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ABSTRACT

Acanthomorphic acritarch fossils, including some interpreted to be the fossils of the earliest animal
embryos, first appear in the lower Doushantuo Formation of the Yangtze Gorges area (YGA). Further, the
complete paleontological and geochemical record for the YGA has played a central role in defining the
global biological and geochemical backdrop that presaged and witnessed the dawn of diverse animal life.
Despite the importance of the YGA in our understanding of Neoproterozoic Earth history, basic aspects
about its depositional history remain debated. Foremost among the controversies, extensively studied sec-
tions in the YGA were recently tied to deposition in an alkaline lake, casting new but contentious light on
the environments of early animal evolution and the broader significance of geochemical records from the
YGA. Arguments for a lacustrine setting hinged on the presence of trioctahedral clays (saponite—corrensite).
However, this clay type commonly forms in other environments, including the weathering profiles of mafic
and ultramafic volcanics. Using a coupled geochemical and sedimentological approach, we argue that the
trioctahedral clays in the lower Doushantuo of the YGA are better explained as weathering products from
a regional mafic-to-ultramafic hinterland delivered by rivers to a shelf or lagoon in the Yangtze Gorges
Basin. These novel provenance relationships for YGA sediments and associated clays are consistent with a
marine setting for the early animal records and must factor in our current understanding of the broader
geochemical fabric of the Doushantuo Formation.
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INTRODUCTION

The Ediacaran Period (635-542 million years ago, Ma) is
characterized by dramatic changes in Earth’s geochemical
cycles and high rates of biological diversification. These
changes occurred in the aftermath of one of the most
severe glacial episodes in Earth history (the ‘Marinoan
Snowball Earth Glaciation’) (Hoffman & Schrag, 2002;
Xiao, 2004 ). The appearance of new acanthomorphic acri-
tarch fossils, some of which have been interpreted as early
animal embryos or the resting stages of metazoa offspring,
suggests metazoan diversification following glacial retreat
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(Xiao et al., 1998; Yin et al., 2007; Zhou et al., 2007,
Cohen et al., 2009; McFadden ¢t al., 2009). Acanthomor-
phic acritarch fossils of possible metazoan origin first
appear in the lower Doushantuo Formation of the Yangtze
Gorges areca (YGA). The first appearance of silicified
acanthomorphic acritarchs occurs 6 m above the Nantuo
cap carbonate in the Jiulongwan section, just above a
632.5 + 0.5-Myr-old ash bed (Yin et al., 2007). Recently,
some fossils of the Doushantuo acanthomorphic acritarchs
have also been explained as encysting protists classified as
holozoans (Butterfield, 2011; Huldtgren ez al., 2011), but
this placement remains uncertain (Huldtgren ez al., 2012;
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Xiao et al., 2012). The YGA is also unique among early
Ediacaran locations for the combined strength of its geo-
chemical record and accompanying prolific, diverse, and
temporally varying fossils. This combination of data allows
for the possibility of viewing early animal evolution in a
strong environmental context. For example, the rocks of
the YGA and age-equivalent strata in Oman provide our
best archives of the remarkably depleted carbonate 3'3C
values from this time period, which have been proposed to
record the progressive ventilation of the Neoproterozoic
ocean (Fike et al., 2006; McFadden et al., 2008).

Despite the important role the YGA has played in mod-
els for Ediacaran geobiology, its depositional setting
remains debated, including widely disparate paleoenviron-
mental interpretations, making it difficult to grasp the full
significance of the paleontological/geochemical record.
Recently, for example, Bristow ez al. (2009) suggested a
non-marine depositional setting based principally on data
from the YGA. The underlying argument for the non-mar-
ine hypothesis hangs on the ubiquitous presence of the
clay mineral saponite in the lower part of Doushantuo For-
mation. Saponite typically forms in one of three settings:
(i) alkaline, evaporative lakes [typically with pH > 97]; (ii)
via weathering or very low-grade metamorphism of mafic
and ultramafic rocks; and (iii) in association with hydro-
thermal alteration of volcanic rocks (Meunier, 2005; Velde
& Meunier, 2008). Here, we use a coupled provenance
and sedimentological approach to distinguish among the
different modes of formation in our interpretation of sapo-
nite in the YGA. More specifically, we present several lines
of evidence that point toward a detrital origin for the sapo-
nite formed from weathering of regional mafic—ultramafic
rocks and transported to a restricted basin or a shelf lagoon
(Jiang ez al., 2011), rather than autochthonous formation

