHg concentration in soil
extracts was quantified using cold vapor atomic fluorescence
spectroscopy (CVAFS), following USEPA method 1630 [34],
which requires a progressive sequence of distillation, addition
of 2M acetate buffer, ethylation with 1% sodium tetraethylbo-
rate, purge and trap of MeHg onto Tenax traps, thermal
desorption, separation by gas chromatography, and detection by
CVAFS (Brooks Rand Model III). The determination of MeHg
concentrations in earthworms followed the same methodology
as described above, after extraction using a potassium
hydroxide methanol/solvent [42,43]. The pH of soil samples
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was quantified using an electrodewith a solid:water ratio of 1:2.5.
A 5-mg sample was measured for the percentage of organic
matter, using potassium dichromate (K2Cr2O7) oxidation
coupled with volumetric analysis [36,44]. The dichlorometh-
ane (CH2Cl2) was high-performance liquid chromatography/
American Chemical Society quality (99.9% purity), and all other

reagents were ultra pure quality (>95% purity), purchased from
Shanghai Chemicals.

Quality assurance and quality control considerations

Quality control measures consisted of method blanks, field
blanks, triplicates, matrix spikes, and parallel analysis of several

Figure 1. The present study sites in Guizhou Province, China, with sites of varying distance to abandoned mines inWanshan district (upper inset), and control sites in
Leishan district (lower inset). The scale bar in the insets is 6 km;white dots inGuizhouon the largermap arenot to scale.We sampled 3 distance categories,with 3 sites at
each distance (close, 0–1km to the mines [XX1, AZ1, GL1]; middle, 2–3km to the mines [XX2, AZ2, GL2]; far, 7–8km to the mines [XX3, AZ3, GL3]) as well as
Leishan (LS1–3),which is approximately 200kmaway fromWanshan.At each site, 4 plotswere laid in rice paddy soil, spaced at least 200m fromeach other andwithin
500m of the river. Abbreviations of river catchments in Wanshan: XX¼Xia Xi river, AZ¼Ao Zhai, GL¼Gao Louping; LS¼Leishan control sites.
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certified reference materials and blind duplicates, as described
in the Supplemental Data, Table S1. For THg, the method
detection limit (3� standard deviation of the blank) was
0.01mg/kg. Each sample was determined 3 times, and we
calculated the mean concentration. The method was validated
using reference materials TORT-2 (National Research Council
of Canada) and GBW07405 (China Standard Material Research
Center, Beijing, China). Determined THg concentrations were
in good agreement with the certified values, as described in the
Supplemental Data, Table S1. Recoveries on matrix spikes of
THg in soil and earthworm samples ranged from 96% to 113%
and 98% to 103%, respectively.

For MeHg, the method detection limit was 0.05 ng/g. The
method was validated using reference materials TORT-2 and
ERMCC580 (Institute for Reference Materials and Measure-
ments, Belgium). Determined MeHg concentrations were in
good agreement with the certified values, as described in the
Supplemental Data, Table S1. Recoveries on matrix spikes of
MeHg in soil and earthworm samples ranged from of 94% to
118% and 97% to 109%, respectively. Careful attention was
paid to the blank controls, and blanks were introduced in each
digestion to ensure the purity of chemicals used.

Statistical analyses

The bioaccumulation factor (BAF) for earthworms was
calculated as the concentration of THg or MeHg in earthworms
(mg/kg) divided by the concentration in soil (mg/kg) for a plot.
The BAF values for THg and MeHg were calculated separately.
Because we are only analyzing 1 taxon in the present study
(earthworms, as opposed to multiple taxa at different trophic

levels), this bioaccumulation factor is equivalent to a bioconcen-
tration factor.

For statistical analyses, we used mixed linear models, with
plot and river catchment as random factors, and distance (close,
middle, far, and very far, the last being the control site) as the
fixed factor. Although the river catchments in Leishan were
different from those in Wanshan, they were randomly assigned
to be similar to Wanshan, to run the mixed models (we
confirmed that different assignments made very little difference
to the results). Variables were log-transformed when appropri-
ate to better fit parametric assumptions. Mixed model analysis
was conducted with the lme4 mixed modeling program [45] and
the multcomp program for multiple comparisons [46] in R Ver
3.1. To understand relationships between soil characteristics
(organic matter %, pH) and the percentage of THg that was
methylated in earthworms, we performed simple linear
regressions, using arcsine transformations when appropriate.
We also developed multiple regression models, including soil
concentrations of THg as well as soil properties, to explain the
percentage of Hgmethylated in earthworms. Regression models
were simplified by removing interactions when they were not
significant. Results in which p values were < 0.05 were
considered significant.

