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ABSTRACT
Based on an ASTER VNIR image, we studied the applicability of the
MML-EM (Minimum Message Length Criterion-Expectation
Maximization) algorithm for land-use classification in southern
Austria. Firstly, the RVI (ratio vegetation index) and PC1 (first
principal component) bands have been utilized to enhance the
targeted information; secondly, the MML-EM algorithm and the
terrain analysis-based imagery clipping were jointly used for sur-
face type discrimination. Findings showed that the MML-EM
method can provide refined imagery classification results and
this is the first time it has been applied in this realm.
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1. Introduction

Remotely sensed (RS) data have been increasingly applied to characterize features on the
Earth’s surface for different purposes. Image classification is the most common analysis of
multispectral remote sensing data in order to produce thematic maps that provide
representation of the spatial distribution of a particular theme (Schowengerdt 2006). In
this article we will focus on land-cover classification. Its main task is to classify the pixel-
values into components, such as forest, urban, agriculture and other classes, and to
establish the relationships between them. Unsupervised and supervised image classifica-
tion techniques are the two most common methods in use (Camps-Valls et al. 2011),
including supervised maximum likelihood, neural net, support vector machine (SVM), etc.,
and unsupervised K-means, ISODATA (iterative self-organizing data), etc. (Comber et al.
2012); for high- and ultrahigh-resolution data, the literature clearly points to object-based
image analysis methods (Geneletti and Gorte 2003). The emphasis in this study, rather, is
on the statistical rules behind multispectral image classification, and to survey how to
model the joint histogram by a mixture of 2D Gaussians, corresponding to different land
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cover classes. According to Sridharan and Qiu (2013), the probability distributions of
image object-level reflectance values are often not normal, but multi-peaked due to the
physical structure of the object being analysed and the lighting condition at image-
acquisition time. This implies that some summary statistics (particularly the commonly
used ‘mean’ and ‘standard deviation’ values) can be a misrepresentation of the spectral
reflectance pattern of an object. Thus, the relevant experiments have been done only in
the pixel-oriented framework.

Thresholding is a fundamental task in image classification. The grey-level values
below or equal to the selected threshold in an enhanced image are usually classified
as a class or a real-world feature, and the values above this threshold are classified as
another class. The grey-level histogram provides readers with an appreciation of the
quality of an RS scene, i.e. whether it is low/high in contrast, or multi-modal in nature
(Swarnajyoti et al. 2011). This, in a sense, can be the theoretical basis for land-use
classification, and what really matters is setting appropriate thresholds for the histogram
using appropriate statistical analysis methods. For example, Gaussian distribution-based
statistical methods, assuming that the brightness values recorded in a given scene are
normally distributed (sometimes outliers cause the data to become skewed), especially
when the study area is extensive (Liu et al. 2017), have been widely employed in most
GIS packages for assigning thresholds for land classification – the maximum likelihood
method is an example. Panahi and Cheng (2004) noticed that none of the thresholding
methods under normality assumptions has taken into account the spatial properties of
real-world features, and spatial fractal algorithms, characterizing not only pixel-value
frequency distributions, but also the geometrical or spatial properties of the features
reflected by pixel zones in the image, were highly recommended. Fractal theory has
been successfully used to characterize spatial patterns defined on the basis of RS data,
but acting merely as a thresholding proxy it cannot provide more information about the
content of an image (Sun et al. 2006).

A threshold is a criterion that allows us to classify an image. Ju et al. (2003) and the
references therein believed that pixel-values reflecting multiple land cover types in an
enhanced image can be modelled as a mixture of subclasses, with each of them
represented by an (approximately) Gaussian/normal distribution, and naturally the
thresholds amongst them are used for image classification (Tobias and Seara 2002).
This is because a single Gaussian distribution at regional scale may not represent various
types of land cover well, and thus it is more realistic to treat the image as a mixture of
Gaussian distributions (Kurita and Abdelmalek 1992, Richards and Richards 1999). It is
well known that when the outcome is produced by many small effects acting additively
and independently, its distribution will be normal or close to normal. This is supposed to
be the case with a physically or spectrally homogeneous object/feature in an image, and
multiple objects usually produce a multimode distribution, sometimes seeming like a
skewed distribution, in which a single population (mass) may partially overlap with
another because of the spectral similarities (Zhao et al. 2016). The implication of the
Gaussian mixture model is actually beyond the thresholding issue, and it can be linked
to the scale (weight), statistical independence (separability), spectral sensitivity (the
mean value of a distribution), inhomogeneity (standard deviation), the source of false
anomalies and the probabilistic pattern of a ground feature (Zhao et al. 1994), thus
providing an unbiased approach to knowledge discovery during image classification.
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Fortunately, accurate separation of the mixed distributions has been made possible
with the help of the Minimum Message Length Criterion-Expectation Maximization
(MML-EM) algorithm, namely the unsupervised learning of a finite mixture model
(Figueiredo and Jain 2002), which is believed to among the state-of-the-art algorithms
for separating originally mixed Gaussian distributions on the histogram (Liu et al. 2011).
It can provide a holistic insight into the probability distribution patterns of the original
RS data, while it avoids several drawbacks of the classic EM (Expectation Maximization)
algorithm and can learn finite mixtures from data by selecting the number of compo-
nents in an unsupervised way (Biernacki et al. 2000). However, MML-EM is still unfamiliar
to most imagery interpreters, and there is no report validating its availability in RS
products. Around the land-use issue, what we are most concerned about is whether
MML-EM can be applied to separate various features by screening the mixed distribu-
tions of enhanced RS data. This is a question because the spectral similarities tend to
make the probability histogram featureless (Han et al. 2017a). Using ASTER (Advanced
Spaceborne Thermal Emission and Reflection Radiometer) multispectral data and taking
the Klagenfurt district of Austria as a case study, the objective of this research is to map,
for the first time in this kind of study, the present land-use status by introducing the
MML-EM model and analysis. The rangeland/agricultural land, urban or built-up land and
water are our primary concerns.

