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Based on researches of Baiyao (1995) and Zhang and Xu (2001), this paper proposes an improved 2DMT Zohdy-Oldenburg direct
inversion method, in the least-square sense, embodying the features of Zohdy’s ratio method and Oldenburg’s difference method,
in the condition of rugged topography, with phase information. It bypasses large calculations of the Jacobian matrix and large
sparse linear systems of equations and enables direct modifications and comparisons of the model parameters. According to the
calculation and analysis of examples, it shows faster convergence and higher precision. In contrast with the conventional linear
inversion, the calculation speed of this new method can be increased by more than 10 times.

1. Introduction

Calculating Jacobian matrix and solving large systems of
linear equations are required in conventionalmagnetotelluric
(referred to later as MT) linear or nonlinear optimized
inversion method [1–4]. It is imaginable that the calculation
is very complicated and the systems of equations are often ill
conditioned.Therefore in this paperwe think it is necessary to
find a quick and effective inversion method to solve practical
problems in engineering projects.

Zohdy’s [5] method for the inversion calculation of
direct-current resistivity sounding method (1989) converts
polar distance (AB/2) to equivalent depth and modifies
the model resistivity with the ratio between forward curve
and measured curve to eliminate errors caused by zero-
order asymptotic inversion (ratio method). This is called
the asymptotic iterative inversion. Oldenburg and Ellis
[6] in 1991 also proposed an iterative inversion method
for MT studies, which modifies the model resistivity and
model depth with the difference, calculated from Bostick,
of forward result data and measured data of the prediction
model inversion (difference method). Zohdy’s method
is to modify the model resistivity with ratio method, so
the rate of iterative convergence is apparently slower than
that of Oldenburg’s method. In Zohdy’s iterative process,

sometimes the model modification may be too much that
the fitting errors will diverge. To solve this problem, two
papers authored, respectively, by Shizhe and Bin (1995)
[7, 8] suggest that one correction factor should be added
to Zohdy’s method to control the step size which modifies
the model resistivity. This inversion method is named as the
curve comparison. Baiyao (1995) [9] repeated his study on
the methods used by Zohdy and Oldenburg and proposed
a least-square-sense-based direct inversion method, which
combines Zohdy’s ratio method with Oldenburg’s difference
method by filling longitudinal conductivity in the model
grid and applies the combination in the inversion of direct-
current resistivity sounding method [10] and MT sounding
method [11]. On the basis of researches of Shizhe and
Bin (1995) [7, 8] and Weidelt’s MT impedance phase and
apparent resistivity theory [12], Zhang and Xu [13, 14] added
impedance phase information to Zohdy’s ratio method and
thus improved the rate of convergence in its iterative process.

This shows that the MT direct inversion, bypassing cal-
culating Jacobian matrix and solving large systems of linear
equations, directly modifying and providing comparisons
for the model parameters, can fully rival Bostick inversion.
Therefore, to solve practical problems like slow speed of
inversion and poor fitting precision found in engineering
projects, this paper, based on previous studies, aims to
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improve the direct inversion method, namely, to propose an
improved 2DMTZohdy-Oldenburg direct inversionmethod
with phase information.

2. Improved Zohdy-Oldenburg Direct
Inversion in the Least-Square Sense

Suppose that there are 𝑁 parameters of a geoelectric pre-
diction model, and they are m = (𝑚

1
, 𝑚
2
, . . . , 𝑚

𝑁
)
𝑇. Their

relationship with surface observed values,𝑀
𝑎
, is as follows:

𝑀
𝑎
= 𝑀
𝑐
(m) + 𝑂 (m) . (1)

In this equation, 𝑀
𝑐
(m) means theoretical observed values

obtained from the forward computation of𝑁model param-
eters, and 𝑂(m) means errors between observed values and
theoretical values.

To obtain the result 𝑂(m) ≈ 0, that is to say, the errors
between observed values 𝑀

𝑎
and theoretical values 𝑀

𝑐
(m)

can reach a certain degree of precision,multiple iterations and
modifications ofm, parameters of the geoelectric model, are
often needed before a group of optimized m are produced.
This is the general process of geophysical inversion.