within a lake. Saponite in the YGA is found associated with
sediments that, based on provenance tracers, derived from
breakdown of mafic—to—ultramafic rocks, while the upper
part of the formation, which lacks saponite, was sourced
from a source terrain with an average shale composition.

GEOLOGICAL BACKGROUND AND SAMPLE
DESCRIPTION

The Ediacaran in the YGA comprises the Doushantuo and
Dengying formations, with alternating shale and carbonate
rocks reaching a collective approximate thickness from
<250 to 1000 m. The Doushantuo Formation spans most
of the Ediacaran, which is constrained between 635 and
551 Ma (Condon et al., 2005) (Fig. 1). The Doushantuo
Formation in the YGA consists of 160-250 m of carbonate
and black shale subdivided into four members. In the stud-
ied Jiulongwan section, the basal Member 1 is the 6-m-
thick cap carbonate. The three submembers of Member 1
(C1, C2, and C3) have been well described in the YGA
(Jiang et al., 2003). Of relevance to our study, saponite
has also been described from Cl and C3 in the YGA,
including the Jiulongwan section (Bristow et al., 2009). As
much as 78 m of interbedded black shale and shaly lime-
stone with abundant pea-sized chert and less-common
phosphatic nodules overlies the cap carbonate in Member
2. Moving further up section, Member 3 consists of 58 m
of medium- to thick-bedded dolostone intercalated with
concretions and layers of chert (in the lower part) and
thin-bedded marlstone (upper part). Member 4 consists of
14 m of thick black shale with scattered thin layers or
lenses of dolomite (McFadden ez al., 2008) (Fig. 1).
Historically, the YGA has been viewed as an open
marine, inner shelf setting during deposition of the
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Doushantuo Formation (Cao et al, 1989). Vernhet
(2007) further indicated that the Doushantuo Formation
in this area accumulated in an intra-shelf basin—referred to
here as the Yangtze Gorges Basin—which developed as a
result of faulting and rapid transgression following the
Nantuo (Marinoan) glaciation. It is difficult to ignore the
possibility that Doushantuo sediments accumulated in a
partially restricted setting in the early stage, but there is
chemo-, litho-, and sequence-stratigraphic evidence sup-
porting correlation of the Doushantuo Formation in the
YGA with lower Ediacaran successions elsewhere in South
China and distributed globally (McFadden ez al., 2008).
Jiang et al. (2011) proposed that the Doushantuo Forma-
tion in the YGA was deposited on the shallow margin of a
shelf lagoon. However, Bristow et al. (2009) argued for
something radically different—a non-marine basin during
the early Doushantuo stage, possibly unique from other
basins in South China. To test this hypothesis and, more
generally, explore the tectonic and depositional setting of
the YGA, we have investigated the provenance of shales
within the Doushantuo Formation.

ANALYTICAL METHODS

A total of 52 samples were collected for elemental analysis
from Members 2, 3, and 4 of the Doushantuo Formation
at the Jiulongwan section of the YGA. Stratigraphic loca-
tions for these samples are given in Table 1. Prior to
chemical analysis, all the fresh samples were further
trimmed to remove any weathered surfaces and ground to
a powder (<200 mesh) using a tungsten carbide mill at the
Institute of Geology and Geophysics, Chinese Academy of
Sciences, Beijing.

About 50 mg of each sample powder was weighed and
transferred to a Teflon bomb. Sample dissolution was car-
ried out using a three acid (i.e., HNOj;, HF, and HCIOy)
digest. The dissolved solutions were analyzed by ICP-MS at
the Key Laboratory of Ore Deposit Geochemistry, Institute
of Geochemistry, Chinese Academy of Sciences, Guiyang.
Based on duplicate analysis of samples and geostandards,
reproducibility was better than 92% for all of the analyzed
trace metals and rare earth elements. Major element con-
tents were analyzed on a Shimadzu X-Ray fluorescence
spectrometer (XRF-1500) at State Key Laboratory of
Lithospheric Evolution, Institute of Geology and Geophys-
ics, Chinese Academy of Sciences, Beijing.

