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The Tumen molybdenite–fluorite vein system is hosted by carbonate rocks of the Neoproterozoic Luanchuan
Group, located on the southernmargin of theNorth China Craton (NCC) in central China. Previous studies divided
themineralization into four stages according to the crosscutting relationships between veinlets and theirmineral
assemblages. In this contribution, two distinctive types of fluorite mineralization are recognized: 1) the first type
(Type 1) includes colourless, white or green fluorite grains present in Stage 1 veins; and 2) the second type
includes Type 2a purple fluorite present in Stage 2 veins and does not coexist with sulfides, and Type 2b purple
fluorite crystals associated with sulfides in Stage 2 veins. The rare earth element (REE) content in the fluorite
ranges between 13.8 and 27.9 ppm in Type 1, 16.9 and 27.2 ppm in Type 2a, and 42.5 and 75.1 ppm in Type
2b, which suggests that the fluorite was precipitated from acidic fluids (given that REEs are mobile in saline
HCl-bearing fluids at high temperature (~400 °C)). Comparing the REE chemistry of the Stage 1 against Stage 2
fluorite, the LREE/HREE ratios decrease from 9.8 to 4.0, La/Yb ratios decrease from 16.0 to 6.9 and La/Ho ratios
decrease from 10.2 to 3.0, indicating that the hydrothermal process was at high-T and low-pH conditions. The
Eu/Eu* ratios in the fluorite decrease from 1.11 ± 0.35 for Type 1 through 0.89 ± 0.19 for Type 2a to 0.75 ±
0.17 for Type 2b, suggesting a gradual increase in oxygen fugacity (fO2) and pH of the mineralising fluid. The
Tb/Ca, Tb/La and Y/Ho ratios of the fluorite types indicate that they were formed from the interaction between
magmatic fluids and carbonate wallrocks. The fluorite samples show similar REE + Y (REY) patterns to those
of dolostone units in the Luanchuan Group and the nearby Neoproterozoic syenite, suggesting that the REY in
the fluorite was mainly sourced from the host-rocks, although the syenite could be an additional minor source.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The eastward trending East Qinling Mo Belt (EQMB; Chen et al.,
2000) extends along around the suture zone between the NCC and the
Qinling Orogen (Fig. 1a, b). The belt is one of the most important Mo
provinces in the world, which consists of six giant (N0.5 Mt) and many
large (0.1–0.5 Mt), medium (0.01–0.1 Mt), and small (b0.01 Mt)
deposits with a combined reserve of ~6 Mt Mo (Chen et al., 2009).
The majority are Mesozoic porphyry- and skarn-type deposits formed
in a post-subduction and collisional tectonic setting (Chen, 2013;
and Crustal Evolution, Peking
0.
.com (Y.-J. Chen).

Fluorite REE-Y (REY) geochem
re Geol. Rev. (2014), http://d
Chen et al., 2000, 2007; Hu, 1988; Li et al., 2007, 2012a, 2012b, 2013;
Mao et al., 2008). Most of the Mo deposits are located in the Huaxiong
Block to the north of the Luanchuan Fault (Fig. 1b, c). The isotope ages
obtained from these deposits range from Palaeoproterozoic to Early
Cretaceous (Deng et al., 2013a, 2013b; Li et al., 2011b), suggesting
that the Mo mineralisation in the EQMB can be traced back to 1.85 Ga.

Chen and Li (2009) suggested that the porphyry Mo systems in
EQMB have high CO2/H2O and F/Cl ratios, and exhibit pronounced
alteration characterised by K-feldspar, carbonate and fluorite, which
are consistent observations made by other researchers (e.g. Pirajno,
2009, 2013; Y.F. Yang et al., 2013; Y. Yang et al., 2013; Yang et al.,
2012). Why the Mo-mineralisation is usually related to fluoritization,
however, is not well understood. Recently, Mo deposits have also been
found in the carbonatite-, quartz- and fluorite-dominated veins in the
Huaxiong Block (Chen et al., 2009; Deng et al., 2008, 2013c; Li et al.,
istry of the ca. 850 Ma Tumen molybdenite–fluorite deposit, eastern
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2011a; Pirajno, 2013; Xu et al., 2010). The discovery of the unique
TumenMo–F deposit in the terrane provides a good example to investi-
gate the genetic relationship between fluorine and molybdenum in the
Qinling Orogen.

The REE and trace element characteristics of a hydrothermal fluid
are primarily controlled by physio-chemical conditions during fluid–
rock interactions and fluid migration (Bau and Möller, 1992; Schwinn
and Markl, 2005). Their concentrations in minerals have become a
powerful tool in studying the genesis of hydrothermal ore (e.g. Bau
and Dulski, 1995; Eppinger and Closs, 1990; Möller and Holzbecher,
1998; Zhao, 1997), and environmental changes (e.g. Bau and Dulski,
1996; Chen and Fu, 1991; Chen and Zhao, 1997; Tang et al., 2009, 2013).

REE geochemistry has been extensively used to study the genesis of
fluorite concentrations in different geological environments (e.g. Bau
et al., 2003; Möller et al., 1976; Schwinn and Markl, 2005). Fluorite is
not only an economically important mineral, but also an important
gangue mineral associated with Pb–Zn, Ag, Mo, W and Sn deposits
(e.g. Chen and Li, 2009; Eppinger and Closs, 1990; Hill et al., 2000).
Therefore, the study of REE concentration in fluorite of different hydro-
thermal stages can provide insights into the evolution of a fluid through
time, the fluid–rock interaction and element behaviour in ore-forming
processes, and can be widely used as a geochemical exploration tool
(e.g. Bau and Möller, 1992; Cao, 1997; Goff et al., 2004; Jiang
et al., 2006; Möller, 2001; Ronchi et al., 1993; Sánchez et al., 2010;
Schönenberger et al., 2008; Subías and Fernández-Nieto, 1995).

In this contribution, we document a significant variation in trace
element contents in different kinds of fluorite at the Tumen Mo–F
deposit and, thereby, explore the importance of hydrothermal processes
related to the genesis and association of Mo and F mineralisation.

2. Regional geology

The Qinling Orogen is in the central portion of the east-trending
Central China Orogen (CCO), which evolved when the northernmost
Palaeo-Tethys Ocean finally closed during the Mesozoic collision
between the NCC and the Yangtze Craton (Fig. 1a; Pirajno, 2013;
Ratschbacher et al., 2003). The Orogen is bounded to the north by the
San–Bao Fault and to the south by the Longmenshan–Dabashan Fault.