During the 𝑘th iterative calculation, for the prediction
modelm(𝑘), we expand (1) to Taylor series and neglect terms
which contain higher than second power in Δ𝑚(𝑘)

𝑗
= 𝑚
𝑗
−

𝑚
(𝑘)

𝑗
, and then we get
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Δ𝑚
(𝑘)

𝑗
. (2)

When there are𝑀 observed data, in matrix form, the above
equation can be put into

M
𝑎
= M(𝑘)
𝑐
+ A(𝑘)Δm(𝑘), (3)

where A(𝑘) is the𝑀×𝑁matrix, the Jacobian matrix (partial
derivative matrix).

Establishing the objective function is often needed in
conventional linear inversions:

𝜑 (m) = 󵄩󵄩󵄩󵄩󵄩M𝑎 − (M
(𝑘)

𝑐
+ A(𝑘)Δm(𝑘))󵄩󵄩󵄩󵄩󵄩

𝛼

, (4)

where 𝛼 is the matrix norm, and when 𝛼 is 2, it becomes the
least-square method. To make the objective function 𝜑(m)
tend to minimum and thus determine the amount of the
model parameters’ modificationΔm, calculating the Jacobian
matrix and solving systems of linear equations are needed.
This kind of inversion is burdened with large calculation and
often contains ill-conditioned systems of equations.

To avoid this problem, we introduce the Zohdy-
Oldenburg direct inversion method, which can also be called
the asymptotic iterative method. If we replace the A(𝑘) in
the Jacobian matrix with B(𝑘), the objective function in (4)
becomes

𝜑 (m) = 󵄩󵄩󵄩󵄩󵄩M𝑎 − (M
(𝑘)

𝑐
+ B(𝑘)Δm(𝑘))󵄩󵄩󵄩󵄩󵄩

𝛼

. (5)

And when we use the second-order norm, this turns into a
question about the least-square method, and its solution is

Δm(𝑘) =W(𝑘) (M
𝑎
−M(𝑘)
𝑐
) , (6)

where W(𝑘) = (B(𝑘))−1 and Δm(𝑘) = m(𝑘+1) − m(𝑘) and
therefore the following equation can be derived:

m(𝑘+1) = m(𝑘) +W(𝑘) (M
𝑎
−M(𝑘)
𝑐
) . (7)

To keep the algorithm from converging, a correction
factor 𝑐 (𝑐 ≤ 1) will be added to (7) to limit the step size
of modification. Thus we can obtain the iterative formula
of Zohdy-Oldenburg direct inversion method in the least-
square sense.

In this case, when it comes to the 𝑗th model parameter,
the inversion formula for (𝑘 + 1)th iterative calculation is

𝑚
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𝑗
= 𝑚
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) . (8)

When 𝑐 = 𝑊
𝑗
= 1, (8) becomes Oldenburg’s asymptotic iter-

ative method, which modifies the model with the difference
method.
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, (8) turns into
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. (9)

If 𝑐 = 1, (9) turns into Zohdy’s asymptotic iterative method,
which modifies the model with the ratio method.

Hence we can conclude that the improved Zohdy-
Oldenburg direct inversion has features of asymptotic itera-
tive method of the two scholars, ensuring that the algorithm
in the iterative process can achieve faster convergence and
higher stability of data.

3. Two-Dimensional Improved Zohdy-
Oldenburg Direct Inversion

3.1. Two-Dimensional Direct Inversion. In the 2D inverse
modeling of MT, we adopt an improved Zohdy-Oldenburg
direct inversion method. The geoelectric prediction model’s
parameter, m = (𝑚
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, 𝑚
2
, . . . , 𝑚

𝑁
)
𝑇, is divided into two

parts, the resistivity 𝜌 = (𝜌
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)
𝑇 and the depth

h = (ℎ
1
, ℎ
2
, . . . , ℎ

𝑀
)
𝑇. So (9) can be changed to the MT

2D improved Zohdy-Oldenburg direct inversion iterative
formula:
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Equation (10) is the iterative formula for the improvedZohdy-
Oldenburg direct inversion and gives resistivity inversion of
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the model. In this formula, 𝜌(𝑘)
𝑖,𝑗

stands for the true resistivity
(or called intrinsic resistivity) of 𝑘th model at 𝑖th sounding
point, of 𝑗th layer; 𝜌

𝑎𝑖,𝑗
the measured apparent resistivity at

𝑖th sounding point, 𝑗th frequency point; 𝜌(𝑘)
𝑐𝑖,𝑗

the theoretical
apparent resistivity of 𝑘th model at 𝑖th sounding point, 𝑗th
frequency point; in this paper the correction factor 𝑐

1
= 0.5.