RESULTS AND DISCUSSION

Geochemical approaches to provenance

The total concentration of a given element in sediment can
be subdivided into three independent fractions: detrital,
biogenic, and hydrogenous (i.e., derived from scawater)
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(Piper, 1994). Different source terrains can have different
detrital element compositions, which can be used to trace
the provenance of the sediments (McLennan et al., 1993).
During weathering, most elements within source rocks,
particularly Na, K, Ca, and Mg, are partially leached. In
contrast, detrital elements (e.g., Al, Ti, Th, Hf, Sc and Zr)
can be treated as essentially immobile elements because of
the low solubility of their oxide and hydroxide phases in
almost all low temperature aqueous solutions (McLennan
& Taylor, 1991; Maynard, 1992; Nesbitt & Wilson, 1992;
Ziemniak et al., 1993). These elements have short resi-
dence times in seawater, and they can be transferred almost
quantitatively to the sediment with little contribution from
biogenic and hydrogenous processes. Therefore, these ele-
ments, such as Ti, Th, Zr, Sc, and Al, are used to denote
the detrital fraction in shales (e.g., Boning et al., 2004).
However, some heavy minerals, such as zircon, monazite,
and allanite, can be introduced during sedimentary sorting,
which would elevate Zr, Hf, and Th concentrations in sed-
iment. Fortunately, shales from the YGA show low Zr/Sc
ratios (<10) and good correlations between Th/Sc and
Zr/Sc (Fig. 2), which point away from later addition of
Zr, Hf, and Th (McLennan et al., 1990).

As a trace element indirectly sensitive to redox, Co
might become authigenically enriched, although sediment
Co abundance is more commonly tied to the abundance of
clastic material (Tribovillard ez al., 2006). A strong correla-
tion between Co and Al,Ojz (Fig. 3) confirms the detrital
origin for the Co and supports its availability as a prove-
nance tracer.

Early diagenetic precipitation of phosphates can affect
the rare earth element (REEs) chemistry of black shales
enough to alter provenance signals (Lev ez al, 1999;
Bright ez al., 2009). Although P,Os5 contents are typically
<0.3% in the analyzed Doushantuo Member 2 samples
(Table 1), some samples do have higher P,Os contents.
Therefore, we have chosen not to use REEs as provenance
tracers.

Provenance of the Doushantuo Formation

Figure 3 shows strong correlations among the concentra-
tions of Co, Th, Zr, TiO,, and Al,O3 in sedimentary rocks
from the Doushantuo Formation but with two discrete tra-
jectories in the cross-plots. Member 2 in the YGA shows a
slope very different than those for Members 3 and 4,
potentially suggesting fundamentally different sources, and
these differences lie at the heart of our conclusions. Com-
pared to Members 3 and 4, Member 2 has higher Co, Ti,
and Zr and lower Th when normalized to Al content.
Ti/Al ratios support a mafic sediment source for Mem-
ber 2 of the Doushantuo Formation. The Al in igneous
rocks resides mostly in feldspars, while the Ti lies within
mafic minerals (e.g., olivine, pyroxene, hornblende, biotite,
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Fig. 2 Plot of Th/Sc vs. Zr/Sc for shales and carbonates of Doushantuo
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tal crust formed in interval of 2.5-1.8 Ga), AFV (average of the Archean
felsic volcanics), AMV (average of the Archean mafic volcanic rocks). Data
sources for Neoproterozoic basalts and mafic-ultramafic dykes are provided
in the Supplementary Information.

and ilmenite). Thus, Al;O3/TiO, ratios can be useful as
proxies for distinguishing among the different provenance
relationships for sedimentary rocks (e.g., Hayashi et al.,
1997). AlLO3/TiO, ratios range from 3 to 8 for mafic
igneous rocks, 8 to 21 for igneous rocks of intermediate
composition, and 21 to 70 for felsic igneous rocks. There-
fore, ratios of AlL,Oz to TiO, for Member 2 ranging
between 7 and 10 (Table 1) point to a dominantly mafic
source. Similarly, as felsic rocks are enriched in Th and
depleted in Zr, low Th/Al,O3; and high Zr/Al,O3 ratios
in Member 2 argue for a significantly more mafic source
terrain in the lower compared to the upper portion of the
Doushantuo Formation.