Four tectonic units have been recognized in theOrogen byChen et al.
(2009) and Dong et al. (2011). These subdivisions from north to south
are: (1) the Huaxiong Block that represents the activated southern
margin of the NCC; (2) the northern Qinling accretionary belt; (3) the
southern Qinling orogenic belt; and (4) the northern margin of the
Yangtze Craton. The Luanchuan Fault separates the Huaxiong Block
and the northern Qinling accretionary belt, the Shang-Dan Fault sepa-
rates the northern Qinling accretionary and southern Qinling orogenic
belts, and the Mian-Lue Fault separates the southern Qinling orogenic
belt from the Yangtze Craton to the south (Fig. 1b).

Molybdenite–fluorite mineralisation is located in the southeastern
part of the Huaxiong Block, which is bounded by the San–Bao Fault to
the north and the Luanchuan Fault to the south (Fig. 1c; Deng et al.,
2013c). This region consists of an early Palaeoproterozoic (2.3–
2.15 Ga) crystalline basement named the Taihua Supergroup, which is
unconformably overlain by the Palaeoproterozoic Xiong'er Group and
Meso–Neoproterozoic sedimentary rocks assigned to the Guandaokou
and Luanchuan groups (Chen and Fu, 1992; Chen and Zhao, 1997).

The Taihua Supergroup consists of sillimanite–garnet–quartz gneiss,
graphite-bearing gneiss, marble, and banded iron formations. The
supergroup is interpreted as a greenstone succession metamorphosed
at the amphibolite to granulite facies (Chen and Zhao, 1997; Xu et al.,
Fig. 1. Maps showing: (a) the major tectonic subdivisions of China, showing the location of th
deposits in the East Qinling Mo Belt; and (d) the regional geology of the Tumen Mo–F deposi
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district; 22—Yuchiling; 23—Donggou; 24—Tumen; 25—Saozhoupo; 26—Shimengou; 27—Yind
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2009). The metamorphism took place around ca. 1.95–1.82 Ga during
the assembly of the Columbia Supercontinent; also known as the Nuna
or Hudsonland Supercontinent (Santosh, 2010; Santosh et al., 2007a,
2007b; Wan et al., 2006; Zhai and Santosh, 2011; Zhao et al., 2004,
2009).

TheXiong'er Group is awell-preserved non-metamorphosed volcanic
sequence consisting predominantly of basaltic andesite and andesite,
with minor amounts of dacite and rhyolite (He et al., 2009). The
group is subdivided into the Dagushi Formation at the base through
the Xushan and Jidanping formations to the Majiahe Formation at the
top (Zhao et al., 2009). Available SHRIMP and LA-ICP-MS U–Pb zircon
age data suggest that the volcanic rocks erupted intermittently over a
protracted interval between 1.84 and 1.45 Ga with a major phase of
volcanism during 1.78–1.75 Ga (Hu, 1988; Zhao et al., 2009). The origin
of the group is still being debated, with some authors suggesting it
developed in a continental-rift environment (e.g. Sun et al., 1985; T.P.
Zhao et al., 2002), as part of a large igneous province linked to a mantle
plume (e.g. Peng et al., 2008), or as an Andean-type continental-arc
tectonic setting (e.g. Chen and Fu, 1992; G.C. Zhao et al., 2002; He
et al., 2009; Zhao et al., 2004, 2009).

The Guandaokou and Luanchuan groups consist of a variably carbo-
naceous succession of carbonate, shale, and chert. These units have been
deposited along the southern margin of the Huaxiong Block (Fig. 1c;
Jiang et al., 1994; Wang et al., 2011).

The Tumen deposit is hosted by dolostone assigned to the Meso–
Neoproterozoic Luanchuan Group, and is located in the southeast part
of the Huaxiong Block (Fig. 1d), where volcanic rocks of the Xiong'er
Group are overlain by clastic and carbonate rocks of the Guandaokou
and Luanchuan groups (Jiang et al., 1994). The Neoproterozoic
Wangjiaying Granite (consisting of a porphyritic biotite monzogranite),
and the ca. 844 Ma Shuangshan Syenite represent Neoproterozoic
magmatism in the region (Bao et al., 2008). The Precambrian rock
units discussed above are intruded byYanshanian (180–98Ma) granites,
including the Silidian, Niuxinshan and Qidingshan granites (Fig. 1d).

3. Ore geology and fluid inclusions

The Tumen deposit includes numerous molybdenite–fluorite veins
clustering in the Tumen, Hanjia and Yaodian areas (Fig. 1d). These 1 to
10 m thick veins are mainly hosted by dolostone and schist in the
Neoproterozoic Luanchuan Group, and can be traced for several
kilometres along a NW-trending fault zone (Fig. 2a). The veins contain
60–94% fluorite and were initially mined to depths of b250 m
(Fig. 2b), with a minimum fluorite reserve of 2 Mt (Wen, 1997). During
the mining process, it was found that the molybdenite content in the
fluorite veins increased in depthwith grades reaching 10%Mo. In general,
the economic reserves of Mo are at a depth N150 m, with average
grades ranging from 0.05 to 3% Mo. The molybdenite–fluorite veins
at the Tumen area inferred to contain a minimum resource of
0.01 Mt Mo in metal (Ye et al., 2004).

Four Mo-mineralised veins have been identified at Tumen that are
locally called the Nos. 5–2, 5–3, 5–4 and 6 orebodies (Fig. 2), which
are lenticular to tabular in shape (Fig. 2a), spatially controlled by NW-
trending faults and are associated with syenite dykes (Fig. 2b). The
mineralisation is stratigraphically controlled in a transition zone
between quartz–sericite schist and dolomite. The mineralisation in
the orebodies is dominated by molybdenite and pyrite with lesser
amounts of sphalerite, galena and chalcopyrite. Gangue minerals are
typically fluorite, calcite and quartz, with minor amounts of muscovite
and sericite. Hydrothermal alteration is characterised by a combination
e Qinling Orogen; (b) tectonic framework of the Qinling Orogen; (c) distribution of Mo
t (modified from Chen et al., 2009 and references therein; Deng et al., 2013c). Names of
u; 6—Majiawa; 7—Dahu; 8—Yechangping; 9—Yinjiagou; 10—Zhaiwa; 11—Longmendian;
iyaogou; 18—Shapoling; 19—Huangshui'an; 20—Leimengou; 21—Waifangshan Mo ore
onggou; 28—Qiushuwan. Abbreviation CCO: Central China Orogen (includes the Kunlun,
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of silica, fluorite, carbonate, and kaolinite. Based on the mineral
assemblages observed and crosscutting relationships of the veins, the
mineralisation can be divided into four stages (Deng et al., 2013c).
Stage 1 is represented by brecciated white to green fluorite veins,
Stage 2 by veins of purple fluorite (–molybdenite–pyrite), Stage 3 by
the assemblage calcite–pyrite(–sphalerite–chalcopyrite), and Stage 4
by sulfide-barren carbonate veins.

