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A B S T R A C T

Spatial distribution of soil moisture (SM) is a prerequisite for research and management of agriculture and
ecology. However, it is still a challenge to retrieve SM data in highly heterogeneous landscapes. By investigating
environmental factors (soil, vegetation and topography) and comparing different remote sensing sources
(Landsat-8, Radarsat-2, ASTER Global Digital Elevation Model (DEM) V002 (ASTGTM2), unmanned aerial ve-
hicle (UAV)) for karst mountainous catchments of southwest China, this study identified key controlling factors
on the spatial distribution of SM and built a remote sensing model for SM estimation in highly heterogeneous
landscapes. Results showed that vegetation type (35.7%), aspect (7.7%), height index (4.2%), soil bulk density
(3.3%), soil total nitrogen (3.1%), aspect interact with vegetation type (3.4%) and soil total phosphorous (1.3%)
totally explained 58.8% of the SM variability. The correlations between SM and topographic derivatives varied
with DEM resolutions (1–50m), and generally reached their highest values at 7m for height index, slope gra-
dient, and aspect, 16m for flow accumulation and topographic wetness index, and 43m for curvature. Partial
least-squares regression analysis showed that optical and infrared bands from Landsat-8 and topographic deri-
vatives from UAV photogrammetry DEM were more strongly correlated with SM than other datasets. An em-
pirical model (SM=9.27 ∗ 10−2HI− 1.82 ∗ 10−5B5+0.519) with only height index and B5 band from
Landsat-8 as inputs is proposed, as it shows acceptable performance (R2= 0.36; RMSE=0.076). The results of
this study provide useful information for SM remote sensing in karst mountainous area and similar hetero-
geneous landscapes.

1. Introduction

Soil moisture (SM) is a key factor affecting land surface fluxes of
water and energy (Seneviratne et al., 2010). Therefore, monitoring of
SM is necessary for agriculture development and ecosystem manage-
ment. Compared to conventional techniques, remote sensing methods
can rapidly obtain SM information on a regional scale, and therefore are
becoming widely used in various hydrological and meteorological fields
(Jackson et al., 2009; Jung et al., 2010; Kustas and Norman, 2009). SM
remote sensing methods include optical sensing (Chang et al., 2001;
Peng et al., 2013), synergistic methods of optical sensing with thermal
infrared observations (Carlson, 2007) and microwave remote sensing
methods (Kornelsen and Coulibaly, 2013). However, such models often

perform poorly in heterogeneous landscapes (Fan et al., 2015; Feng
et al., 2015; Vivoni et al., 2008a; Wagner et al., 2003). As a typical
heterogeneous landscape, karst landform represents about 10% of the
earth's land surface (http://geography.about.com/od/
physicalgeography/a/karst.htm) and plays an important role in water
supply for human society (Hartmann et al., 2014). Meanwhile, this
region is facing severe environmental challenge such as extreme climate
events and degradation (Liu et al., 2014; Liu et al., 2016). Hence,
knowledge of the SM variation and estimation in such regions are es-
sential for ecological protection and water resources management. As a
result, there is an urgent need to develop specific models for karst
landscapes.

As pointed in previous studies, soil moisture is affected by complex
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interactions from many factors including meteorology (rainfall, tem-
perature, wind speed, radiation), soil properties, vegetation, and to-
pography (Beldring et al., 1999; Burt and Butcher, 1985; Chen et al.,
2010; Li et al., 2014a; Ma et al., 2004; Vivoni et al., 2008b; Zhang et al.,
2016). In highly diverse landscapes, complex topography plays a key
role in the spatial distribution of SM, since topography determines the
lateral transport of SM to some extent (Appels et al., 2011; Baldwin
et al., 2017). As expected, models that include topographic information
seem to be more efficient at SM monitoring (Houser et al., 1998; Moore
et al., 1991; Wilson et al., 2005).

