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The compression behavior of synthetic magnesium- (Mg-) yttrium (Y) garnet Mg
3
Y
2
(SiO
4
)
3
has been investigated upto about

8.79GPa at 300K using in situ angle-dispersive X-ray diffraction and a diamond anvil cell at the beamline X17C, National
Synchrotron Light Source, Brookhaven National Laboratory. No phase transition has been observed within the pressure range
investigated.The unit-cell parameters and volume decreased systematically with increasing pressure, and a reliable isothermal bulk
modulus (𝐾

𝑇0
) and its pressure derivative (𝐾󸀠

𝑇0
) were obtained in this study. The values of zero-pressure volume 𝑉

0
, 𝐾
0
, and 𝐾󸀠

0

refined with a third-order Birch-Murnaghan equation of state are𝑉
0
= 1727.9 ± 0.2 Å3,𝐾

𝑇0
= 145 ± 3GPa, and𝐾󸀠

0
= 8.5 ± 0.9. If𝐾󸀠

𝑇0

is fixed at 4, 𝐾
𝑇0

is obtained as 158 ± 2GPa.

1. Introduction

Garnets are an important constituent of the uppermantle and
mantle transition zone of the Earth and play a fundamental
role in high pressure and high temperature petrogenetic
processes [1, 2]. Garnets are also important components of
subducted oceanic crust, and it is suggested that garnet-rich
subducted crust can be gravitationally trapped in the low-
ermost part of the mantle transition zone [3–6]. Therefore,
accurate knowledge of the physical properties of garnets is
essential to infer appropriate compositional models for the
upper mantle and mantle transition zone of the Earth. In
addition, garnet is the major host of the rare-earth element
(REE) both in metamorphic rocks and mantle rocks, and
the latter may undergo partial melting in the mantle [7].
Thus, there is a considerable interest in the study of the
thermodynamic behavior of REE in garnet that could help
to understand the evolution of REE patterns in magmas and
in the residual solids [7–9], especially garnets in igneous and
metamorphic rocks.

Garnets have the general formula X
3
Y
2
(SiO
4
)
3
, cen-

tered cubic lattice (space group Ia–3d), and display 8-fold
dodecahedral (X), 6-fold octahedral (Y), and tetrahedral (Si)
crystallographic sites.This unique behavior makes the garnet
structure flexible in accommodating various chemical sub-
stitutions with different ionic radii, suggesting that garnets
could be composition diverse where X = Mg2+, Fe2+, Ca2+,
Mn2+, Y3+; Y = Al3+, Fe3+, Cr3+, and Y3+. Chemical substi-
tutions at octahedral and triangular dodecahedral sites may
change the relative bond lengths/interatomic distances and
angles, which will result in affecting their elastic properties
[6].

Yttrium is a silvery-metallic transition metal chemically
similar to the lanthanides, and it has often been classified
as a “rare earth element”. Yttrium is almost always found
combined with the lanthanides in rare-earthminerals [10, 11].
It is used in the production of a large variety of synthetic
garnets [12], and yttria is used to make yttrium iron garnets
(Y
3
Fe
5
O
12
, YIG), which are very effective microwave filters.
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YIG is also very efficient as an acoustic energy transmitter and
transducer [13]. Yttrium aluminium garnet (Y

3
Al
5
O
12
, YAG)

is used in a number of industrial applications, either in the
pure phase form or as a composite [14].

To date, the elastic properties of pyrope have been studied
extensively by multianvil apparatus and diamond anvil cell
[6, 15–22]. However, nowadays, there are no studies available
on the elastic behavior of rare-earth silicate garnet at high
pressure. In addition, yttrium not only can substitute for Mg
at the dodecahedral site but also can substitute for Al at the
octahedral site in the silicate garnet. In this paper, we report
the elastic measurements of magnesium- (Mg-) yttrium (Y)
garnet [Mg

3
Y
2
(SiO
4
)
3
], a synthetic rare-earth silicate garnet,

up to pressures of 8.79GPa at room temperature. Along with
the previous results for pyrope [6, 15–22], the compositional
dependence of the bulk modulus is discussed.