Three types of fluid inclusions have been recognized in the fluorite
crystals associated with the ore according to their composition and
phase-types (Deng et al., 2013c). Specifically, these are aqueous, CO2-
bearing, and daughter mineral-bearing inclusions. It appears that
the fluorite crystals formed at different stages contain distinct fluid
inclusion assemblages. In Stage 1 white fluorite, assemblages recog-
nized consisting of: (1) aqueous-only inclusions; and (2) aqueous,
CO2-bearing and daughter mineral-bearing inclusions. Stage 2 purple
fluorite contains: (1) aqueous-only inclusions; (2) both aqueous
and CO2-bearing inclusions; and (3) both CO2-bearing and daughter
mineral-bearing inclusions. Only aqueous inclusions have been
observed in Stages 3 and 4 calcite.

The homogenization temperatures of fluid inclusions in Stage 1 fluo-
rite ranges from 420° to 360 °C and in Stage 2 fluorite between 300 °C
and 220 °C. Similarly, salinities of the fluid inclusions decrease from
39.8 wt.% NaCl equiv. in Stage 1 fluorite, to 0.4–13.1 wt.% NaCl equiv.
in Stage 2 fluorite. This shows that the ore-forming system evolved
from an early high-salinity at high-temperature H2O–CO2–NaCl fluid
(Stage 1), to a late dilute, CO2-poor and moderate temperature H2O–
NaCl fluid (Stage 2). Furthermore, the trapping pressure of Stage 2
CO2-bearing inclusions was estimated at 185–282 MPa, suggesting
that themineralisationdepth ranges from6.2 to 9.4 kmunder lithostatic
pressure (Deng et al., 2013c).

Seven molybdenite analyses from the molybdenite–fluorite veins
yield Re–Os isotope ages ranging from 846 ± 7 Ma to 965 ± 7 Ma,
with an isochron age of 847 ± 7 Ma (2σ, MSWD = 23), suggesting
that the molybdenite–fluorite mineralisation formed at ca. 850 Ma
(Deng et al., 2013c). This Re–Os isochron age is the same within error
as the LA-ICP-MS zircon U–Pb age of 844 ± 2 Ma for the Shuangshan
Syenite near Tumen (Bao et al., 2008), but is slightly older than the
SHRIMP and LA-ICP-MS zircon U–Pb ages of ca. 830 Ma for gabbro
dated within the Huaxiong Block (Wang et al., 2011). This older date
suggests that the genesis of the Tumen Mo–F mineral system was
related to the beginning Neoproterozoic rifting at the southern margin
of the NCC slightly prior to the emplacement of the gabbro.
Please cite this article as: Deng, X.-H., et al., Fluorite REE-Y (REY) geochem
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4. Samples and analytical methods

4.1. Sample distinction

Sixteen representative samples of fluorite from the Tumen deposit
were assayed for trace elements. The types of the fluorite are identified
by their mineral associations and the crosscutting relationships of the
mineralised veins (Fig. 3). The Type 1 fluorite samples (TM-14, TM-15,
TM-18-1 and TM-19), hosted by Stage 1 veins, are typically white or
colourless, subhedral to anhedral, and 0.2–6 mm in diameter. Type 2a
fluorite samples (TM-03, TM-05, TM-08, TM-11, TM-12, TM-13, TM-
18-2 and TM-2) are hosted by Stage 2 veins and are purple, anhedral,
are not associated with sulfides, and are 0.05–8 mm in diameter. Stage
2 veins host Type 2b fluorites (Samples TM-06, TM-07, TM-09 and
TM-10), which are purple in colour and commonly associated with
pyrite and molybdenite.

4.2. Analytical methods

Fluorite grains were handpicked under a binocular microscope
(purity N99%), and thenmilled to a 200mesh for trace element analyses
using an inductively coupled plasma mass spectrometry (ICP-MS) with
a FinneganMAT Element spectrometer; The analytical uncertainties are
within 5% for most elements reported. The analyses were done at the
Institute of Geology and Geophysics, Chinese Academy of Sciences in
Beijing (Jin and Zhu, 2000).

Powders (40 mg) were dissolved in distilled HF + HNO3 in high
pressure sealed Teflon bombs at 200 °C for 5 days, dried, and then
digestedwith HNO3 at 150 °C for 1 day, and the final stepwas repeated.
Dissolved samples were diluted to 50 ml with 1% HNO3 and 1 ml
500 ppb indium was added to the solution as an internal standard. A
blank solution was analysed and the total procedural blank was
b50 ng for all trace elements. Indium was used as an internal standard
to correct for matrix effects and instrument drift. Precision for all trace
elements is estimated to be 5% and accuracy is better than 5% for most
elements by analyses of the GSR-3 standard (Table 1).

5. Results

The analytical results are listed in Table 1. Strontium and barium can
be incorporated as cations into fluorite due to their similar size and
charge to Ca. The Type 1 fluorite assays between 658 and 1117 ppm
istry of the ca. 850 Ma Tumen molybdenite–fluorite deposit, eastern
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Sr and 32.5–697 ppm Ba, Type 2a fluorite assays between 882 and
1564 ppm Sr and 40.2–2789 ppm Ba, and Type 2b ranges between
331 and 1292 ppm Sr and 61.6–980 ppm Ba.

Type 1 fluorite has a much lower U content (0.06–1.75 ppm) than
those of Types 2a and 2b (0.28–97.6 ppm; Table 1, Fig. 4), resembling
the variations of REE in fluorites from the deposit (discussed below).
This possibly resulted from the REE-U isomorphic substitution or
co-precipitation from the solution, due to their similarity in ion radii
(Dai, 1987).

Fluorite grains from the different mineralisation stages show differ-
ent REE geochemical characteristics (Table 1). Total REE concentrations
(ΣREE) in Type 1 fluorites assay 13.8–27.9 ppm (averaging 20.7 ±
6.0 ppm ΣREE), Type 2a assay 16.9–27.2 ppm (averaging 23.0 ±
4.0 ppm ΣREE), and Type 2b assay 42.5–75.1 ppm (55.2 ± 14.0 ppm
ΣREE) (Table 1). From this data, it is clear that Stage 2a fluorite has
slightly higher ΣREE values than Stage 1 fluorite, whereas Stage 2b
fluorite (which is associated with sulfides) has the highest ΣREE values.
The Y contents in the types of fluorite have an overall increasing trend,
with assays of 2.29–9.23 ppmY for Type 1, 10.5–23.6 ppmY for Type 2a,
and 13.6–26.2 ppm Y for Type 2b. The contents and various trends of
REE and Y of the three types of fluorite are different, indicating that
the REE and Y might have been fractionated in a fluorine-rich aqueous
fluid due to Y acting as a pseudolanthanide that is heavier than Lu.
This fractionation is not a source-related phenomenon, but depends
on fluid composition (Bau and Dulski, 1995).