Digital Elevation Model (DEM) is a data source for topographic
variables. Previous research has demonstrated that modeled surface
hydrological attributes are sensitive to DEM grid resolution and DEM
sources (Penizek et al., 2016; Sørensen and Seibert, 2007; Thomas
et al., 2017; Woodrow et al., 2016). The raster resolution can directly
influence the computation of topographic derivatives and the details of
morphological description of a specific area (Ariza-Villaverde et al.,
2015; Thompson et al., 2000). However, the general expectation that
the finest resolution delivers the best results is not always valid (Smith
et al., 2006; Sørensen and Seibert, 2007). In some cases, the optimal
resolution is driven by the characteristics of the mapped terrain features
(Napieralski and Nalepa, 2010). In highly heterogeneous landscapes,
for example, the karst landscape in southwest China which is char-
acterized by complex terrain with steep hillslopes and deep depressions,
the resolution of the topographic derivatives may be important for SM
estimation. However, few studies have focused on this issue. Previous
studies have researched the variability of SM in karst areas (Chen et al.,
2010; Chen et al., 2009; Liu et al., 2017; Ries et al., 2015; Zhang et al.,
2011), but few of these studies have been at a catchment scale, and
none of them have used remote sensing techniques.

Therefore, our study aims to explore 1) key controlling factors on
spatial distribution of SM in karst catchments, 2) key remote sensing
data sources and key variables for estimating spatial distribution of SM,
and 3) an efficient empirical model for estimating spatial distribution of
SM in karst catchments.

2. Materials and methods

2.1. Study area

The Chenqi (1.3 km2) and Dengzhanhe (1.8 km2) catchments in
southwest China, were selected for this study (Fig. 1). The two catch-
ments are in a region characterized by subtropical monsoon climate.
Dengzhanhe catchment had steeper and longer hillslopes and sparser
vegetation community than Chenqi catchment. The mean annual tem-
perature is 20.1 °C. July has the highest average monthly temperature,
and January has the lowest. Annual precipitation is 1140mm, with a
distinct wet season in the summer and a dry season in winter. Average
monthly humidity ranges from 74 to 78%. The elevation of the study
region ranges from 1320 to 1520m. With the typical cone karst and
cockpit karst geomorphology, the catchments are characterized by
sinkholes formed by the dissolution of soluble rock. Soils are rocky and
thin. The gaps, fissures and channels in the epikarst caused rapid
transport of surface water to groundwater (White, 2002).

2.2. Procedure

The workflow used in this study is shown in Fig. 2. It consisted of
four steps: a) preprocessing of data sets; b) determination of optimal
resolutions for topographic derivatives; c) comparison of remote sen-
sing variables for SM retrieval; and d) modeling and validation for SM
estimation. Step a will be introduced in Sections 2.3 and 2.4, while, step
b, c and d will be detailed in Sections 2.6, 2.7 and 2.8, respectively.

2.3. Field experiments

The study site encompassed two catchments; the Dengzhanhe wa-
tershed and the Chenqi watershed (Fig. 1). On March 14th, 2016, a total
of 222 soil samples from six vegetation types (woodland (n=38),
wood-shrubland (n=25), shrubland (n=30), grassland (n=63),
abandoned land (n=36) and farmland (n= 30)) were collected
(Fig. 1). March 14th was in the last days of dry period at the study site.
And in the last winter (December 1st, 2015 to March 14th, 2016), to-
tally 6 rainfall events brought 66.6 mm precipitation. Since Liu et al.
(2014) pointed out that southwestern China is experiencing more fre-
quent drought, we chose March 14th as our sampling date and attempt
to investigate the SM variation after continuous drought. The sampling
strategy considered the spatial distribution, vegetation and topography
to ensure that the sampling points were well distributed. The gaps of
sampling points were at least 30m, and each sampling points were
located at the center of a certain vegetation community with the area of
at least 900m2, thus made the sampling data represent the sampling
points as possible. Surface soil samples (from 0 to 5 cm depth) were
collected. Soil moisture content and bulk density was measured by
collecting soil in a steel ring (volume: 100 cm3) and weighing its dry-
mass after oven drying as 105 °C (ISO, 1998). Soil textures were de-
termined using a laser particle analyzer (Master sizer 2000). The bare
rock coverage was visually estimated by metric card. The chemical
properties measured were total nitrogen, total phosphorus and SOC
using standard methods (combustion with an elemental analyzer,
double acid extraction method and wet oxidation method, respectively)
(Pansu and Gautheyrou, 2006).