2. Material and preprocessing

2.1 Overview of the study area

The land use status constitutes a major global change driver (Guo and Gifford 2010). The
main body of the study area (Figure 1(a)) is located in the southern part of the Eastern
Alps (Nemes et al. 1997), the Klagenfurt district (State of Kärnten), southern Austria. Its
spatial range is 46°23′N – 46°40′N and 14°02′E – 14°42′E. According to the 30 m
resolution GDEM (Global Digital Elevation Model) data (downloaded from http://www.
gscloud.cn), this area covers over 1500 km2 of land with an elevation of 362 to 2231 m
(810.39 m on average) and slope of 0.00° to 83.30° (25.00° on average). As is seen in
Figure 1(b), this terrain is heavily forested, and it represents the heterogeneous char-
acteristics of land use status in Central Europe, which consists of free-standing waters,
residential areas, rangelands, bare rocks, snow-capped mountains, shrub lands, wet-
lands, forest ecosystems, as well as a variety of agricultural systems (such as fallow
land, irrigated or rain-fed field crops, cornfields, and orchards).

2.2 Data source

The ASTER data (Level 1) consist of three separate subsystems with a total of 14 spectral
bands (0.52–11.65 μm). Only the visible-near infrared (VNIR) subsystem containing three
bands (B1 (Green), B2 (Red) and B3N (NIR), from 0.52 to 0.86 μm) with 15 m spatial
resolution was involved in this research. The ASTER data (Path/Row: 191/28) were
downloaded from http://glovis.usgs.gov/ without cost, and the acquisition date was 24
August 2011, the sun azimuth 154.769566°, the sun elevation 52.476347° and cloud
coverage <1.0%. Moreover, the matched ASTER GDEM (Global Digital Elevation Model)
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data (30 m resolution) were acquired freely from www.gscloud.cn/, the relevant Google
Earth images were downloaded using the ‘Locaspace Viewer’ software and site-specific
ground validation was also conducted, using a high-definition camera and a portable
GPS receiver with 5 m accuracy.

People may question whether the three bands of ASTER are sufficient for classifica-
tion. This will be shown by the fact that even three bands would do a decent job of
classification if the spectral information is fully utilized. In addition, high-resolution
satellite/aerial digital imagery is typically used for identification of ground objects, but

Figure 1. The location of the study area on the topographic map (a) of Central Europe and on the
ASTER image (b) – bands 2, 3N and 1 in RGB.
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the restriction of its bands to the visible wavelengths often limits the relevant applica-
tion. Thus, our study may have some reference significance in this regard as well.

2.3 Image preprocessing

Based on the PIE v4.0 (Pixel Information Expert, a professional software product for RS
image processing developed by Beijing PIESAT Information Technology Co., Ltd) and
ENVI v5.3 software, pre-processing of the above data involves geometric rectification,
image cropping, reprojection and orthorectification. The images were georeferenced to
a UTM zone 33 (North Hemisphere) projection using the WGS-84 datum. At the sugges-
tion of Lin et al. (2015), atmospheric correction is dispensable for land use classification,
especially when no standard spectra were involved in the classification process, and may
produce no improvement in (unsupervised) classification accuracy. However, in this
article atmospheric correction was still executed because vegetation is preferentially
more susceptible to the atmosphere and is a background feature that we cannot avoid
(Lillesand et al. 2014).

3. Analysis methods

3.1 Image enhancement

The ASTER image improves the ability to identify various land cover types with remotely
sensed data, but extracting band combinations or band operations that give the best
results for image segmentation in most cases is difficult. There are only three bands in
the first subsystem of ASTER data, and intuitively the exploitable spectral information for
classification should be band 3N (NIR, near-infrared). This band is of diagnostic signifi-
cance for many ground objects: e.g. in comparison to a tree object (including the grass),
the peak values of a building object are often located at the lower end of the reflectance
spectrum, which is understandable as buildings reflect less in the NIR region than trees.
A similar scenario may apply to water features.