Equation (11) is the iterative formula for the improved
Oldenburg’s iterative inversion and gives model depth inver-
sion. In this formula, ℎ(𝑘)

𝑖,𝑗
represents the depth of 𝑘th model

at 𝑖th sounding point, of 𝑗th layer; ℎ
𝑎𝑖,𝑗

the apparent depth
at 𝑖th sounding point, of 𝑗th layer (calculated from Bostick’s
inversion formula); ℎ(𝑘)

𝑐𝑖,𝑗
the theoretical apparent depth of

𝑘th model at 𝑖th sounding point, of 𝑗th layer (calculated
fromBostick’s inversion formula); in this paper the correction
factor 𝑐

2
= 0.5𝑐

1
.

3.2. Two-Dimensional Direct Inversion with Phase Informa-
tion. Zhang and Xu [14] and Weidelt [12], 1972, derived the
approximate relationship between MT apparent resistivity
and impedance phase:

𝜑 (𝑓) ≈
𝜋

4
(1 +

𝑑 lg 𝜌
𝑎
(𝑓)

𝑑 lg𝑓
) . (12)

In this relationship, 𝑓 represents the frequency, 𝜑(𝑓) the
impedance phase, and 𝜌

𝑎
(𝑓) the apparent resistivity.

If𝐷(𝑓) = 𝑑 lg 𝜌
𝑎
(𝑓)/𝑑 lg𝑓, then

𝐷(𝑓) ≈
4

𝜋
𝜑 (𝑓) − 1. (13)

Bostick inversion formula is already known, so we get

𝜌 (𝑓) = 𝜌
𝑎
(𝑓)

1 − 𝐷 (𝑓)

1 + 𝐷 (𝑓)
, (14)

where 𝜌(𝑓) stands for the true resistivity in Bostick inversion
formula.

When we plug (13) into (14), we obtain the inversion
formula of impedance phase:

𝜌 (𝑓) = 𝜌
𝑎
(𝑓)(

𝜋

2𝜑 (𝑓)
− 1) . (15)

When small changes of impedance phase bring changes to
resistivity, namely, both sides of (15) take a derivative with
respect to 𝜑(𝑓), the result is

𝑑𝜌 (𝑓)

𝑑𝜑 (𝑓)
= 𝜌
𝑎
(𝑓)
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2
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Ignoring the local minimum of differential, we find that (16)
turns into
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2
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If we plug (17) into (10), the iterative formula of Zohdy’s direct
inversion, we get
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2

.

(18)

Equation (18) is the improved iterative formula with phase
information for Zohdy’s direct inversion. In this equation,
𝜑
𝑎𝑖,𝑗

stands for the measured impedance phase at 𝑖th sound-
ing point, 𝑗th frequency point;𝜑(𝑘)

𝑐𝑖,𝑗
the theoretical impedance

phase of 𝑘thmodel at 𝑖th sounding point, 𝑗th frequency point.
The model depth inversion still uses (11), the improved

iterative formula for Oldenburg direct inversion. If we put
(18) and (11) in the simultaneous form, then we will obtain
the 2DMT improvedZohdy-Oldenburg direct inversionwith
phase information.

3.3. Calculation Method of Direct Inversion. The improved
Zohdy-Oldenburg direct inversion is based on the direct
inversion of Zohdy and Oldenburg, and it constructs the
initial model of inversion with Bostick inversion formula and
combines the formulas of Zohdy and Oldenburg simultane-
ously while it inverses the model resistivity and model depth.
This method, featuring faster speed, higher precision, and
faster convergence, can tackle a series of problems caused by
solving large sparse Jacobian matrix.