Th/Sc ratios can also effectively fingerprint provenance
relationships in sedimentary rocks, especially for igneous
sources (McLennan ez al, 1993). Figure 2 shows the
strong correlations between Th/Sc and Zr/Sc expressed in
our data. However, the slope for Member 2 is much lower
than that for Members 3 and 4. In Member 2, the Th/
Sc-Zr/Sc relationship follows a trend spanning from aver-
age Archean mafic volcanic rocks (AMV) to average
Archean felsic volcanics (AFV), suggesting inputs derived
from discrete igneous sources. Furthermore, Th/Sc ratios
are very low in Member 2 (<0.4) (Table 1), falling close to
the ratio for AMV. McLennan et al. (1993) argued that
very low sedimentary Th/Sc ratios (<1.0) are commonly
an expression of mafic—ultramafic provenance. Data for
Neoproterozoic mafic—ultramafic rocks on the Yangtze
Block are plotted on Fig. 2, revealing a trend similar to
that of Member 2 but with a larger range. Therefore, the
sedimentary rocks in Member 2 can reasonably be attrib-
uted to a mafic-to-ultramafic source terrain. Th/Sc ratios
in Members 3 and 4 are much higher than those for Mem-
ber 2 (0.8-1.8) (Table 1) and suggest a common Th-rich
provenance.
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Lastly, abundance of Th and Hf tracks felsic sources,
whereas concentrations of Co reflect sources of mafic-to-
ultramafic composition. Thus, Th-Hf~Co triangular plots
are another tool available for distinguishing the provenance
relationships of sedimentary rocks (Jahn & Condie, 1995).
Data for Neoproterozoic mafic—ultramafic rocks on the
Yangtze Block are also plotted on Fig. 4. In this figure,

Hf

% Member2
Neoproterozoic basalts
Neoproterozoic mafic-ultramafic dykes

a Member3d a Member 4

Fig. 4 Th-Hf-Co diagrams (after Jahn & Condie (1995)) for shales and car-
bonates of Doushantuo Formation. NASC, North American Shale Compos-
ite; PAAS, Post-Archean Australian Shale; TON, tonalite; GR, granite; TH,
tholeiite; KOM, komatiite. Lines connect the four end members used in the
mixing calculations of Condie (1993). Data sources for Neoproterozoic
basalts and mafic-ultramafic dykes are provided in the Supplementary
Information.
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the data for Member 2 lie very close to the mafic—ultra-
mafic zone, and the trend and range are also similar to
those of Neoproterozoic mafic—ultramafic rocks on the
Yangtze Block. In contrast, Members 3 and 4 fall in the
field for Phanerozoic shales close to the values for PAAS
(post-Archean Australian shale) and NASC (North Ameri-
can average shale) (Condie, 1993).

Granitoids and coeval mafic-ultramafic intrusions dated
at ~825 Ma are distributed over a wide area of
>1000 km x 700 km on the Yangtze Block (Li et al,
2003) (Fig. 5) and may have been an important source of
sediments to the YGA. In addition to the widely exposed
Neoproterozoic mafic—ultramafic dykes, the Yiyang komati-
itic basalts and Bikou basalts are found on the Yangtze
Block (Li et al., 2003; Wang et al., 2007, 2008). There are
strong geochemical between the
~825 Ma Yiyang komatiitic basalts located about 200 km
southeast of the Jiulongwan section and the sedimentary