The real probability distribution pattern of an object cannot be approached if there
are more pixel values badly distorted by terrain-induced lighting intensity differences.
Here the Ratio Vegetation Index (RVI), namely the band ratio 3N/2 or NIR/R, was
employed to compensate for variations caused by the topographic shading. Findings
show that band 3N has the maximum standard deviation (i.e. information content),
2,985,484.47, and the coefficient of correlation (i.e. information redundancy) between
band 3N and 2 is at a minimum, 0.305, and their ratio (RVI) was successfully used in
identifying the vegetated areas and different reflectance levels they create. However, it
may not perform well for areas with <50% vegetation cover (Huete et al. 2000).

The PCT (principal component transformed) image was also considered here. It is
assumed that the first component of a PCT image (PC1), usually having the highest factor
loading of each input component, is connected to the textural, brightness or geomor-
phological aspects, and these can capture the essential qualities of a feature (Mars and
Rowan 2010). PC2 and PC3 were not taken into account because their histograms follow
a monomodal normal distribution. In addition, it must be cautioned that sometimes land
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cover classes with very dissimilar colour but similar brightness in the PC bands might not
be well separated.

3.2 Multimodal distribution and its applicability

The probabilistic mixture model assumes that all the data points are generated from a
mixed distribution, where the confidence that a data point belongs to a certain cluster
has a strict probability meaning (Jiang et al. 2010). Vistelius and Andrew (1960) first
proposed the ‘fundamental law of the geochemical processes’ describing the probability
distributions of concentrations of chemical elements in the earth’s crust: distributions of
the fixed stage of a geochemical process are normal, and distributions of mixed
products of several stages are (positively) skewed, forming a joint distribution in many
cases (Zhang et al. 2014). The RS data, as consistent with the geochemical data, are
structured in X-Y-Z format, where X-Y sets the spatial position (longitude/latitude) of a
pixel and Z sets the reflectance value (or DN values), so a similar scenario applies to RS
image processing (Zhao et al. 2016). Commonly, the histogram of one feature’s DN
values is unimodal and may be Gaussian, although skewing is likely (Kerroum et al.
2010). For the mixture model, multivariate Gaussian distribution is most commonly used
in statistical analysis due to its complete theory and analytical tractability, and it is also
commonly used in image classification and object detection because of the Law of Large
Numbers on which the characteristics of RS data are based (Xu and Wunsh 2005).

Han et al. (2017b) posited that the enhanced greyscale images help in formulating
the thresholding problem as a binary classification problem with a mixture of Gaussian
distributions, if an image contains two or more dominant ground features with distinctly
different (often narrow) ranges of reflectance. As seen in am), a multimodal model
usually gives a clear separation of various ground features, but two adjacent populations
can be strongly overlapped in most cases, meanwhile violating the bell-shaped normal
curve of a population (class). Figure 2(c) is such an example, showing a common
situation in the remote sensing field when trying to classify classes very similar to
each other. Muñoz-Marí et al. (2007) further reported that in some extreme cases a
mixture of two or more unimodal distributions with differing means is not necessarily
multi-peaked, and Figure 2(d) is an example. Obviously, a mixture of overlapped
Gaussian populations is a difficult problem for histogram thresholding and analysis,
and the MML-EM model and its extensions may provide an efficient solution.

3.3 The MML-EM based unsupervised classification

According to Liu et al. (2011) and references therein, the general expression of a mixed
distribution is assumed to be as follows:

p x; θð Þ¼
Xk

i¼1
αi�f x;θið Þ

where k is the number of the mixture populations; θ = (k, θ1, …, θk, α1, …, αk), θi is the
statistical parameters weight (α), mean (m) and covariance (Cov), αi is the weight
(percentage) of a population i, and

Pk
i¼1 αi = 1 and αi > 0; f(x, θi) is the probability

density function of population i. In brief, the MML-EM algorithm was put forward to
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estimate k and θi in a mixed Gaussian distribution, and it is based on ‘a MML-like
criterion which is directly implemented by a modified EM algorithm’. We have no
intention of giving the detailed algorithm process here, and readers are referred to
Figueiredo and Jain (2002). The related computer program is available from their open
MATLAB code.

EM is a widely known iterative algorithm for estimating the maximum probability for
a set of parameters of a statistical model. As its name indicates, the EM algorithm
produces a sequence of estimates {θi} by alternatingly applying two steps: computing
the conditional expectation of the complete log-likelihood (the expectation (E) step) and
updating the parameter estimates according to the maximization (M) step; EM iterates
between the ‘E’ step and the ‘M’ step until some convergence criterion is satisfied (see
details in Zhang 2004). MML gives the optimal model selection criterion to choose one
among a set of candidate modes. Considering a c-dimensional dataset y, known to have
been generated according to p (yjθ), MML leads to the following criterion (where the
minimization with respect to θ can be understood as simultaneously in θ and c, namely
the dimension of θ):

θ̂ ¼ arg min
θ

�log pðθÞ � log pðyjθÞ þ 1
2
log IðθÞj j þ c

2
1þ log

1
12

� �� �

where IðθÞ;� E½D2

θ log pðyjθÞ� is the expected Fisher information matrix and |I(θ)|

denotes its determinant (Christakos et al. 2012); θ̂ is a finite precision version of θ.