At the same time, UAV photogrammetry was processed to generate a
high-resolution (0.12m) DEM of these two watersheds. We took 284
images by a UAV (DJI Phantom 3 professional edition, https://www.dji.
com) at 500m relative height to the ground. Then, aerial triangulation
was done in software of Context Capture Master 4.0.0 (https://www.
bentley.com). The DEM was georeferenced (Harwin and Lucieer, 2012;
Niethammer et al., 2012) by 8 ground control points which were
measured with the total station. Moreover, we did a direct georefer-
encing (D'Oleire-Oltmanns et al., 2012) using the navigation-grade GPS
on-board the UAV to figure out that, is the precision of this simplest and
least accurate georeferencing method qualified to hydrological re-
search.

2.4. Satellite remote sensing data

The Landsat-8 (March 20th, 2016), Radarsat-2 (March 14th, 2016),
and ASTGTM2 were used for this research. The Landsat-8 (30m re-
solution) provides 9 individual bands from 433 to 2300 nm and a
normalized difference vegetation index (NDVI). Radarsat-2 (10m re-
solution) provides C band microwave backscatter information under
four polarization patterns, including the horizontal- horizontal (HH),
horizontal-vertical (HV), vertical-horizontal (VH) and vertical-vertical
(VV) (Table 1). The preprocessing of Radarsat-2 was performed using
ENVI SARscape 5.1 (http://www.harrisgeospatial.com). The ASTGTM2
is popular topographic data used in previous research and provides
DEM of 30m resolution (Suwandana et al., 2012).

2.5. Major controlling factors of soil moisture

We created a generalized linear model (Nelder and Wedderburn,
1972) of the SM to environmental factors, using stepwise regression
(Bendel and Afifi, 1977) to investigate the major controlling factors of
SM. The environmental factors contained vegetation type, soil proper-
ties and topographic factors, detailed in Table 2. The algorithms used
forward and backward stepwise regression to determine a final model.
At each step, the method searched for terms to add or remove from the
model based on criterion argument. The criterion argument was cal-
culated by p-value and F-statistic which tested models with and without
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a potential term at each step. If a term was not momentarily in the
model, the null hypothesis was that the term would have a zero coef-
ficient if added to the model. If there was sufficient evidence to reject
the null hypothesis, the term was added to the model. Conversely, if a
term was momentarily in the model, the null hypothesis was that the
term had a zero coefficient. If there was insufficient evidence to reject
the null hypothesis, the term was removed from the model. The method
terminated when no single step improves the model. The terms in-
cluded in the initial model and the order in which terms are moved in
explained the major controlling factors of soil moisture.

2.6. Optimal resolutions for topographic derivatives

The 0.12m UAV photogrammetry DEM was resampled to generate
50 DEMs with different resolutions ranging from 1m to 50m (1m in-
tervals). Based on these 50 DEMs and the ASTGTM2 (30m), 8 topo-
graphic derivatives, including height index (HI), slope gradient
(SLOPE), aspect from north to south (ASPECT), surface curvature
(SURF), plan curvature (PLAN), profile curvature (PROF), flow accu-
mulation (FACC) and topographic wetness index (TWI) were calculated
for each sample site using ArcGIS 10.3 (https://www.esri.com).
Descriptions of these topographic derivatives are shown in Table 1.

Pearson correlation analysis between SM and topographic deriva-
tives with different resolutions was conducted. The resolution at which
the correlation reached to its highest (absolute) value was selected as
the optimal resolution. To illustrate the advantage of UAV photo-
grammetry and potential on hydrological research. We compared UAV
photogrammetry DEMs with the ASTGTM2 DEM, the relationship be-
tween SM and topographic derivatives based on ASTGTM2 were also
investigated