Process of the improved Zohdy-Oldenburg direct inver-
sion is as follows.

Step 1. Use Bostick inversion formula to calculate Bostick
true resistivity and layer depth of each electric horizon,
and fill 2D initial prediction model in the mesh model and
perform a forward computation is as follows.

Step 2. Compare the measured apparent resistivity with
the theoretical apparent resistivity obtained from the for-
ward computation to check whether the precision can meet
requirements. If the answer is yes, then it is certain that the
prediction model is the result of the inversion.

Step 3. If not, modify the model parameters with Zohdy-
Oldenburg iterative formula and obtain a new 2D prediction
model. Conduct Bostick inversion, and get true resistivity
and layer depth of each electric horizon. Refill the new 2D
prediction model in the mesh model and again perform a 2D
forward computation.

Step 4. Return to Step 2.

The fitting error between the measured apparent resistiv-
ity with the theoretical apparent resistivity will adopt mean
square error; that is to say,

Error(𝑘) = √ 1

NP × 𝑁

NP
∑

𝑖=1

𝑁

∑

𝑗=1

(

𝜌
𝑎𝑖,𝑗
− 𝜌
(𝑘)

𝑐𝑖,𝑗

𝜌
𝑎𝑖,𝑗

)

2

, (19)
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Figure 1: H-type MT cross-sectional model.
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where Error(𝑘) stands for the 𝑘th prediction model’s mean
square error between the measured apparent resistivity and
the theoretical apparent resistivity, NP the number of mea-
suring points, and𝑁 the number of frequencies.

4. Analysis of Examples

4.1. One-Dimensional Layered MT Model. Figure 1 is the H-
type MT cross-sectional model of horizontally layered earth
(3 layers), which is nonproportional and for illustration only.
The resistivity and the layer thickness of the first layer are,
respectively, 100Ω⋅m and 500m; for the second layer, they
are 10Ω⋅m and 500m; the third layer’s resistivity is 1000Ω⋅m.
The computation domain is 0∼4 km, the dot pitch is 100m,
and it totaled 41 measuring points. The range of frequency is
103 ∼10−3Hz, it totaled 61 frequency points, and the sampling
interval is base-10 logarithms.

Figure 2(a) is the inversion result of apparent resistivity,
in which the horizontal axis represents depth (depth, unit: m)
while the vertical axis represents resistivity (𝜌, unit: Ω⋅m);
Figure 2(b) is the curve graph of inversion fitting error, in
which the horizontal axis represents iteration times and the
vertical axis represents fitting error.

As can be seen from the inversion result of TE mode
and TMmode, the anomalies of H-type stratum are revealed
clearly. In the TE mode inversion result, the iteration times
are 9, fitting errors percentage is 3.9%, and it takes 623 s; as for
the TMmode inversion result, the iteration times are 9, fitting
errors percentage is 6.2%, and it takes 410 s. The maximum
relative error between these 2 modes is 5.3% and the mean
square error is less than 2%.

4.2. Rugged Topography 2D Structural Model. Figure 3 is the
rugged topography 2D structural model. The largest drop
in the rugged topography is 500m, which contains faults
and high-resistivity and low-resistivity layers; the measuring
points cover 0∼20 km, the dot pitch is 200m, and it totaled
101 measuring points; the frequency is within the common
frequency spectrum of a V8 electrical prospecting apparatus,
102.5 ∼10−2.96Hz, the sampling interval is base-10 logarithms,
and it totaled 38 frequency points.

Figure 4 shows the cross-sectional view of inversion
results, in which the horizontal axis represents measuring
point location (𝑋, unit: km) and the vertical axis depth
(Depth, unit: km); Figures 4(a) and 4(b) are apparent resistiv-
ity inversion results of TE mode and TM mode, respectively,
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Figure 4: Cross-sectional view of inversion results.

while Figures 4(c) and 4(d) are apparent resistivity inversion
results of TE mode and TMmode with phase. Figure 5 is the
fitting error curve of inversion iteration, in which the hori-
zontal axis represents number of iterations or iteration times,
while the vertical axis represents fitting errors. Figure 5(a) is
the comparison curve of fitting error of TE mode inversion
iteration with and without phase while Figure 5(b) is the
comparison curve of fitting error of TM mode inversion
iteration with and without phase.