The chondrite-normalized REE + Y (REY) diagrams for the fluorite
samples are weakly enriched in LREE (Fig. 5), and Type 2a fluorite REY
patterns are more flatten than those of Types 1 and 2b. The (La/Ho)N
average for Type 2a (3.0 ± 1.0) fluorite is also lower than for Type 1
(10.2 ± 4.8) and Type 2b (8.1 ± 2.8). The (La/Yb)N ratios for the three
types have similar trends to those of the (La/Ho)N averages (Table 1).

All of the fluorite samples show striking positive Y anomalies with
mean ratios of 1.59 ± 0.46 for Type 1, 1.92 ± 0.35 for Type 2a, and
Please cite this article as: Deng, X.-H., et al., Fluorite REE-Y (REY) geochem
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2.18± 0.45 for Type 2b. The samples do not have obvious Ce anomalies,
but the Ce/Ce* (Ce/Ce* = CeN/[(LaN + PrN)/2]) values decrease from
0.90–1.03 for Type 1, through 0.82–0.92 for Type 2a, to 0.79–0.88 for
Type 2b fluorites. The Eu/Eu* (Eu/Eu* = EuN/[(SmN + GdN)/2]) ratios
also decrease from Type 1 (0.88–1.62), through Type 2a (0.68–1.20),
to Type 2b (0.65–1) fluorites.

6. Discussion

6.1. Variation in ΣREE

It is known that the ΣREE concentration in hydrothermal fluids
is controlled by the pH and bulk chemical composition of solutions
(e.g. Schwinn and Markl, 2005). Michard (1989) showed that the REE
concentrations in fluids increase along with decreasing pH. As outlined
above, the average ΣREE content of Types 1, 2a and 2b fluorite samples
are 20.7 ± 6, 23 ± 4 and 55.2 ± 14 ppm, respectively (i.e. increasing
from Stage 1 to Stage 2; Table 1). Deng et al. (2013c) observed that
the salinity of fluids in the Stage 1 mineralisation was much higher
than that in Stage 2, and conversely the CO2 content increases from
Stage 1 to Stage 2. These characteristics imply that the differences in
ΣREE in fluorite in the different types were possibly related to changes
in pH or variation in the composition of the mineralising fluid from
Stage 1 to Stage 2.

We can infer from the low ΣREE values for Stage 1 fluorite that the
initial fluids were acidic and rich in both HF and F. Such a fluid can
keep REE cations (R3+) in solution and possibly as R3+–F− complexes
(e.g. Bau and Dulski, 1995; Gramaccioli et al., 1999). This is consistent
with the assumptions: (1) the fluids forming fluorite veins were rich
in F−, whichmust bemaintained by highH+ activity due to the reaction
HF + F− ⇔ H+ + 2 F− (Dai, 1987); (2) the shortage of sulfides in
Stage 1 veins indicates that the fluid was acidic and the S2−

activity low, thus preventing sulfide precipitation from the solution,
istry of the ca. 850 Ma Tumen molybdenite–fluorite deposit, eastern
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Table 1
Concentrations of rare earth and trace elements in fluorite of various types from the Tumen deposit (ppm).

Type 1 1 1 1 2a 2a 2a 2a 2a 2a 2a 2a 2b 2b 2b 2b GSR3 GSR3

No. TM-14 TM-15 TM-18-1 TM-19 Av. TM-03 TM-05 TM-08 TM-11 TM-12 TM-13 TM-18-2 TM-20 Av. TM-06 TM-07 TM-09 TM-10 Av. RVR Av.