2. Sample and Experiment

The Mg
3
Y
2
(SiO
4
)
3
sample used in our high pressure pow-

der X-ray diffraction experiments was synthesized with a
multianvil pressure apparatus (YJ-3000T) installed at the
Institute of Geochemistry, Chinese Academy of Sciences.
Details about the apparatus have been described by Xie et al.
[23]. The pressurization system of this press consists of six
WC anvils, with their tips truncated as 23.5 × 23.5mm2,
which are simultaneously pushed by six hydraulic rams so
that high pressure is generated in the experimental assembly.
The experimental assembly, YJ-3000T, used in this study,
is schematically illustrated in Figure 1. The experimental
temperature was measured and controlled with a Pt

94
Rh
6
-

Pt
70
Rh
30
thermocouple (type B). The starting materials used

in the synthesizing experiments were stoichiometric amounts
of high purity MgCO

3
, Y
2
O
3
, and SiO

2
and were placed

one night at 800∘C for removing carbonates. The mixture
was then melted at 1400∘C which produced, after quenching,
a homogeneous glass. The homogeneous glass was crushed
into a fine powder using acetone. The starting mixtures were
encapsulated in platinum capsules.The synthesizing pressure
and temperature conditions were 4GPa and 1000∘C for 24 h.
The crystal structure of sample was confirmed by using pow-
derX-ray diffractionmethod (X’Pert ProMPD system).Their
compositions were confirmed by using electron microprobe
analysis (EPMA-1600).

In this investigation, we conducted in situ high-pressure
angle dispersive X-ray diffraction experiments at the beam-
line X17C, National Synchrotron Light Source (NSLS),
Brookhaven National Laboratory, using a 0.37677 Å X-ray
beam and CCD detector, and the beamline 4W2, Beijing
Synchrotron Radiation Facility (BSRF), using a 0.6199 Å X-
ray beam and Mar345 detector. We generated the high pres-
sure by using a symmetrical diamond-anvil cell, equipped
with two diamonds anvils (culet face diameter: 500 𝜇m) and
tungsten-carbide supports. In these high pressure experi-
ments, T301 stainless steel plates with an initial thickness
of 200𝜇m were used as gaskets, with their central part
preindented to a thickness of about 50 𝜇m and then drilled
through into a hole of 200𝜇m diameter. The finely ground

Sample
Pyrophyllite
Alumina
Magnesium

Heater
Thermocouple and insulating tube

5mm

Pt

Figure 1: Experimental assembly used in the high pressure syn-
thesizing experiments with a multianvil pressure apparatus (YJ-
3000T) installed at the Institute of Geochemistry, Chinese Academy
of Sciences.

Mg
3
Y
2
(SiO
4
)
3
powder, plus a couple of tiny ruby balls

together with a methanol : ethanol : water mixture (16 : 3 : 1
by volume) which is a hydrostatic pressure-transmitting
medium up to about 10GPa [24], was loaded into the gasket
hole. The ruby fluorescence method [25] was employed to
determine the experimental pressure. The X-ray diffraction
patterns (collecting time = 10min) were integrated to gener-
ate the conventional one-dimensional profiles using the Fit2D
program [26]. The sample was equilibrated for about 10min
before diffraction data measurement, and subsequently the
pressure was raised up to 8.79GPa. Unit-cell parameters were
refined by Le Bail fitting using the GSAS package [27, 28]
and user interface EXPGUI [29] up to 8.79GPa (Table 2).
Backgroundwas fitted using theChebyschev polynomial, and
X-ray peak shapes were fitted using the pseudo-Voigt profile
function proposed byThomson et al. [30].

3. Result and Discussion

The powder X-ray diffraction data of Mg
3
Y
2
(SiO
4
)
3
at ambi-

ent conditions revealed that this phase has a cubic structure
(Ia–3d), with unit-cell dimensions of 𝑎 = 11.9995(4) Å.
The observed and calculated X-ray diffraction patterns of
Mg
3
Y
2
(SiO
4
)
3
at ambient conditions are listed in Table 1.The

volume of Mg
3
Y
2
(SiO
4
)
3
unit cell at ambient conditions is

1727.8(2) Å3.
The high pressure X-ray diffraction data were collected

up to 8.79GPa at ambient temperature. Typical X-ray diffrac-
tion spectrums at selected pressure is shown in Figure 2.
The diffraction patterns at each pressure of the study are
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Table 1: Observed and calculated X-ray diffraction patterns of
Mg3Y2(SiO4)3 at ambient conditions.

h k l 𝑑obs (Å) 𝑑cal (Å) 𝑑obs/𝑑cal − 1

2 2 0 4.24142 4.24233 −0.00021
3 2 1 3.20735 3.20690 0.00014
4 0 0 2.99925 2.99978 −0.00018
4 2 0 2.68323 2.68308 0.00006
4 2 2 2.44947 2.44931 0.00007
4 3 1 2.35309 2.35322 −0.00006
5 2 1 2.19082 2.19073 0.00004
4 4 0 2.12145 2.12116 0.00014
6 1 1 1.94676 1.94651 0.00013
4 4 4 1.73204 1.73192 0.00007
6 4 0 1.66432 1.66398 0.00020
5 5 2 1.63324 1.63287 0.00023
6 4 2 1.60366 1.60345 0.00013
8 0 0 1.50014 1.49989 0.00017
Calculated d-spacings are based on the cubic unit-cell dimensions of a =
11.9995 Å.