RESULTS

There was a sharp decline in soil THg concentration with
increasing distance from the mines (Figure 2A and see
Supplemental Data, Table S2 for a full summary of the data).
The THg concentration for all Wanshan sampling sites at all
distances from the mine was above the Chinese National

Figure 2. Total mercury (THg) levels for (A) soil and (B) earthworms, andmethyl mercury (MeHg) levels for (C) soil and (D) earthworms, at different distances
from abandonedmercurymines (see Figure 1 for site locations: close, 0–1 km to themines, sites X1, AZ1, andGL1;middle, 2–3 km, sites X2, AZ2, andGL2; far,
7–8 km, sites XX3, AZ3, and GL3; Leishan control sites LS1–3). Wanshan samples were from the Xia Xi (black bars), Ao Zhai (dark gray bars), and Gao
Louping (light gray bars) rivers. Data are expressed as mean� standard error. For THg, each site represents 40 data points (10 from each of the 4 plots); for
MeHg, there are 20 data points (5 from each of the 4 plots).

Total Hg and MeHg in earthworms Environ Toxicol Chem 36, 2017 1205



Standards maximum allowable concentration of Hg in soil for
agricultural or residential use (1.5mg/kg) [15]. The THg
concentration in soil for each of the 4 distance categories was
significantly different from the other categories (z values
> 12.3, p< 0.0001). Soil THg levels at the farthest distances in
Wanshan were still 29 times the background levels at the
Leishan control sites, and particularly high contamination was
recorded for the Xia Xi River catchment ofWanshan (Figure 2).

The species of earthworms identified in the paddy soils
were similar at all sites (Drawida japonica japonica,Metaphire
californica, and Amyntha spp; Table 1), and the THg
concentration of these earthworms was correlated with the
soil concentration of THg (r2¼ 0.96, p< 0.0001). At Wanshan,
the concentration of THg in earthworms was approximately half
that of soil (mean BAF¼ 0.55; Figure 2B). However, the BAF
for THg was almost twice as high in the Leishan control sites
(mean 1.06 in Leishan; z values for comparison between
Leishan and other 3 distance categories in Wanshan were> 3.5,
p< 0.001; Figure 3A).

The MeHg concentration in soil and earthworms also
decreased with increasing distance from the mines
(Figure 2C and D). Differences between the Leishan control
sites and the 3Wanshan distance categories for soil MeHg were
significant (all z values > 2.8, p< 0.030). However, the
concentration of MeHg for earthworms from the Wanshan
site most distant from the mines was not significantly different
compared with the Leishan control sites (z¼ 1.72, p¼ 0.31; all
other z values > 3.6, p< 0.002).

The results indicate that the concentration of THg decreased
with distance from the mines more dramatically (i.e., with a
higher level of statistical significance) than the concentration of
MeHg. This can be explained by an increasing proportion of soil
THg present as MeHg (as a percentage) when further from the
mines, and greatest for the control sites (for soil, z values for
comparison in methylation percentage between Leishan and the
other 3 distance categories in Wanshan were > 3.0, p< 0.014;
Figure 3C; for earthworms, z values for comparison between
Leishan and other 3 distance categories were > 16.9,
p< 0.0001; Figure 3D).

The MeHg concentration in earthworms was related to the
concentration ofMeHg in soil (r2¼ 0.63, p< 0.0001), but not as
closely as to the concentration of THg in soil. Similar to that for
THg, the earthworm BAF for MeHg was higher in Leishan than
Wanshan (z values for comparison between Leishan and other 3
distance categories were > 3.5, p< 0.003).

There were also differences between the physical–chemical
properties of the soil in Leishan control and Wanshan sites.
Soil pH at Leishan was lower than at the Wanshan sites (the

extreme alkaline values of Wanshan are because of mercury
tailings; z values for comparison between Leishan and other 3
distance categories were > 8.6, p< 0.001). Soil organic matter
was greater at Leishan relative to Wanshan (z values for
comparison between Leishan and other 3 distance categories
were > 3.2, p< 0.007). These 2 soil properties were correlated
with the percentage of Hg that was methylated (Figure 4).
Including data at all sites, increased methylation was
significantly related to decreased pH (Figure 4A; p< 0.0001,
r2¼ 0.60), and increased organicmatter (Figure 4B; p< 0.0002,
r2¼ 0.26). The multivariate model (r2¼ 0.64) showed that pH
had a strong influence on the percentage MeHg in earthworm
tissues (t¼ –5.34, p< 0.0001), and organic matter a marginal 1
(t¼ 1.74, p¼ 0.089), without an influence of soil THg
concentrations (t¼ 0.39, p¼ 0.70).