Li 0.11 0.48 0.11 0.06 0.19 0.83 0.53 0.32 0.95 0.86 0.35 0.37 0.72 0.62 0.45 4.38 0.24 2.14 1.80 9.50 9.13
Be 0.16 0.54 0.15 0.14 0.25 0.73 0.42 0.42 0.29 0.24 0.35 0.31 0.39 0.39 0.65 1.18 0.16 1.03 0.75 2.50 2.56
Sc 0.68 1.40 1.25 1.65 1.24 0.37 0.19 0.25 1.17 0.36 0.37 1.30 0.96 0.62 0.56 1.70 1.18 1.39 1.21 15.2 14.4
V 28.2 25.0 22.7 23.0 24.7 26.7 27.9 31.8 28.4 18.2 21.9 29.2 23.0 25.9 24.0 36.1 27.2 28.4 28.9 167 171
Cr 7.09 3.82 4.11 2.52 4.38 4.94 4.86 6.78 3.55 4.40 4.35 6.24 4.10 4.90 3.03 13.4 4.37 4.60 6.35 134 146
Co 0.69 1.93 0.64 0.69 0.99 0.73 1.15 0.92 1.91 4.38 4.84 0.84 0.79 1.94 7.03 12.3 2.23 2.45 6.01 46.5 45.6
Ni 8.49 7.87 7.99 4.23 7.14 4.77 6.27 7.43 10.6 10.5 18.6 6.10 6.29 8.82 19.2 18.8 8.91 9.92 14.2 140 132
Cu 0.34 16.0 0.13 0.65 4.29 1.72 2.34 0.89 1.19 2.01 7.02 0.77 3.64 2.45 6.48 3.31 0.90 2.37 3.26 48.6 46.7
Zn 18.0 120 8.94 37.5 46.2 22.0 11.1 61.7 96.0 28.7 14.3 23.6 1378 204 38.3 466 17.7 53.7 144 150 148
Ga 0.31 1.05 0.26 0.13 0.44 2.40 2.09 0.79 1.38 0.71 0.50 0.89 1.03 1.22 0.91 4.67 0.84 3.28 2.43 24.8 23.7
Rb 0.87 3.08 0.54 0.26 1.18 14.3 13.6 3.39 9.13 5.72 3.13 5.16 6.74 7.64 4.50 32.0 4.26 12.4 13.3 37.0 35.7
Sr 944 658 930 1117 912 1231 1319 1564 1067 914 1107 1014 882 1137 1292 331 772 634 757 1100 1007
Y 3.70 9.23 4.27 2.29 4.87 10.5 15.6 11.4 13.7 15.2 11.2 13.2 23.6 14.3 13.6 26.2 25.8 25.5 22.8 22.0 21.2
Zr 3.95 16.4 2.82 2.75 6.49 7.01 8.88 5.31 4.98 3.99 6.89 8.03 10.6 6.97 8.12 24.2 46.4 12.9 22.9 277 268
Nb 0.56 2.00 0.51 0.47 0.88 1.33 1.58 1.04 1.14 1.54 3.52 1.57 1.72 1.68 6.29 15.1 2.12 3.39 6.72 68.0 66.7
Cs 0.03 0.06 0.03 0.02 0.03 0.10 0.08 0.05 0.11 0.08 0.05 0.05 0.07 0.07 0.06 0.48 0.03 0.24 0.20 0.49 0.45
Ba 32.5 278 49.6 697 264 2789 1615 463 544 92.3 40.2 141 161 731 61.6 980 260 92.5 348 526 497
La 3.56 6.32 3.69 3.34 4.23 3.66 4.28 2.48 3.75 4.12 3.23 3.22 2.96 3.46 11.3 15.5 11.3 15.1 13.3 56.0 54.6
Ce 7.91 11.7 9.57 6.30 8.87 7.79 8.13 5.35 7.71 8.30 6.09 8.13 6.47 7.25 18.1 27.8 19.5 21.5 21.7 105 98.3
Pr 0.95 1.38 1.29 0.72 1.09 1.16 1.11 0.88 1.26 1.36 0.87 1.32 1.01 1.12 1.95 3.73 2.13 2.19 2.50 13.2 12.7
Nd 3.06 4.67 4.60 2.01 3.58 4.60 4.62 3.64 5.31 5.61 3.19 5.99 4.82 4.72 6.12 14.5 7.53 6.75 8.72 54.0 52.4
Sm 0.60 0.79 0.92 0.33 0.66 1.01 1.03 0.83 1.16 1.27 0.65 1.55 1.56 1.13 0.96 2.81 1.56 1.09 1.60 10.2 9.83
Eu 0.18 0.26 0.29 0.18 0.23 0.28 0.33 0.26 0.34 0.32 0.16 0.67 0.70 0.38 0.22 0.67 0.59 0.28 0.44 3.20 3.07
Gd 0.63 0.92 0.80 0.36 0.68 1.18 1.26 1.02 1.31 1.65 0.81 1.88 2.35 1.43 1.09 3.03 2.09 1.55 1.94 8.50 7.99
Tb 0.10 0.15 0.13 0.05 0.11 0.19 0.22 0.17 0.22 0.26 0.14 0.32 0.45 0.24 0.18 0.50 0.36 0.27 0.33 1.20 1.12
Dy 0.62 0.85 0.69 0.26 0.61 1.10 1.36 1.08 1.31 1.51 0.88 2.02 2.87 1.52 1.17 3.01 2.35 1.75 2.07 5.60 5.35
Ho 0.11 0.16 0.13 0.05 0.11 0.21 0.28 0.21 0.26 0.28 0.18 0.38 0.58 0.30 0.24 0.59 0.49 0.36 0.42 0.88 0.88
Er 0.28 0.39 0.30 0.12 0.27 0.51 0.71 0.53 0.61 0.70 0.47 0.93 1.51 0.75 0.60 1.50 1.27 0.93 1.08 2.00 1.90
Tm 0.04 0.05 0.04 0.02 0.03 0.06 0.09 0.07 0.07 0.08 0.06 0.12 0.20 0.09 0.08 0.20 0.17 0.12 0.14 0.28 0.24
Yb 0.22 0.26 0.22 0.09 0.20 0.36 0.49 0.35 0.39 0.43 0.34 0.62 1.09 0.51 0.44 1.10 0.97 0.66 0.79 1.50 1.30
Lu 0.03 0.04 0.03 0.01 0.03 0.05 0.06 0.05 0.05 0.06 0.05 0.08 0.13 0.07 0.06 0.14 0.12 0.08 0.10 0.19 0.17
Hf 0.13 0.30 0.11 0.11 0.16 0.15 0.19 0.14 0.13 0.11 0.15 0.19 0.25 0.16 0.16 0.55 0.44 0.22 0.34 6.50 6.28
Ta 0.05 0.08 0.05 0.05 0.06 0.06 0.08 0.05 0.05 0.05 0.05 0.08 0.08 0.06 0.06 0.14 0.08 0.07 0.09 4.30 4.17
Tl 0.05 0.07 0.04 0.04 0.05 0.20 0.19 0.09 0.20 0.25 0.12 0.15 0.12 0.16 0.17 0.57 0.27 0.19 0.30 0.12 0.06
Pb 5.05 5.33 1.92 9.71 5.50 23.2 4.49 70.9 134 19.4 7.94 6.60 6.73 34.2 14.6 10.8 16.1 12.5 13.5 4.70 4.83
Bi 0.02 0.02 0.01 0.02 0.02 0.03 0.02 0.06 0.28 0.02 0.02 0.02 0.02 0.06 0.02 0.03 0.02 0.02 0.02 0.05 0.04
Th 0.15 0.47 0.13 0.12 0.22 0.31 0.60 0.13 0.29 0.14 0.24 0.39 0.48 0.32 0.37 1.75 1.06 0.63 0.95 6.00 6.32
U 0.13 1.75 0.08 0.06 0.50 4.45 2.71 23.4 49.3 97.6 18.9 0.28 0.83 24.7 34.5 173 3.35 78.9 72.6 1.40 1.42
ΣREE 18.3 27.9 22.7 13.8 20.7 ± 6.0 22.2 24.0 16.9 23.7 25.9 17.1 27.2 26.7 23.0 ± 4.0 42.5 75.1 50.5 52.7 55.2 ± 14.0
LREE 16.3 25.1 20.3 12.9 18.7 ± 5.3 18.5 19.5 13.4 19.5 21.0 14.2 20.9 17.5 18.1 ± 2.9 38.7 65.0 42.7 46.9 48.3 ± 11.6
HREE 2.04 2.82 2.34 0.95 2.0 ± 0.8 3.66 4.46 3.48 4.22 4.96 2.93 6.35 9.18 4.9 ± 2.0 3.85 10.08 7.82 5.73 6.9 ± 2.7
LREE/HREE 7.99 8.91 8.69 13.5 9.8 ± 2.5 5.06 4.38 3.86 4.63 4.23 4.85 3.29 1.91 4.0 ± 1.0 10.1 6.44 5.46 8.20 7.5 ± 2.0
(La/Yb)N 10.9 16.4 11.3 25.6 16.0 ± 6.9 6.95 5.95 4.74 6.50 6.51 6.51 3.52 1.83 5.3 ± 1.8 17.4 9.53 7.94 15.4 12.6 ± 4.6
(La/Ho)N 7.37 9.27 6.84 17.2 10.2 ± 4.8 4.01 3.60 2.69 3.40 3.38 4.11 1.96 1.18 3.0 ± 1.0 11.0 6.09 5.41 9.78 8.1 ± 2.8
La/Ho 31.8 40.0 29.5 74.1 43.9 ± 20.7 17.3 15.5 11.6 14.7 14.6 17.7 8.46 5.10 13.1 ± 4.4 47.6 26.3 23.3 42.2 34.9 ± 11.9
Y/Ho 33.0 58.4 34.1 50.9 44.1 ± 12.6 49.6 56.4 53.6 53.6 53.9 61.4 34.7 40.6 50.5 ± 8.7 57.2 44.4 52.9 71.0 56.4 ± 11.1
(La/Nd)N 2.26 2.62 1.55 3.22 2.4 ± 0.7 1.54 1.80 1.32 1.37 1.42 1.96 1.04 1.19 1.5 ± 0.3 3.58 2.08 2.92 4.35 3.2 ± 1.0
(Gd/Yb)N 2.31 2.86 2.95 3.32 2.9 ± 0.4 2.69 2.09 2.33 2.71 3.13 1.96 2.47 1.74 2.4 ± 0.5 2.01 2.24 1.75 1.89 2.0 ± 0.2
Eu/Eu* 0.88 0.92 1.00 1.62 1.11 ± 0.35 0.79 0.89 0.87 0.84 0.68 0.69 1.20 1.12 0.89 ± 0.19 0.66 0.70 1.00 0.65 0.75 ± 0.17
Ce/Ce* 0.99 0.90 1.03 0.92 0.96 ± 0.06 0.88 0.86 0.85 0.83 0.82 0.84 0.92 0.88 0.86 ± 0.03 0.84 0.84 0.88 0.79 0.84 ± 0.04
Y/Y* 1.20 2.15 1.24 1.79 1.59 ± 0.46 1.87 2.17 2.04 2.02 1.99 2.40 1.29 1.56 1.92 ± 0.35 2.21 1.68 2.06 2.76 2.18 ± 0.45