Figure 2. (a) to (d) are the mixture Gaussian schemas (bimodal) demonstrating the concept of
separating populations from background (modified after Sinclair (1991)), and t represents the
original threshold between two neighbouring populations.
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Putting all the elements together, MML-EM was designed to seamlessly integrate
estimation and model selection in a single algorithm. It avoids two major drawbacks of
classic EM: sensitivity to initialization and possible convergence to the boundary of the
parameter space. Many experimental results have indicated that it has good perfor-
mance in learning mixtures of Gaussian and mixture of factor analysers. This approach
was successfully applied for processing of ore geochemical data (Liu et al. 2011), even
when there is no mathematical or physical reason for the original data to have a mixed-
distribution pattern (Tobias and Seara 2002). The implementation of MML-EM is under
the assumption that pixel values in the input image follow a mixture normal distribution;
notwithstanding, it can process and yield new insights for ‘non-Gaussian’ data or
arbitrarily complex probability density functions, which is a common and possible
scenario in the histogram.

3.4 Extensions of the MML-EM model

People may doubt the merit of thresholding the one-dimensional histogram consisting
of highly overlapping Gaussian distributions (Figure 2), because no matter how one
defines the thresholds, there are always false-positive or false-negative errors (Richards
and Richards 1999). It is beneficial to understand the histograms in a multidimensional
space formed by the three spectral bands and relevant spectral indices, and there are
existing classification methods (e.g. the support vector machine) that are designed to
tackle this problem. These, however, are beyond the scope of the current study.

Here we will introduce a necessary extension of MML-EM. As displayed in Figure 3,
supposing there are several populations interfering with each other in the histogram of
enhanced imagery, we must define an appropriate decision threshold, so that the grey-
level values below or equal to the selected threshold can be classified as one ground
object, while the values above it can be classified as another. Nussbaum et al. (2006)
formulized the thresholding problem as a binary classification problem with a mixture of
Gaussian distributions, and the computational formula is shown below:

t ¼
m2σ21 �m1σ22 þ σ1σ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1 �m2ð Þ2 þ 2A σ21 � σ21ð Þ

q
σ21 � σ21ð Þ and A ¼ log

σ1
σ2

�m2

m1

� �

where m1 and m2 are the mean values of two adjacent populations (classes), respec-
tively, and m1 < m2; σ1 and σ2 are their standard deviations. These parameters are by-
products of the MML-EM analysis, for the (unimodal) normal probability-density curve in
Figures 2 and 3 cannot be separated and diagrammed without them.

However, there will be some misclassifications when using t for classification, because
t is located at or close to the midpoint of the overlapping domain, namely the inflection
point where two neighbouring probability curves intersect (Gao et al. 2011). In order to
avoid the overlapping domain shown in Figure 2(b–d), the adjustment threshold (T) is
highly desired, while t is regarded as the original threshold. The determination of T,
according to Nussbaum and coworkers, is only possible with the help of another
parameter – separability (J) – and its formula is given below:

J ¼ 2 1� e�B
� �

; where J 2 0; 2½ � ; and
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B ¼ 1
8

m1 �m2ð Þ2 2
σ21 þ σ21

þ 1
2
ln

σ21 þ σ21
2σ1σ2

	 


We can empirically specify that: when J < 0.5, namely Case 1 shown in Figure 3, there is
no available decision threshold; when 0.5 ≤ J < 1.25, namely Case 2 in Figure 3, the
adjustment threshold T = m2 (if the target is located in bright areas) or m1 (if in dark
areas), indicating a moderate separability; when 1.25 ≤ J < 1.75, namely Case 3,
T = (t + m2)/2 (bright) or m1 + (t − m1)/2 (dark), implying a good pairwise separability;
and when J ≥ 1.75, namely Case 4, completely separated, T = t (Wang et al. 2013). As in a
normal distribution, 99.70% of the samples will fall within ±3σ of the mean (Gao et al.
2011), so the concept of the overlapping rate (δ) between any two neighbouring
populations (noted by I and II) can be derived in the following:

δI!II ¼ m1 þ 3σ1ð Þ � m2 � 3σ2ð Þ½ �= m1 þ 3σ1ð Þ � m1 � 3σ1ð Þ½ �

δII!I ¼ m1 þ 3σ1ð Þ � m2 � 3σ2ð Þ½ �= m2 þ 3σ2ð Þ � m2 � 3σ2ð Þ½ �
Apparently, δ quantifies the proportion of how many samples in I or II fall into the
overlapping domain where the main confusion occurs (Bazi and Melgani 2010); it also
provides a deep insight into the distribution of RS data. For example, when two distribu-
tions vary both in mean and variance, δI→II (the overlapping rate from population I to II)
and δII→I (the rate from II to I) can be very different, as seen in row 12 of Table 1,
Population I is almost completely submerged in II, while only 30% of the elements in II fall