2.7. Importance of remote sensing variables for SM estimation

A partial least-squares regression (PLSR) technique (Vinzi et al.,
2010) was applied to select predictors for SM estimation. Potential
predictors were divided into four groups (Landsat-8, Radarsat-2,
ASTGTM2, UAV) which contained information from 433 nm to
2300 nm wavelengths, microwave backscatter coefficients and topo-
graphic derivatives. PLSR is a powerful technique to deal with data that
contain correlated predictor variables, and have advantages over si-
milar analysis methods (such as stepwise linear regression and principal
component analysis) (Geladi and Kowalski, 1986; Kettaneh et al.,
2005). The basic PLSR algorithm is not described in this paper but can
be found elsewhere (Umetrics, 2012; Vinzi et al., 2010; Wold et al.,
2001). We used the software of SIMCA-P+ 13.0 (https://umetrics.
com) to perform the PLSR. Using PLSR, the influence and importance of
a predictor on the response variable was indicated by the variable
importance for the projection (VIP) (Umetrics, 2012; Wold et al., 2001).
Those terms with high VIP were the most relevant for explaining the
dependent variable, and predictors with VIPs lower than 1.0 were
considered of minor importance for prediction purposes (Umetrics,
2012; Wold et al., 2001). To overcome the problem of over-fitting, the
appropriate number of components to be included in the PLSR model
was determined by cross-validation to find an optimal balance between
the explained variation in the determined coefficient (R2) and the
predictive ability of the model (goodness of prediction, Q2) (Geladi and
Kowalski, 1986; Wold et al., 2001). The root-mean-square error of cross
validation (RMSECV) was used to evaluate the accuracy of the predic-
tion. The optimal number of PLSR components often corresponds to a
maximum Q2 and a minimal RMSECV. The R2, Q2 and RMSECV were
calculated as follows:

Fig. 1. Study area and sampling points. 222 sampling points were well distributed in Chenqi and Dengzhanhe catchments, southwest China.
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where Pi and Oi are the predicted and observed SM at each sampling
point, n is the number of sampling points (n= 222), Pm and Om are
mean of the predicted and observed SM, PRESS is the prediction error
sum of squares, SS is the residual sum of squares and Pi is the predicted

SM for the leave-one-out sample.

2.8. Modeling of soil moisture

Since there was a broad spectrum of variables (n=30; Table 1) for
spatial analyses and the number will often depend on statistical accu-
racy desired, there were too many variables determined to be of major
importance. To simplify the modeling, another PLSR (variables with
VIP being higher than 1.0 in Section 2.6 as the inputs) was done to
reduce the number of predictors for SM modeling. Then, several linear
models from complex to simple were built. Simple models had less
predictors than complex models. Predictors with higher VIP were re-
served for simple models while predictors with lower VIP were removed
one by one. Having determined the optimal predictors for SM modeling,
the entire data set (n=222) was divided into calibration (75% of ob-
servations; n= 167) and validation (25% of observations; n= 55), and
multiple linear regression was employed to quantify the relationship

Fig. 2. Workflow. Certain part of the procedure is marked by certain color. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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between SM and the selected variables. Cross validation was completed
by performing calibration and validation randomly 1000 times (based
on the 222 samples, randomly select 1000 groups of data for calibration
and validation). Then, mean regression coefficients of those 1000
models were used to generate the final model. Consequently, the final
model was evaluated using 222 samples, based on Akaike's Information
Criterion (AIC), the root mean square error (RMSE), and the coefficient
determination (R2). The following equations represent these statistical
metrics:
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Table 1
Abbreviations and descriptions of the potential predictors for SM estimation.

Predictors Abbr. Description

Landsat-8
Band1 Coastal B1 433–453 nm wavelengths.
Band 2 Blue B2 450–515 nm wavelengths.
Band 3 Green B3 525–600 nm wavelengths.
Band 4 Red B4 630–680 nm wavelengths.
Band 5 Near-infrared B5 845–885 nm wavelengths.
Band 6 SWIR 1 B6 1560–1660 nm wavelengths.
Band 7 SWIR 2 B7 2100–2300 nm wavelengths.
Band 8 Panchromatic B8 500–680 nm wavelengths.
Band 9 Cirrus B9 1360–1390 nm wavelengths.
Normalized difference vegetation

index
NDVI NDVI=(B5− B4)/(B5+ B4).

Radarsat-2
VV polarization VV Backscatter coefficient of vertical-vertical polarization.
VH polarization VH Backscatter coefficient of vertical-horizontal polarization.
HV polarization HV Backscatter coefficient of horizontal-vertical polarization.
HH polarization HH Backscatter coefficient of horizontal-horizontal polarization.