Abbreviations: GSR3, Chinese basalt standard; RVR, recommended value for reference standard; Av., average. Eu/Eu* = EuN/[(SmN + GdN)/2], Ce/Ce* = CeN/[(LaN + PrN)/2], Y/Y* = YN/[(DyN + HoN)/2].
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Fig. 4. The chondrite-normalized trace element patterns for fluorite samples from the
Tumen Mo–F deposit. The reference data of chondrite are cited from McDonough and
Sun (1995).
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(i.e. according to the reaction H+ + S2− ⇔ HS−; Phillips and Evans,
2004); (3) the presence of S2− or HS− resulted in a reducing environ-
ment in which R3+ tended to remain in the fluid, with the exception
of Eu3+ that was likely reduced to Eu2+, and consequently the fluorite
is characterized by a low ΣREE content and a high Eu/Eu* ratio (see
Chen and Zhao, 1997 for the chemical principles involved); and (4) the
interaction of the acidic and F−-rich fluids with the carbonate wallrocks
resulted in the dissolution of CaCO3 and formation of CaF2 according to
the reaction CaCO3 + 2H+ + 2 F− ⇔ CaF2 + H2O + CO2, resulting in
an increase in the CO2 content of the Stage 2 fluid (Deng et al., 2013c).

Fluorite deposition in Stage 1 resulted in the reduction of the acidity
of the fluid, and conversely the drop in pH lead to reduction of the
solubility of R3+. This subsequently enhanced the activity of S2− in
Stage 2 fluid leading to the deposition of REE and sulfides such as
Please cite this article as: Deng, X.-H., et al., Fluorite REE-Y (REY) geochem
Qinling, China: Constraints on ore genesis, Ore Geol. Rev. (2014), http://d
MoS2 and FeS2 (i.e.Mo4++2S2−⇔MoS2). The Stage 2 purple fluorite,
therefore, will have higher REE concentrations irrespective ofwhether it
coexistswith sulfides (Type 2b) or not (Type 2a). It is envisaged that the
physicochemical nature of the fluid was not homogeneous along the
ore-hosting faults. Local accumulation of S2−, possibly together with
HS−, resulted in or from locally high-pH levels, where they were
favourable for the deposition of sulfides and REE-enriched fluorite.
Therefore, compared to Type 2a fluorite (without sulfides), Type 2b
fluorite (with sulfides) has higher REE concentrations (Table 1).

6.2. REE fractionation

REE fractionation in fluids depends on both preferential adsorption
of REE onmineral surfaces andpreferential complexation of REEwith dif-
ferent ligands (Bau, 1991; Bau and Dulski, 1995; Chen and Zhao, 1997;
Schönenberger et al., 2008). Generally, preferential REE-adsorption
and complexation result in the relative enrichment in LREE and
depletion of LREE in fluids (e.g. Bau and Möller, 1992; Schwinn and
Markl, 2005). With increasing pH and decreasing temperature, the
REE-adsorption decreases and the complexation increases (Ehya,
2012). Hydrothermal mineral paragenesis can also affect the REE
patterns of fluorite, because REEs can enter the lattice of minerals
such as calcite. Thus, the REE abundance in hydrothermal fluids
istry of the ca. 850 Ma Tumen molybdenite–fluorite deposit, eastern
x.doi.org/10.1016/j.oregeorev.2014.02.009
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depends mainly on the deposition order of the REE-bearing minerals,
regardless of the ultimate REE source (e.g. Castorina et al., 2008; Ehya,
2012). At the Tumen deposit, however, the carbonate minerals were
generally precipitated later than fluorite, and thus had no effect on the
REE content in the fluorite.

All the fluorite samples from the Tumen deposit are relatively
enriched in LREE (Table 1; Fig. 5), with (La/Yb)N ranging from 1.83 to
25.6. LREE-enrichment is characteristic of the fluorite formed under
high-temperature (T) and low-pH (Ehya, 2012). The fluorite at Tumen
is shown to have deposited from the fluids with high-T (Deng et al.,
2013c) and low-pH (see above). The fluorites of Types 1 and 2a have
fluid inclusion homogenization temperatures clustering around 360–
420 °C and 220–300 °C, respectively (Deng et al., 2013c), and have
well-matched (La/Yb)N averages of 16± 6.9 and 5.3± 1.8, respectively.
The difference in (La/Yb)N values between the Type 2a and 2b fluorite
(Fig. 5) is possibly related to the partition of REE in sulfides coexisting
with Type 2b fluorite (Deng, 2011). Nevertheless, Type 2b fluorite sam-
ples still show lower (La/Yb)N values than Type 1 fluorite (Table 1).
Nonetheless, the REE patterns and their changes in the various types
of fluorite at the Tumen deposit resemble a common scenario where
fluorite is deposited in an early hydrothermal stage that is enriched
in LREE, whereas later fluorite stage is relatively enriched in HREE
(e.g. Ekambaram et al., 1986; Eppinger and Closs, 1990; Hill et al.,
2000; Möller et al., 1976).

Möller (1991) linked the LREE-enrichment in fluorites to a high
Ca2+/F− ratio in parent fluids, and Lüders (1991) suggested that fluids
with high Ca2+/F− ratios neither come from an F-rich source nor from
a re-mobilized pre-existing fluorite system in deeper parts of the crust.
Thus, we prefer to attribute the high Ca2+/F− ratio of the fluid at
Tumen to the carbonate hostrocks, which could provide enough Ca2+

for the hydrothermal system during fluid–rock interactions.