Figure 3. Different cases for the pairwise separability (J) measure. Here, I and II, III and IV, V and VI …
represent any two neighbouring populations that are approximately normally distributed; see the text
for explanations of other abbreviations.
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into the overlapping domain, and δI→II >> δII→I. The simulation experiments of Table 1 and
Figure 3 also give some examples of how to understand the pairwise separability measure
(J): keeping the standard deviation (σ) unchanged, and with increasing mean (m) value,
the separability (J) keeps on increasing while the overlapping rate (δ) keeps on decreasing;
on the other hand, keeping m unchanged, and with increasing σ, the separability
generally decreases while δ increases.

3.5 The post-classification process

It is not possible to eliminate false anomalies in terms of spectrum alone, and in order to
improve the correct interpretation ratio, here the digital terrain feature that is indepen-
dent of the spectral nature was investigated. From the topographical perspective, water,
built-up land, agricultural lands and so on are usually located on flat terrain, while
forests and large areas of rangeland are found to be present mainly on hilly terrain.
During the post-classification process, it is necessary to conduct a GDEM-based topo-
graphical analysis, so that those level terrains with slopes below 15° and relief ampli-
tudes less than 3 m can be retained or removed, and correspondingly the rugged
terrains be removed or retained. Note that the topographical feature map is a by-
product easily extractable from GDEM data based on PIE v4.0, and the relevant thresh-
olds (15° and 3 m) were determined experientially.

In addition, the ‘sieve’ module in ENVI v5.3 can remove the isolated pixels (random
noise) based on a size threshold (kernel size), and ‘clump’ is run to add spatial coherence
to existing anomaly pixels by combining adjacent similarly classified areas. As the case
may be, these two methods can be used either jointly or separately.

Table 1. A numerical simulation experiment for understanding the distribution of RS data.
(m, σ), N J t T δI→II δII→I

(0, 1),100 vs. (1,1), 100 0.00 None None 100%* 99.50%*
(0,1), 100 vs. (2,1), 100 0.00 None None 99.50%* 99.50%*
(0,1), 100 vs. (3,1), 100 1.3798 1.5373 2.2624 40.21% 56.73%
(0,1), 100 vs. (5,1), 100 1.8759 2.5352 2.5352 3.09% 2.88%
(0,1), 100 vs. (7,1), 100 1.9932 4.0042 4.0042 0.00% 0.00%
(0, 1),100 vs. (5,1.2), 100 1.8256 2.3157 2.3157 7.29% 7.62%
(0,1), 100 vs. (5,1.4), 100 1.6773 2.0549 3.4650 35.79% 16.98%
(0,1), 100 vs. (5,1.6), 100 1.5991 2.2205 3.5534 43.00% 13.86%
(0,1), 100 vs. (5,1.8), 100 1.6235 1.9467 3.3918 47.31% 8.33%
(0,1), 100 vs. (5,2.0), 100 1.5480 2.0480 3.5210 64.95% 15.39%
Case 1 in Figure 3
(30, 1.5), 70 vs. (33, 3), 150

0.00 None None 99.55%* 100%*

Case 2 in Figure 3
(0, 3), 100 vs. (10, 7), 120

0.9925 3.1931 9.4660 100%* 32.82%

Case 3 in Figure 3
(25, 1), 50 vs. (30, 1.5), 70

1.6575 26.3601 27.9576 47.73% 5.19%

Case 4 in Figure 3
(10, 4), 120 vs. (25, 1), 50

1.9716 22.0055 22.0055 0.00% 0.00%

Note: N, sample size; m, mean value; σ, standard deviation; δ, overlap rate; I is an independent normal population while
II is the other one right-adjacent to I. δI→II (δII→I) measures the proportion of samples in Population I (II) falling into
the overlap domain (m1 + 3σ1)–(m2-3σ2). The * means that the relevant populations may not be used as a class for
object recognition because their δ values exceed 90%. The Populations (distributions) I and II used as input were
randomly generated based on MATLAB, and the resulting argument values (e.g. t, T, δ, etc.) are not fixed during the
simulation runs.
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4. Processing results

4.1 Separation of cropland and water

Using bands 1, 2 and 3N in the ASTER VNIR imagery as input to PCA, the histogram of
the PC1 band is given in Figure 4(a–c)g, giving the resulting MML-EM schema. Note that
the original PC1 band (having 7,093,170 pixels) was resized (resampled) using a propor-
tionality factor of 0.35, namely the pixel size was resampled from 15 m to about 42 m
(there are 869,430 pixels left for classification). This process helped to eliminate the salt
and pepper noise in the classification results. The grey levels indicated at least three
populations (in fact four) that are normally and independently distributed, and each of
them might correspond to a real-world feature on the ground.