Because the differences between the Leishan and Wanshan
sites were so dramatic (and these sites are very far apart), we
further investigated whether the correlations between increased
methylation and pH and organic matter would hold just for the
Wanshan data. The relationship between increased methylation
and organic matter continued to be highly significant when
only the Wanshan data were used (p< 0.004, r2¼ 0.23). The
relationship between increased methylation and pH tended
to be significant in Wanshan (p¼ 0.063, r2¼ 0.10). The
multivariate model (r2¼ 0.34) demonstrated that organic matter
was the most important predictor of the percentage methylation
of earthworms within Wanshan (t¼ 2.60, p¼ 0.014), and
neither pH (t¼ –1.35, p¼ 0.19) nor THg (t¼ –1.15, p¼ 0.26)
were strongly influential.

DISCUSSION

We show 2 major patterns in the distribution of Hg within
soil and earthworms in rice paddies of Guizhou Province, China.
First, THg and MeHg concentrations decrease with increasing
distance away from the mercury mines (Figure 2), as would be
expected. Our results show high Hg concentrations even at 7 km
to 8 km from themines, where drinkingwater is considered to be
safe [28]. The Xia Xi rivershed was particularly contaminated,
and this information may be useful in the re-evaluation of this
contaminated area. Second, the percentage of Hg that is
methylated, and the earthworm BAF values for THg and
especially for MeHg, are higher with increasing distance from
the mines, and are particularly high in the control region
(Figure 3). We propose below that this pattern of higher
methylation and higher intrusion of Hg into organisms and food
websmay be related to differences in soil conditions. The acidic,
high-organic matter soils of the control region are commonly
found throughout rice paddy fields in Asia [17,47], and hence
earthworms may be playing more important roles in the
amplification of Hg in the food web than previously recognized.

A comparison of the percentage of methylation and BAF
values of the present study with other recent earthworm Hg
studies [48–51] shows that levels found in the present study are
relatively high, especially for the sites at greater distances from
themines inWanshan and in Leishan (Table 2 and Figure 4).We
propose that the described methylation and BAF patterns may
be influenced by differences between the soil conditions at
different distances from the mines, and particularly pH and
organic matter. As to pH, the sites closest to the Hg mines have
very high pH values because of the contamination of the
limestone tailings (for the most part, Guizhou soils are naturally
acidic [52]). High pH values are known to limit the methylation
process [7,24,53,54]. However, we need to acknowledge that

Table 1. The species composition of earthworms at the sampling sitesa

Species
Close

(0–1 km)
Middle
(2–3)

Far
(7–8) Control

Drawida japonica
japonica

3/3 2/3 3/3 3/3

Metaphire californica 3/3 3/3 3/3 3/3
Amynthas - species 1 3/3 3/3 2/3 2/3
Amynthas - species 2 3/3 3/3 3/3 2/3
Amynthas - species 3 1/3 2/3 3/3 1/3
Amynthas - species 4 1/3 2/3 1/3 1/3

aThe number of sites in which the earthworm species was found is shown for
each distance category out of the 3 sites sampled. TheAmynthus earthworms
are part of a species complex, for which there may be several undescribed
species.
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our analyses showing that pH is strongly correlated with MeHg
are driven by very low pH readings from the control site, much
lower than those in Wanshan. Further research should be
conducted in sites that have pH values ranging from 4 to 6
throughout Guizhou Province to confirm the relationship of pH
to the percentage of Hg that is methylated in earthworm tissues.

Low concentrations of organicmatter have also been reported
to limit methylation [7,17,24,36], and organic matter may be
related to pH, because high pH values like those inWanshanmay
limit plant growth [7,55–58]. Indeed, organic matter was the
strongest predictor of the percentage of MeHg in earthworms
within the contaminated area, although it should be noted that our
model explainedall but 34%of thevariation in thedata.Other soil
properties, such as texture, or redox conditions, may also be
important factors. Furthermore, earthwormsmay varywithin and
between species in their capacity to methylate inorganic Hg in
their digestive systems [26,27], and these differences may be
producing the high levels of variation that were observed
(although we note that the earthworm communities were similar
at different sites). The present study is unable to answer questions
about in vivo methylation processes in earthworms, and this
issue should be a priority research direction in the future.