6.3. Tb/Ca and Tb/La ratios

Tb/Ca and Tb/La ratios have been used to discriminate fluorite occur-
rences according to their sedimentary, hydrothermal and pegmatitic
affinities (Möller et al., 1976). The composition of various stages of
fluorite here studied defines fields and trends using a constant and
stoichiometric abundance of Ca in ideal fluorite, as outlined by Möller
et al. (1976). Gagnon et al. (2003) proved that a small amount of
trace elements incorporated into fluorite does not change the overall
discrimination.

Most of the data from this study plot in the hydrothermal field and
broadly defines a linear trend from Stage 1 to Stage 2 fluorite on the
Tb/Ca versus Tb/La diagram in Fig. 6, except for Type 2b fluorite that
has lower Tb/Ca ratio, which possibly results from the coeval precipita-
tion of an unidentified LREE-enriched phase (Chesley et al., 1991). This
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Fig. 6. Plots of Tb/Ca versus Tb/La ratios for fluorite from the TumenMo–F deposit. Primary
crystallization trend represents degree of differentiation during fluorite crystallization
(after Möller et al., 1976).

Please cite this article as: Deng, X.-H., et al., Fluorite REE-Y (REY) geochem
Qinling, China: Constraints on ore genesis, Ore Geol. Rev. (2014), http://d
suggests that the REE was progressively incorporated into the fluorites
during hydrothermal precipitation.

6.4. Y–Ho fractionation

Themean Y content of the fluorite samples increases from 4.87 ppm
in Type 1, through 14.3 ppm in Type 2a, to 22.8 ppm in Type 2b,with the
Y/Y⁎ ratios increasing from 1.59 ± 0.46 through 1.92 ± 0.35 to 2.18 ±
0.48, respectively (Table 1). The pronounced positive Y anomalies in
these fluorite samples are suggestive of strong Y−Ho fractionation in
the Tumen hydrothermal system. Möller (1998) linked significant
enrichment in Y to the presence of fluoride complexing agents, and
Bau (1996) proposed that Y–F complexes are more stable than Ho–F
complexes, which can be deduced using the “Hard and Soft Acids and
Bases” (HSAB) theory of Pearson (1963), which is a qualitative concept
attempting to explain the stability of metal complexes and the mecha-
nisms of their reactions (also see Chen and Fu, 1991; Tang et al.,
2013). Therefore, Y preferentially remains in F-rich fluids, and fluorite
deposited from fluids has increasing Y contents and Y/Y* ratios from
the early to late mineralisation stages.

Bau and Dulski (1995) proposed that the Y−Ho fractionation is not
source-related, but depends on fluid composition and fluid migration,
and that hydrothermal fluorites are characterized by variable and
non-chondritic Y/Ho ratios of N200 (Fig. 7). The Y/Ho ratios of fluorite
samples from the Tumen deposit range from 33 to 71 (Table 1), obvi-
ously different from the chondritic Y/Ho ratios of 28 (Anders and
Grevesse, 1989), but well overlapped by the Y/Ho ratios of hydrother-
mal fluorites (Fig. 7). Moreover, they appear to be a mixture of igneous
rocks and seawater (Fig. 7), and similar to chemical sediments such as
the carbonate rockswithin theGuanmenshan Formation in northeastern
NCC, whose Y/Ho ratios range from 34.5 to 56.6 (for details see Tang
et al., 2013). Therefore, the Y/Ho ratios suggest that the fluorite at the
Tumen deposit was formed by the interaction of magmatic fluids with
carbonate wallrocks.

The La/Ho ratios of the Type 1 fluorite averages 43.9 ± 20.7, which
is much higher than the average of Type 2a (13.1 ± 4.4) fluorite.
Conversely, the Y/Ho average for Type 1 fluorite is 44.1 ± 12.6, which
is lower than that of Type 2a (50.5 ± 8.7) fluorite. Despite the paucity
of data, a negative correlation between the Y/Ho and La/Ho ratios is
observed at the Tumen deposit (Fig. 8; Bau and Dulski, 1995). However,
two samples of the Type 1 fluorite show a large La/Ho variation, which
differs from the Y/Ho values (Fig. 8). This possibly results from the
formation of an enriched LREE phase or the partial loss of a LREE-
enriched phase during fluorite re-crystallization (Bau and Dulski,
1995). The presence of secondary fluid inclusions in Type 1fluorite crys-
tals, as observed byDeng et al. (2013c), supports that some of the Type 1
fluorite grains were re-crystallized or modified in late hydrothermal
Y/Ho ratio
10 100 1000

C1 chondrite

Mafic rocks

Felsic rocks

Seawater

Hydrothermal
fluorites

Fluorites at Tumen

PAAS

Igneous rocksAndesitic rocks}

Fig. 7. Comparison of the Y/Ho ratios of fluorite from the TumenMo–F deposit with other
kinds of geological bodies (after Bau andDulski, 1995). PAAS stands for the Post-Archaean
Australian Shale.
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stages. In addition, the Type 2b fluorite samples have high La/Ho ratios,
whichmay be the result from the coeval precipitation of an unidentified
LREE-enriched phase.

6.5. Eu and Ce anomalies

The Eu/Eu* ratio is a useful indicator of the physicochemical features
of fluids, including temperature, pH and ƒO2 (Bau and Möller, 1992;
Chen and Fu, 1991; Möller, 1998; Möller and Holzbecher, 1998). Ther-
mochemical reduction of Eu3+ to Eu2+ can happen at high tempera-
tures, and hydrothermal fluorite formed above 200 °C usually show
Eu-enrichment relative to the fluids (Schwinn andMarkl, 2005). During
REE leaching from rocks, Eu2+ accumulates at high-T or reducing fluids,
resulting in a positive Eu anomaly influids and a negative one in leached
rocks (Castorina et al., 2008; Chen and Zhao, 1997).

The Eu/Eu* ratios decrease from 1.11 ± 0.35 in Type 1, through
0.89 ± 0.19 in Type 2a, to 0.75 ± 0.17 in Type 2b fluorites at the
Tumen deposit (Table 1), generally with no toweak positive or negative
Eu anomalies (Fig. 5). This suggests that the fluorite precipitated
from fluids with decreasing temperature or increasing ƒO2 (Chen and
Zhao, 1997; Schwinn and Markl, 2005). Alternatively, some other
Eu-depleted minerals co-precipitated with the Type 1 fluorite, whilst
Eu-enriched minerals co-precipitated with the Type 2b fluorite. As
mentioned above, the decrease in Eu/Eu* values from Type 1 to Type
2a fluorites can be interpreted by considering any one or a combination
of factors such as an increase in pH, increase in ƒO2, and decrease in tem-
perature. However, this does not explain the Eu/Eu* difference between
Type 2a and Type 2b fluorites, because both types were formed during
Stage 2. As known earlier, Type 2b fluorite coexists with sulfides that
are generally characterized by low ΣREE values and positive Eu-
anomalies (Tang et al., 2013 and references therein), which explains
why Type 2b fluorite has lower Eu/Eu* values compared to Type 2a
Table 2
REE geochemical signatures of fluorite at Tumen deposit and regional rocks (ppm).