(1) Population (Class) I turns out to be rangelands and croplands (cornfields) and may
contain shrubs or groves. The separability between Population I and II is about 0.7220,
δI→II = 54.92%, and δII→I = 97.37%, and hence the threshold T = m1 = −691.50 was used
here. (2) Pixels in Population III and IV have formed an integrated and independent
normal distribution, representing lakes, ponds, rivers and other free-standing water
features. The J value between II and III is about 1.75, δI→II = 30% and δII→I = 37.63%,
so the recommended threshold is T = t = 2395. (3) Due to spectral similarities, quite a
few unwanted anomaly pixels have been mixed into III, most of which reflect mountai-
nous shadows (Figure 5). The weight of I (α1) is 60.50% while α3+4 is only 3.42%. The
agricultural lands are distinguishable because they usually exhibit lower reflectance
(brightness) in the PC1 imagery; however, there is probably no solution to spectrally
discriminate between ‘Agricultural lands’ and ‘Rangelands’ subclasses in I, for their
separability (J) is close to 0. Pixels reflecting urban or built-up areas are also inseparable
within Population II (Figure 4(b)).

4.2 Elimination of false anomalies

In order to eliminate as many false anomalies as possible, while retaining the real ones,
topographic analysis-based image clipping was conducted. As seen in Figure 6(a)
regarding the Water class, false anomalies pertinent to mountainous shadows were
removed completely. During the field survey, we also noticed that in sloping terrain
the main land cover types include forests, rangelands and sporadic orchards (Figure 7).
Croplands (cornfields) are mainly distributed on flat ground, and, unlike in Asia, people
in Kärnten in Austria are not in the habit of building terraces, so the application of ASTER
GDEM-derived slope masks helps to give the best results for cropland classification
(Figure 6(b)). However, this inevitably comes at the price of introducing many unwanted
‘grassland’ or ‘rangeland’ pixels. Finally, we come to the conclusion that the water-area
rate of the whole study area is at least 2.79% (namely 44.4771 km2) and the upper limit
of the cropland area is <18.57% (296.34 km2).

4.3 Extraction of the urban or built-up areas

The PCA bands become featureless in classifying the urban or built-up areas, and instead
the RVI image was considered. Its distribution histogram is given in Figure 8, which
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Figure 4. Grey histogram of the PC1 imagery (a), as well as its MML-EM schema: (b) for Populations I
and II, and (c) for IV and V. Note: (1) the computing program (in the MATLAB language) was quoted
directly from Figueiredo and Jain (2002). (2) In order to conduct the screening algorithm in MATLAB,
the original imagery in ENVI standard format was resampled (resized) using a proportionality factor of
0.35 and saved as ASCII format. (3) k represents the optimal number of populations (branches); Tn
(n = 1, 2…) is the threshold between two neighbouring populations.
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shows the preliminary MML-EM analysis result. Again the raw RVI image was resampled
using a proportionality factor of 0.350 (42 m pixel size), and there are 869,430 pixels left.
As exhibited in Figure 8(a), two main populations (classes) are discriminated, and their
separability is J = 1.1204, δI→II = 44.43%, and δII→I = 83.27%. Population I has turned out
to reflect the non- and sparsely vegetated areas mainly including waters, bare lands and
the built-up areas, and its weight α1 = 35.75%. Here we recommend using
T = m1 = 4.0082 as the classification threshold. Population II can discriminate vegetation
(including forests, grasslands and croplands) from the background. Evidently,

Figure 5. (a) The classification result derived from the MML-EM algorithm (base map: the PC1 image
(local)); (b) the cross-reference ASTER imagery (local) – bands 2, 3N and 1 in RGB. Only the northern
study region where the farmlands and natural waters concentrate is exhibited in this diagram. The
visual interpretation signs in (b) are as follows: forest: dark green; the populated area: light purple;
water: light to dark blue; agricultural land/rangeland: bright green patches; and mountain shadow:
dark tone.
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discrimination of built-up areas is only possible when there are separable subpopula-
tions coexisting within Population I.

Figure 8(b) gives the mixed distribution schema of pixels only within Population I
in Figure 8(a), which is a second MML-EM analysis. Based on visual interpretation, the
Subpopulation (Subclass) I-1 turns out to be free-standing waters exhibiting stable
spectral profiles; due to mixed reflectance, however, pixels in shallow and narrow
waters having an unstable spectral expression have been excluded (Jiang et al. 2014).
Its weight (α1-1) and average (m1-1) are 12.690% and 0.5289, respectively. As shown in
Figure 9, the Subpopulations I-2 and I-3 are a good reflection of built-up areas, and
α1-2 = 41.84%, m1-2 = 1.7,733, α1-3 = 33.68% and m1-3 = 3.0930. The separability (J)

Figure 6. The spatial distribution of natural waters (a) and croplands (including grasslands or
rangelands) (b). Note that (1) the anomalous patches are overlaid on the ASTER image (2, 3N and
1 in RGB). (2) The original anomalies of water/cropland (before masking) were spatially clumped
using an 11 × 11 kernel size because of their sparse density after the terrain analysis-based imagery
clipping/masking.