similarities residual

rocks of Doushantuo Member 2. The Yiyang basalts have
relatively uniform Th/Zr (0.04-0.05) and Ti/Zr (51-55)
ratios (Table 2) that fall in the same ranges as those for
Member 2 (Th/Zr, 0.03-0.04; Ti/Zr, 46-55) (Table 2).
Therefore, it is tempting to suggest that volcanics similar to
the Yiyang basalts were an important source to the YGA.
The current distribution of Yiyang komatiitic basalts is lim-
ited, and there is currently a large paleogeographic separa-
tion between the Yiyang komatiitic basalts and the Yangtze
Gorges Basin (Fig. 5). However, it is possible that these
voluminous continental flood basalts were widely distrib-
uted in the Neoproterozoic and thus could have been an
important sediment source to the YGA. Nevertheless, we
note that the provenance tracers simply require a strongly
mafic source for the sedimentary rocks of Doushantuo
Member 2 in the YGA—they do not require that the Yiyang
basalts are the source.

Fig. 5 Simplified map showing distribution of
the Neoproterozoic mafic-ultramafic rocks on/
around the Yangtze Block (after Li et al.
1 (2003)).
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To recap, provenance tracers in the Doushantuo Forma-
tion from the YGA indicate that sediments overlying the
cap carbonate reflect two distinct sources. Member 2 was
derived from surrounding Neoproterozoic mafic—ultramafic
rocks, and Members 3 and 4 were likely sourced from recy-
cled sediments with an average shale composition, and
these differences are certain to have influenced the strati-
graphic distribution of clay minerals within the section.
Because Member 3 is carbonate-dominated, the use of
detrital proxies is less straightforward. However, the car-
bonate inputs can be thought of as diluting the back-
ground siliciclastic flux. Further, and most importantly,
there is no significant change in the detrital tracers within
Member 3 or when moving into the more siliciclastic-rich
Member 4. Therefore, it is reasonable to assume that there
is a significant shift in the composition of the detrital flux
between Members 2 and 3.

Tracing the origin of trioctahedral clays in the Yangtze
Gorges area

Because saponite, a trioctahedral smectite, was found only
in the cap carbonate and the mudstones of Member 2 of
the Yangtze Gorges sections, Bristow ez al. (2009) argued
for a non-marine basin in the YGA during the early stages
of Doushantuo deposition and that this lacustrine environ-
ment might have been hospitable to early animals. Triocta-
hedral smectites do commonly form in alkaline lacustrine
(pH > 9) and in isolated hypersaline marine settings.
However, as mentioned earlier, these clays also commonly
form during the weathering of mafic and ultramafic rocks
(Smith, 1962; Meunier, 2005; Velde & Meunier, 2008).
Our elemental evidence for a mafic-to-ultramafic sediment
source for shales of the YGA coincides stratigraphically
with the distribution of the saponite clays and is consistent
with a volcanic precursor for those clays. Their up-section
disappearance, in phase with a temporal shift to a very dit-
ferent sediment source, suggests a volcanic precursor rather
than a lacustrine origin for the YGA saponite. In the Yan-
gtze Gorges area, however, a semi-restricted shelf or
lagoon in the early Doushantuo stage (Jiang et al., 2011)
may have favored deposition of sediments with a local
provenance signature rather than a shale with an average
crustal composition, which is expected for truly open-
ocean shelf sediments.

We propose that the trioctahedral smectite in the YGA
was produced by weathering of mafic—ultramafic rocks.
Weathering of different igneous minerals can lead to difter-
ences in the resulting smectite. For example, breakdown of
plagioclase and alkali feldspars commonly leads to forma-
tion of pseudomorphic dioctahedral smectite (e.g., mont-
morillonite), while weathering of Fe- and Mg-rich minerals
(e.g., biotite or pyroxene) pseudomorphic
replacement by trioctahedral smectite such as saponite.

results in

Weathering of acid and intermediate igneous rocks and
more silicic metamorphic rocks produces a predominance
of dioctahedral smectites, whereas more mafic/basaltic vol-
canics and volcaniclastics and metabasites tend to produce
trioctahedral smectites (Chang et al., 1986; Christidis &
Dunham, 1997). Although weathering of mafic volcanics
commonly leads to formation of a mix of trioctahedral and
dioctahedral clays, similar to what are found in most alka-
line lakes, there have been reported cases of formation of
predominantly trioctahedral clays (See Tables S1, S2, and
S$3 in Supplementary Information).