Rock/mineral Type 1
fluorite

Type 2a
fluorite

Type 2b
fluorite

Neo-Pt Luanchuan
Group

Neo-Pt syen
dyke

ΣREE 20.7 23.0 55.2 152 883
LREE 18.7 18.1 48.3 135 840
HREE 2.00 4.90 6.90 17.7 43.3
LREE/HREE 9.80 4.00 7.50 7.62 19.4
Tb/La 0.03 0.03 0.02 0.03 0.01
Y/Ho 41.9 47.7 54.3 30.2
(La/Nd)N 2.4 1.5 3.2 2.11 3.25
(Gd/Yb)N 2.9 2.4 2.0 1.56 2.39
Eu/Eu* 1.11 0.89 0.75 0.62 0.40
Ce/Ce* 0.96 0.86 0.84 0.88 0.92
Y/Y* 1.59 1.92 2.18 1.14
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fluorite. In addition, the Eu-enrichment of Stage 1 fluorite would have
lead to a relative Eu-depletion in the mineralising fluids from which
Stage 2 fluorite was deposited and characterized by lower Eu/Eu*
values.

The Ce/Ce* ratio is another indicator of the physicochemical features
of fluids. The slightly negative Ce anomalies in Stage 2 fluorites indicate
that the parent fluid was somewhat reducing (Möller, 1998). This is
consistent with the positive Eu anomalies in Stage 1 fluorite and the
presence of sulfides at the deposit. Alternatively, the negative Ce anom-
alies could have been inherited from the parent fluid (Castorina et al.,
2008; Ehya, 2012), but this hypothesis is not supported by the Stage 1
fluorite, which are not depleted in Ce.

The negative Ce anomalymay also be related to hydroxide complex-
ation (Schönenberger et al., 2008). The hydroxide complex with Ce is
more stable than those with other REE (Haas et al., 1995), which leads
Ce to remain in a fluid and, consequently, a negative Ce anomaly can
be expected in the precipitants.

6.6. Source of REE and fluids

Considering the fluid–rock interaction and the similarity in the REE
patterns of the fluorites and the hostrocks assigned to the Luanchuan
Group (Table 2; Fig. 9a), we propose that the hostrocks are a major
source for the REE concentration at the Tumen deposit. The hostrocks
have broadly similar REE patterns in each orebody at the deposit. The
low REE concentrations in fluorite at the deposit support the hypothesis
that the REE source is the marine limestone units within the Luanchuan
Group.

Although the Tumen deposit is in a close vicinity to intrusive rocks
(Fig. 1d) and genetically related to the intrusive rocks, the REE patterns
of the fluorite samples from the deposit are notably different from those
of the igneous rocks (Table 2), including the Early and Late Yanshanian
granites (Fig. 9b, c), Neoproterozoic monzogranite and syenite (Fig. 9d,
f), as well as the volcanic rocks in the Xiong'er Group (Fig. 9e). This
indicates that the fluorites are not necessarily related to these igneous
rocks. However, as shown in Table 2, the LREE/HREE and (La/Nd)N ratios
in Stage 1 fluorite are higher than those in the Luanchuan Group, but
lower than those of the nearby Neoproterozoic syenite. This suggests
that the Neoproterozoic syenite is a possibly complementary source
for REE during the early stages of the Tumen hydrothermal system
(Fig. 9f). Moreover, experimental studies by Wendlandt and Harrison
(1979) have shown that LREE-enriched fluids could be sourced from
highly evolved syenites. Therefore, we suggest that in addition to
the hostrocks in the Luanchuan Group, the Neoproterozoic syenitic
magma could have been associated with fluids and is a source for REE
contributing to the development of the Tumen deposit. This interpreta-
tion is strongly supported by: (1) the zircon U–Pb age of 844± 2Ma for
the Shuangshan Syenite (Bao et al., 2008), which is the same within
error to the molybdenite Re–Os isochron age of 847 ± 7 Ma (Deng
et al., 2013c); (2) the fluid inclusion types and microthermometric
results are comparable with typical magmatic hydrothermal mineral
ite Neo-Pt biotite
monzogranite

Meso-Pt Xiong'er
Group

Early Yanshanian
granite

Late Yanshanian
granite

83.0 314 37.7 62.0
72.5 283 35.4 60.3
10.5 31.5 2.35 1.70
6.92 9.00 15.1 32.0
0.02 0.03 0.01 0.01

23.8 25.3 19.4 30.4
2.36 2.01 5.89 3.30
1.56 1.56 1.96 3.62
0.64 0.73 0.87 0.73
0.87 1.03 0.74 1.13
0.92 0.98 0.90 1.16
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systems (Deng et al., 2013c); and (3) oxygen–hydrogen isotope data
show that the ore-forming fluids were initially magmatic in source,
and then progressively added to by an evolved to meteoric water
(Deng et al., 2013c).
7. Conclusions

The Tumen Mo–F deposit in the southern margin of the NCC is
hosted by dolostone assigned to the Neoproterozoic Luanchuan
Group. The deposit consists of veins predominantly composed of fluo-
rite, calcite, molybdenite and pyrite. Hydrothermal mineralisation in
the area includes four stages progressing from veins of white fluorite
in the early stage, through purple fluorite(–molybdenite–pyrite) and
sulfide–calcite, to carbonate at the last stage.

The ΣREE content in the fluorite is low, but increases from Stage 1 to
Stage 2, which is related to increasing pH and a chemically reducing
fluid. From Stage 1 to Stage 2, the Eu/Eu*, Ce/Ce* and (La/Yb)N ratios
in thefluorite decreases, but the Y/Y* ratio increases, which coincidently
suggest that the fluid became less reducing, less acidic and lower in
temperature.
Please cite this article as: Deng, X.-H., et al., Fluorite REE-Y (REY) geochem
Qinling, China: Constraints on ore genesis, Ore Geol. Rev. (2014), http://d
The Tb/Ca and Tb/La ratios in the fluorite studied confirm that the
REE were progressively incorporated into the fluorites during hydro-
thermal mineralisation. The Y/Ho ratios are typical of hydrothermal
fluorites that were likely formed by the interaction of magmatic fluids
with the carbonate wallrocks.

The REE in the fluorite is predominantly sourced from carbonate-
dominated hostrocks assigned to the Luanchuan Group, although the
fluids were initially associated with Neoproterozoic syenite in the
region. The tectonic setting and genesis of the mineralisation in the East
Qinling Mo Belt during ca. 850 Ma is summarised in Fig. 10 (modified
after Chen and Fu, 1992).
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