14 B. ZHAO ET AL.



Figure 7. (a) The rangelands halfway up the hill, and these are very common in the study area.
Time and location of the photo: 21 October 2017 in Friesach, Austria (46°57′13.3 9″N, 14°23′ 58.91′
′E). (b) indicates that the grove, grassland and cornfield often coexist in one place (mixed classes).
Time and location of the photo: 28 October 2017 in Klagenfurt, Austria (46°36′45.92″N, 14°15′
42.73′′E).
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between I-1 and I-2 is 1.7045, between I-2 and I-3 it is 1.4303, and between I-3 and I-
4 it is 1.307. According to the aforementioned thresholding rules, the pixel-value
range of the built-up area class should be within [T1(1.2,867), T2(3. 3,465)]. In addi-
tion, Subpopulation I-4 is more like a transitional subpopulation between the city
and the forest, reflecting clearings, urban green space, tree-lined paths, etc.

A closer scrutiny of Figure 9(a) confirmed that the shallow/narrow/impure waters
incorporated in Subpopulation I-2 are greatly reduced by applying the adjustment
threshold T1, and so are the vegetation-dominant pixels occurring in I-3. However,
there are some mixed bareland-dependent pixels which mostly come in the form of
fallow fields, exposed rocks, snow-capped mountains, etc. This is because the dark-

Figure 8. (a) the MML-EM schema of the RVI image and (b) the secondary MML-EM schema for pixels
only within Population I in (a). Note that the raw RVI image was resampled using a proportionality
factor of 0.35. Although there are fewer pixels in the input image, their standard deviation is only
1.30, implying that the resampling process has no obvious effect on the threshold value. The
meanings of the parameters marked in the diagram are the same as those in Figure 4.
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Figure 9. (a) The resulting land cover classification; (b), (c), (d) and (e) are several representative sub-
areas for cross-reference. Note: (1) anomaly patches are overlaid on the ASTER imagery (2, 3N and 1
in RGB). (2) The original anomaly pixels of water and built-up areas were empirically clumped using
a 10 × 10 kernel size, and those of agricultural areas were clumped using a 5 × 5 size. The ‘sieve’
process was also conducted to remove the isolated patches or random noise. (3) The item ‘crop land’
can be confused with grasslands/lawns. (4) (b)–(e) are true-colour Google Earth scenes.
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coloured patches in an RVI image are not specific only to built-up areas in the real world.
Based on PIE v4.0, here the postprocessing procedure is to overlay the vector shapefiles
of postprocessed water + agriculture land classes and the non-processed built-up area
class, so that they are intersected to eliminate the relevant false anomalies, and then use
the GDEM-derived slope masks to remove residual false anomalies occurring in moun-
tains. The final detected built-up areas are given in Figure 9(b), and are 3.41% (about
54.455 km2) of the study region.

Figure 9. (Continued).
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5. Precision validation

The extracted water features, built-up areas and crop/grass lands were combined to
produce the land cover classification result (Figure 9(a)). Generally it indicates a satisfac-
tory result that can be well validated by the Google Earth image (Figure 9(b–e)) and
implies the usefulness of MML-EM. As on-site validation is not feasible for land-use
mapping on a local or regional scale, here a (digitized) reference base map is utilized to
give the ‘true’ land cover, and it is acquired by artificial vectorization on the basis of
existing classification shapefiles, which involves the ACUD (addition, change, update and
deletion) operations of these .shpfiles. On that basis, calculating the relevant confusion
matrix, Table 2 gives the exact Overall Classification Accuracy quantities of Figure 9(a),
which are close to unity in general, implying very good observed agreement (Camps-
Valls et al. 2011). For comparative purposes, we conducted traditional unsupervised
classification methods (K-means and ISODATA) as well, and, as expected, their classifica-
tion results are eclipsed by the proposed method’s. As seen in Table 2, even without
topographic masks, the new method still outperforms the traditional ones.

This precision, although satisfactory for the work reported here, is not as good as can
be obtained by this method. Actually, the real-world land use status can be very
complicated: e.g. a piece of cropland may be bare soil, or cultivated with crops at
various growth stages, or with different crops, and it might even be covered by water
due to rain or irrigation. For the same reason, a settlement area may consist of roads,
grass, shrubs, water and trees in between buildings. Therefore, ‘omission errors’ are
statistically undetectable in many cases, and the relevant quantities may have been
overestimated more or less (that is why we use the symbol ‘<’ in Table 2). In Figure 9, the
main cause for misclassification should be the incomplete image enhancement and
mixed classes, rather than the proposed method itself.