In contrast to the mine-contaminated soils, rice-paddy
environments in which atmospheric deposition is the main
source for Hg, like our control sites, may have higher rates of
methylation. A number of studies have found that Hg derived
from deposition is more easily methylated [24,59–61]. Several
features of rice paddies make them conducive sites for
methylation, including flooded conditions, anoxic soils, and
high primary productivity, which leads to high amounts of
organic matter [17,58]. Rice paddy cultivation in this part of
China involves rice straw amendment, whereby the stems and

Figure 3. Bioaccumulation factors (BAF¼ concentration in earthworms/concentration in soil) for (A) totalmercury (THg) and (B)methylmercury (MeHg), and the
amount ofMeHg expressed as%of THg in (C) soil and (D) earthworms, at different distances from abandonedmercurymines (see Figure 1 for site locations: close,
0–1 km to the mines, sites X1, AZ1, and GL1; middle, 2–3 km, sites X2, AZ2, and GL2; far, 7–8 km, sites XX3, AZ3, and GL3; Leishan control sites LS1–3).
Wanshan sampleswere from theXiaXi (black bars),AoZhai (darkgray bars), andGaoLouping (light graybars) rivers.Data are expressed asmean� standard error.
Each site was represent by 40 data points, 10 from each of the 4 plots, for THg and 20 data points, 5 from each of the 4 plots, for MeHg.

Figure 4. The relationship between the % of methylmercury (MeHg) in
earthworms and (A) pH and (B) organic matter (OM), with data points
corresponding to their distance category (see Figure 1 for site locations:
close, 0–1 km to the abandoned mines, sites X1, AZ1, and GL1; middle,
2–3 km, sites XX2, AZ2, and GL2; far, 7–8 km, sites XX3, AZ3, and GL3;
Leishan control sites LS1–3). Each data point represents a study plot, and its
values were calculated from a mean of 10 THg or 5 MeHg data points, and
10 soil measurements.

Total Hg and MeHg in earthworms Environ Toxicol Chem 36, 2017 1207



roots from the older plants are allowed to decay into the soil;
such practices ensure high organic content and may also acidify
soils [25].

These soil conditions in rice paddies may make the
earthworms important biomagnifiers of MeHg. As mentioned
above, besides simply accumulating MeHg through the
assimilation of methylated species from soils, earthworms
are capable of methylating Hg in their own digestive
systems [26,27]. Acidic soils in particular may allow earthworm
lipids to bind and accumulate Hg [48]. Some species of
earthworms may live up to 8 yr, and such a long lifespan can
allow them to accumulate Hg [62]. Indeed, compared with other
invertebrates at low trophic levels, earthworms may have
relatively high Hg accumulation. For example, at sites close to
the mines in the present study, earthworms averaged nearly
twice the MeHg concentrations (0.44mg/kg) of grasshoppers
(Oxya sp., 0.22mg/kg; a significant difference, Welch’s t test,
t72.7¼ 7.33, p< 0.0001; K.S. Abeysinghe, unpublished data).
Earthworms are in turn consumed by a wide variety of animals,
especially vertebrates, that biomagnify Hg further [21–23].
Indeed, the hog badger (Arctonyx collaris) is a mammal in our
region that feeds predominantly on earthworms [63], and many
Turdidae bird family species common to the region consume
earthworms as a large proportion of their diet (E. Goodale,
personal observation).

CONCLUSIONS

We have shown that the percentage of Hg that is methylated
in earthworms and their BAF values were relatively high in rice-
paddy soils, compared with studies in other environments.
These rates were particularly elevated in control areas where
soil conditions were acidic and soils had high organic matter
content. The origin of Hg ismainly from atmospheric deposition
in these control areas, and, given the deposition patterns of Hg
in China [64,65], the MeHg concentrations we report for the
control site might be representative of concentrations found
over wide regions of China, as well as other parts of Asia.
Emissions from industrial activities also acidify environ-
ments [47,66], and acidification is particularly problematic in
China, where the use of nitrogen fertilizer is very high [67]. Our
data add to the evidence that Hg can flow through earthworms
into rice-based ecosystems [18], and further research should
focus on these ecosystems as part of international efforts to
control the emissions and mitigate the adverse effects of Hg.
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