Table 2: Cell parameters versus pressure for Mg3Y2(SiO4)3.

P (GPa) a (Å) V (Å3)
0.0001 11.9995 (4) 1727.8 (2)
0.70 11.9810 (8) 1719.8 (4)
1.69 11.9568 (9) 1709.0 (4)
2.62 11.9325 (9) 1699.0 (4)
3.44 11.9128 (8) 1690.6 (3)
5.14 11.8741 (9) 1674.2 (4)
6.84 11.8399 (9) 1659.7 (4)
7.97 11.8204 (9) 1651.6 (5)
8.79 11.8034 (9) 1644.4 (5)
Numbers in brackets are 1𝜎 error in last digits.

similar to one another up to 8.79GPa, with Bragg peaks
shifted to higher than 2𝜃. No phase transition occurs within
the pressure range investigated. Previous experiments have
shown that some of the rare-earth garnets become amor-
phous at high pressure and room temperature, Gd

3
Ga
5
O
12
,

Gd
3
Sc
2
Ga
3
O
12
, and Y

3
Fe
5
O
12
become amorphous at 84, 58,

and 50GPa, [31] respectively, whereas Mg
3
Y
2
(SiO
4
)
3
in this

study remains crystalline cubic up to 9GPa. In addition, the
garnets may transfer to perovskite phase at high pressure
and high temperature [32]. And for the rare-earth garnets,
the amorphous-to-perovskite phase transition requires a very
high pressure (∼80GPa) and high temperature (∼2000K)
[32, 33]. So, laser heating combined with diamond anvil cell
is needed in the amorphous-to-perovskite phase transition
study of Mg

3
Y
2
(SiO
4
)
3
for further research.

The effect of pressure on the unit-cell parameters
and volume of Mg

3
Y
2
(SiO
4
)
3

are shown in Table 2.
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Figure 2: Representative X-ray diffraction patterns of
Mg
3
Y
2
(SiO
4
)
3
up to 8.79GPa.

The pressure-volume data have been fitted to the third-
order Birch-Murnaghan equation of state (III-BM-EoS) [34]
to determine the elastic parameters

𝑃 = (
3

2
)𝐾
𝑇0
[(
𝑉
0

𝑉
)

7/3

− (
𝑉
0

𝑉
)

5/3

]

× {1 + (
3

4
) (𝐾
󸀠

𝑇0
− 4) [(
𝑉
0

𝑉
)

2/3

− 1]} ,

(1)

where 𝑉
0
, 𝑉, 𝐾

𝑇0
, and 𝐾󸀠

𝑇0
are the zero-pressure volume,

high-pressure volume, isothermal bulkmodulus, and its pres-
sure derivative, respectively. The results from a least-squares
fitting using an EosFit program [35] are 𝑉

0
= 1727.9(2) Å3,

𝐾
𝑇0
= 145(3)GPa, and 𝐾󸀠

𝑇0
= 8.5(9), respectively. When

𝐾
󸀠

𝑇0
is set as 4, the isothermal bulk modulus is determined

as 158(2)GPa. The unit-cell volume data as a function of
pressure and the compression curve calculated from these
fitted parameters are plotted in Figure 3.

To assess the quality of the Birch-Murnaghan equation
of state fit obtained from the plot of unit-cell volume against
pressure, the relationship between the Eulerian strain (𝑓

𝐸
=

0.5[(𝑉
0
/𝑉)
2/3
− 1]) and the normalized pressure (𝐹

𝐸
=

𝑃/[3𝑓
𝐸
(2𝑓
𝐸
+ 1)
5/2
]) was plotted [35], and it is shown in

Figure 4. The 𝐹
𝐸
-𝑓
𝐸
plot provides a visual indication of

which higher order terms, such as 𝐾󸀠
𝑇0
, are significant in the

equation of state. The Mg
3
Y
2
(SiO
4
)
3
data showed a relatively

large positive slope (Figure 4).This indicates that the pressure
derivative of the bulk modulus (𝐾󸀠

𝑇0
) was larger than 4.

Therefore, the value, estimated to be 8.5(9), was consistent
with the 𝐹

𝐸
-𝑓
𝐸
plot analysis.