6. Discussion

Quantitatively characterizing the probability distribution pattern of an object is the
foundation for performing imagery segmentation (Swarnajyoti et al. 2011). In this con-
tribution, the MML-EM algorithm, in combination with terrain analysis, was introduced
and utilized to map the distribution of different land use classes in the study region. A
homogeneously textured or coloured region in an enhanced image can be well mod-
elled by a Gaussian distribution, whereas an image with complex scenes usually consists

Table 2. Table of the overall classification accuracy.
Ground feature MML-EM K-means* K-means** ISODATA* ISODATA**

Surface water 99.7325% 12.8682% 95.8838% 10.8921% 94.7279%
Built-up areas 94.3537% 78.9804% 90.9232% 75.3251% 88.1117%
Crop/grass lands <99.9970% 83.4078% 94.4032% 81.9697% 94.6028%

Note: * without terrain mask; ** with terrain mask. The overall accuracy is calculated by dividing the total correct pixels
by the total number of pixels in the error matrix. Here, the Google Earth images were used as a cross-reference to
inspect the existing classification results and to help distinguish confusing feature pixels from background noise, and
by using PIE v4.0 the standard or reference base map used for accuracy assessment is digitized by modifying existing
classification shapefiles. In addition, the K-means and ISODATA classifications were conducted based on the RVI and
PC1 bands, as is routine in MML-EM analysis.
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of multiple intertwined target regions (Bazi et al. 2007); so MML-EM is utilized to model
the distribution of the features as a mixture of Gaussian distributions. On the other hand,
the real-world land use status can be very complicated, and our objective is to classify
those well-defined land cover classes, e.g. water, agricultural lands/rangeland, built-up
area, and so on; a further subdivision is not possible.

Another meaningful result we achieved concerns the presence of false anomalies:
there is typically an overlapping or cumulative frequency domain between two adja-
cent populations (classes) which are assumed to be normally and independently
distributed; this domain, due to its transitional nature, is a possible source of the
spurious anomalies pertinent to spectral similarities. This argument is supported by
several observations in Figure 10: in (a), urban areas and water features coexist within
the overlapping domain between I-1 and I-2 in Figure 8(b); regarding the settlements,
water features act as the false anomalies, and vice versa. In (b), the domain between I-3
and I-4 in Figure 8(b) generally represents the ‘buildings in wooded grounds’. In this
sense, no thresholding method can achieve 100% accuracy as there is overlap between
the classes. There are many reasons to believe that the resulting accuracy is at least
over 95%, or close to 100% in local terrain – like the case in Figures 9(b–e) and 10.
Nevertheless, closer scrutiny indicated that in the classified output, some misclassified,
isolated pixels (noise) or small regions of pixels still exist. This will not have any
appreciable impact on the overall interpretation accuracy, but gives the output a
‘salt and pepper’ appearance. The object-based classification that can group pixels
into a small number of representative shapes and sizes was developed to cope with
the problem; it offers the MML-EM program fewer input data, thus being useful in
improving the computation efficiency and stability. We will report on this issue in a
separate study.

7. Conclusions

Using the ASTER VNIR image as data source, an attempt has been made to conduct land
use classification in southern Austria. We obtained a satisfactory classification result (the
kappa coefficients are close to unity in general). Given the validity of the normal
approximation assumption, the key findings from our work are as follows.

(1) The PC1 band has greatly enhanced the targeted information of water features
and green patches in the imagery, while there is probably no solution to spec-
trally discriminate between ‘cropland’ and ‘grassland/lawn’ classes. The RVI band
is more applicable for discriminating water features and populated areas.

(2) We obtained a satisfactory result of land cover classification that is well validated by
the Google Earth image, and it has demonstrated the capability of MML-EM for
extracting useful information from processed remotely sensed products. The overall
accuracies of agricultural land/rangeland, water and built-up area are always above
94%, and the kappa coefficients above 0.9 (except the built-up area class).

(3) The water-area ratio of this region is expected to be 2.79%, the farmland area
ceiling is more than 290 km2 and the built-up areas are 3.41% (54.455 km2) of the
study region. To balance against the interpretation accuracy required, here terrain
analysis-based image clipping was introduced to eliminate rugged or steep
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terrain where false anomalies pertinent to spectral similarities or random noise
appear most frequently, and retain the areas of level terrain within which the
features of interest occur.

(4) Acknowledging the uncertainties, this is the first time that MML-EM has been
applied for ASTER VNIR data-driven image classification in Europe, and based on it
an extended separability-threshold model was used to avoid the issue of general-
ized and inappropriate product thresholds as well as offering more subtle insights
into how different ground features are related to and distinguished from each
other. In addition, terrain and derived terrain variables (such as slope) may have
major implications for improving the correct classification rate during imagery
classification.

Figure 10. (a) The anomaly pixels (shown in red) corresponding to the overlapping domain between I-1
and I-2 in Figure 8(b) (the RVI range: 0.7–1.1, centred at 0.9); (b) the anomalies (shown in yellow)
corresponding to the domain between I-2 and I-3 and 4 in Figure 8(b) (the RVI range: 2.31–2.71, centred
at 2.51). Note that these anomaly pixels are shown in a partial base map (ASTER 2, 3N and 1 in RGB).
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