Weathering of mafic volcanics involves many steps. Tri-
octahedral clays are the dominant products during the early
stages. With increasing weathering intensity, these triocta-
hedral clays can destabilize, vielding dioctahedral, Fe-rich
clays in the later stages (Smith, 1962; Meunier, 2005; Vel-
de & Meunier, 2008). The key to limiting later weathering
is rapid burial and high weathering rates. It is reasonable
to imagine that there would have been minimal stabiliza-
tion and high rates of erosion in a glacially sculpted land-
scape lacking any land plants.

Germanium systematics in Member 2 of the Yangtze
Gorges sections also suggests a transported origin for the
trioctahedral clays. Clays in Member 2 were found to have
variable and very high Ge/Si ratios (>>10 pmol mol™')
(Shen et al., 2011). Such ratios can reflect co-deposition of
detrital clays with Ge-rich, Si-poor organic complexes
(Shen ez al., 2011). Ge-rich organic complexes are com-
mon in riverine systems (e.g., Viers et al., 1997). Accord-
ingly, high variability in Ge/Si molar ratios is likely linked
to varying degrees of Ge enrichment during transport of
the initial detrital clay.

Combined geochemical-sedimentological evidence also
points toward continental weathering of a volcanic precur-
sor rather than alkaline conditions in a lake (or even
restricted marginal marine setting) to explain the trioctahe-
dral clays in the YGA. The common presence of phosphatic
sediments indicates active phosphogenesis at the time of
deposition (Zhou et al., 2007; McFadden ez al., 2009),
and this process provides another important paleoenviron-
mental constraint. Incorporation of carbonate ion (CO%‘)
into sedimentary carbonate fluorapatite (CFA) increases
the mineral’s solubility (Jahnke, 1984; Glenn ez al., 1994),
and the concentration of phosphorous required for CFA
precipitation increases exponentially as more CO?Z™ is
substituted into the sedimentary apatite structure (Jahnke,
1984). The predominance of CO3~ expected at high pH
will dramatically increase the difficulty of forming CFA
under alkaline conditions. In this light, it is not surprising
that there are no reports of active phosphogenesis in
alkaline, saponite-forming lakes (Table S2), and so the sig-
nals for active phosphogenesis in the YGA sections point
away from deposition in an alkaline lake or even under
extremely alkaline restricted marine conditions. Also, most

© 2012 Blackwell Publishing Ltd



saponite-forming alkaline lakes (85%) are associated with
evaporite minerals (Table S2), evidence for which is lacking
from the YGA.

Lastly, the occurrence of saponite within submembers
C1 and C3 of the cap carbonate (Bristow et al., 2009) also
argues against an alkaline lake. C3 at the top of Member 1
and the basal carbonates of Member 2 are very similar, and
so correlation between C3 in the YGA and cap carbonates
distributed globally can be difficult. However, the global
correlation with C1 is not in doubt. As the C1 carbonate
facies shows many similarities to other caps found through-
out the world in the same stratigraphic position relative to
Marinoan-aged glacial deposits, including analogous C iso-
tope trends, the marine origin for Cl in the YGA has
never been questioned. Therefore, the presence of saponite
within that facies argues against a lacustrine origin and is
consistent with the possibility of detrital inputs into the
cap-forming environment.

CONCLUSIONS

The collective data point toward a detrital origin for sapo-
nite in the lower Doushantuo Formation of the Yangtze
Gorges area derived from local/regional weathering in
adjacent continental areas dominated by mafic—ultramafic
volcanic rocks. We propose that these arguments move the
favored depositional interpretation of the lower Doushan-
tuo and its bountiful acanthomorphic acritarch fossils, and
thus potential evidence for early animal, back to a shallow
marine setting, such as a shelf or lagoon. The geochemical
record in the Yangtze Gorges area is entirely consistent
with the marine depositional setting originally proposed
based on sedimentological and basin analysis.
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