Table 3 and Figure 3 show a comparison of this study
and the previous studies for pyrope at room temperature.
So far, the elasticity of pyrope has been studied intensively
[6, 15–22], and various reports on 𝐾

𝑇0
of pyrope converge to

𝐾
𝑇0
= 167–175GPa. The 𝐾

𝑇0
value of 145(3) GPa obtained

in this study for Mg
3
Y
2
(SiO
4
)
3
is about 15% smaller than
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) plot of the

data based on the Birch-Murnaghan equation of state.The solid line
represents the linear fit.

the values of pyrope. However, the parameters 𝐾
𝑇0

and
𝐾
󸀠

𝑇0
are usually strongly correlated in an EoSfit [36], so

we cannot just compare the bulk modulus and neglect its
pressure derivative. Therefore, we compared the results of
this study with Hazen et al. and Zou et al. by fixing 𝐾󸀠

𝑇0

to 4.0. From Table 3, we can find that the bulk moduli of
Hazen et al. [20] and Zou et al. [6] by fixing 𝐾󸀠

𝑇0
to 4.0

are 174(3) and 171(1) GPa, respectively. The 𝐾
𝑇0

value of
158(2) GPa obtained in this study for Mg

3
Y
2
(SiO
4
)
3
by fixing

𝐾
󸀠

𝑇0
to 4.0 is still about 10% smaller than the values of

pyrope by fixing 𝐾󸀠
𝑇0

to 4.0. There are two possible sources
for 𝐾

𝑇0
of this study for Mg

3
Y
2
(SiO
4
)
3
smaller than the

results of pyrope for Mg
3
Al
2
(SiO
4
)
3
. First, the ionic radius

of Al and Y is increasing [Al3+ (0.51 Å) < Y3+ (0.89 Å)].
Fan et al. [37] studied the grossular-andradite solid solution

Table 3: Elastic parameters derived from the Birch-Murnaghan
EoS of Mg3Y2(SiO4)3 garnet, as compared with previous studies of
pyrope garnet.

Sample 𝐾
0
(GPa) 𝐾

󸀠

0
Reference

Pyrope
171 (3) 1.8 (7) Sato et al. (1978) [15]
175 (1) 4.5 (5) Levien et al. (1979) [17]
172.8a 3.8 (1.0) Leger et al. (1990) [18]
174 (3) 4.0a Hazen et al. (1994) [20]
171 (2) 4.4 (2) Zhang et al. (1998) [22]
167 (6) 4.6 (3) Zou et al. (2012) [6]
171 (1) 4.0a Zou et al. (2012) [6]

Mg3Y2(SiO4)3 145 (3) 8.5 (9) This study
158 (2) 4.0a This study

aFixed at this value during data processing.
Numbers in brackets are 1𝜎 error in last digits.

using high pressure X-ray diffraction and showed the bulk
modulus of grossular-andradite solid solution decreases with
the increasing andradite content. They considered that the
ionic radii of Al3+ (0.51 Å) smaller than those of Fe3+ (0.64 Å)
had a significant influence on bulk modulus of grossular-
andradite solid solution. In addition, Liu et al. [38] also
suggested that the differences in the elastic behavior of
lead fluorapatite and calcium apatites were attributed to
the different ionic sizes of Pb2+ (1.19 Å) and Ca2+ (1.00 Å).
Second, we consider that the electronegativity number may
be another factor for this situation (1.61 for Al compared
with 1.22 for Y). Electronegativity is a chemical property that
describes the ability of an atom to attract electrons [39, 40].
An atom’s electronegativity is affected by its atomic weight
and the distance of its valence electrons from the charged
nucleus [39, 41]. The higher the associated electronegativity
number is, the greater an element or compound attracts
electrons [41]. The electronegativity is larger, the attraction
for bonding electron is stronger, and the electron density
between cation and anion is greater, resulting in the fact that
crystals have greater compressed resisted capacity [42, 43].
The ionic radius and electronegativity may be having a
significant influence on bulk modulus [41, 44]. The smaller
of ionic radius and larger electronegativity, the stronger of
attraction for bonding electron, the greater of electron density
between cation and anion, resulting in crystals have greater
compressed resisted capacity [41, 44].Therefore, we infer that
the ionic radius and electronegativity is the main reason for
the bulk moduli of this study smaller than the values of
pyrope.

4. Conclusion

The P-V measurements on a synthetic Mg
3
Y
2
(SiO
4
)
3
at

pressures up to 8.79GPa were carried out using angle-
dispersive X-ray diffraction technique. No phase transition
has been observed within the pressure range investigated.
The P-V equation of state for the Mg

3
Y
2
(SiO
4
)
3
, fitted using

the third-order Birch-Murnaghan equation of state, gives
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𝑉
0
= 1727.9±0.2 Å3,𝐾

𝑇0
= 145±3GPa, and𝐾󸀠

𝑇0
= 8.5±0.9.

The value of the bulkmodulus in this study forMg
3
Y
2
(SiO
4
)
3

is smaller than that of pyrope reported previously, which can
be attributed to the different ionic radii and electronegativity.
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