From the above cross-sectional view of inversion results,
it can be seen that the impact of rugged topography is
eliminated, and inversions with topography of TE mode and
TMmode are able to reflect locations and anomalies of faults
and high-resistivity and low-resistivity layers. But it fails to
reflect the second low-resistivity layer in the middle area of
the figure, due to the equivalence phenomenon in geophysics.

In the TE mode inversion without phase, the iteration
times are 15 and the fitting error is 6.2%. In the TE mode
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Figure 6: Geoelectric cross section model with abnormal body under rugged topography.

inversion with phase, the iteration times are 17 and the fitting
error is 5.7%. In the TM mode inversion without phase, the
iteration times are 20 and the fitting error is 5.3%. In the TM
mode inversion with phase, the iteration times are 25 and the
fitting error is 2.8%.

4.3. Model with Abnormal Body under Rugged Topography.
Figure 6 shows the model with abnormal body under rugged
topography, which is nonproportional and just for the con-
venience of easier understanding. In this figure, the drop is
60m, the background resistivity is 100Ω⋅m, and it contains a
high-resistivity abnormal body of 500Ω⋅m, which is 1600m
long and 150m high, and it is 500m away from its upper top
surface to the ground surface. The measuring points cover
0∼4 km, the dot pitch is 100m, and it totaled 41 measuring
points; the frequency is 104 ∼10−2Hz, the sampling interval is
base-10 logarithms, and it totaled 61 frequency points.

Figure 7 is the cross section of the inversion result. It is a
resistivity (or intrinsic resistivity) contourmap (𝜌, unit:Ω⋅m),

in which the horizontal axis stands for measuring points
location (𝑋, unit: km) and the vertical axis depth (Depth,
unit: km). Figures 7(a) and 7(b) are apparent resistivity
inversion results of TE mode and TM mode, respectively,
while Figures 7(c) and 7(d) are apparent resistivity inversion
results of TE mode and TM mode with phase. Figure 8 is
the fitting error curve of inversion iteration, in which the
horizontal axis represents number of iteration times, while
the vertical axis represents fitting errors. Figure 8(a) is the
comparison curve of fitting error of TE mode inversion
iteration with and without phase while Figure 8(b) is the
comparison curve of fitting error of TM mode inversion
iteration with and without phase.

The key of inversions with topography lies in the relia-
bility of numerical modeling, which is influenced by topog-
raphy, in forward calculation. As can be observed from the
cross-sectional view of the inversion results, the impact of
rugged topography is significantly reduced in the TE mode
and the TM mode. And since the impact of topography on
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Figure 7: Cross-sectional view of inversion results.
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Figure 8: Fitting error curve of inversion iteration.
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TE mode is relatively small, the inversion result of abnormal
body of TE mode is better than that of TM mode. In the TE
mode inversion without phase, the iteration times are 2 and
the fitting error is 6.6%; in the TEmode inversion with phase,
the iteration times are 22 and the fitting error is 0.25%. In the
TMmode inversion without phase, the iteration times are 20
and the fitting error is 0.58%; in the TMmode inversion with
phase, the iteration times are 25 and the fitting error is 4.3%.

5. Conclusions

In this paper, the proposed rugged topography 2D MT
improved Zohdy-Oldenburg direct inversion is a asymptotic
iteration method based on the least square, so the modifi-
cation direction of this model always points to the descent
direction of the objective function. This method embodies
the features of both Zohdy’s asymptotic iteration method
(ratio method) and Oldenburg’s asymptotic iteration method
(difference method). The advantages of faster convergence
and higher precision bypass large calculations of the Jacobian
matrix and large sparse linear systems of equations and enable
direct modifications and comparisons of the model parame-
ters. In contrast with the conventional linear inversion, the
calculation speed of the new method in this paper can be
increased by more than 10 times.
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