Topographic derivatives
Height index HI HI=(Hpoint−Hbottom)/(Hpeak−Hbottom), Hpoint is the elevation of the sampling point, Hpeak and Hbottom are the elevation of the

peak and bottom of the hillslope where the sampling point located.
Slope gradient SLOPE Rate of maximum change in elevation.
Aspect from north to south ASPECT ASPECT=cos (aspect ∗ π/180), where aspect is expressed in positive degrees from 0 to 359.9, measured clockwise from north.
Surface curvature SURF The second derivative of the surface, or the slope of the slope. A positive curvature indicates the surface is upwardly convex at

that cell.
Plan curvature PLAN The plan curvature is perpendicular to the direction of maximum slope. A positive value indicates the surface is upwardly

convex at that cell.
Profile curvature PROF The profile curvature is in the direction of the maximum slope. A negative value indicates the surface is upwardly convex at that

cell.
Flow accumulation FACC Flow accumulation is a raster of accumulated flow to each cell, as determined by accumulating the weight for all cells that flow

into each downslope cell.
Topographic wetness index TWI TWI= ln (FACC/ tan SLOPE).

Notes: topographic derivatives calculated by ASTGTM2 DEM were marked by number “1” behind the abbreviations, such as HI1, SLOPE1, etc. Topographic deri-
vatives calculated by UAV photogrammetry DEM were marked by number “2” behind the abbreviations, such as HI2, SLOPE2, etc.

Table 2
Statistic of environmental factors.

Environmental factors Units Minimum Maximum Mean Median Standard deviation

Vegetation and bare rock
Vegetation type – – – – – –
Bare rock coverage m2/m2 0.00 0.85 0.21 0.20 0.17

Soil properties
Soil moisture cm3/cm3 0.15 0.57 0.35 0.35 0.09
Bulk density g/100 cm3 40.3 145.11 99.47 100.67 20.61
Sand g/100 g 5.56 63.45 23.30 20.53 11.53
Clay g/100 g 1.73 34.12 12.90 11.87 6.33
Soil total nitrogen g/kg 1.24 13.02 3.97 3.43 1.92
Soil total phosphorus g/kg 0.16 1.60 0.57 0.56 0.19
Soil organic carbon g/kg 15.95 192.91 47.45 36.87 26.99

Topographic derivatives
Height index – 0.00 0.96 0.32 0.28 0.30
Slope gradient Degree 0.43 53.66 26.27 30.10 13.70
Aspect from north to south – −1.00 1.00 −0.13 −0.27 0.77
Surface curvature – −2.67 4.44 0.00 −0.18 1.20
Plan curvature – −2.29 2.57 0.19 0.06 0.73
Profile curvature – −1.52 2.66 0.26 0.28 0.64
Flow accumulation m2 0.00 1320.00 26.23 3.00 122.14
Topographic wetness index – 0.00 19,397.79 419.94 5.35 2283.97
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where n is the number of the estimations, Pi and Oi are the predicted
and observed SM (cm3 cm−3) at each sampling point, respectively, Pm
and Om are the mean value of predicted and observed SM (cm3 cm−3),
respectively, and h is the number of estimated variables.

3. Results

3.1. Statistics of soil moisture and environmental factors

The SM of the 222 sampling points ranged from 0.15 to
0.57 cm3 cm−3 (0.35 ± 0.09 cm3 cm−3, mean ± standard deviation)
(Table 2, Fig. 3). SM showed different distribution patterns in wood-
land, wood-shrubland, shrubland, grassland, abandoned land and
farmland. The bare rock coverage of sampling points ranged from 0 to
85m2m−2 (0.21 ± 0.17m2m−2). The soil bulk density ranged from
40.3 to 145.11 g cm−3 (99.47 ± 20.61 g cm−3). The soil textures were
mainly silt (Fig. 4). The soil total nitrogen ranged from 1.24 to
13.02 g kg−1 (3.97 ± 1.92 g kg−1). The soil total phosphorus ranged
from 0.16 to 1.60 g kg−1 (0.57 ± 0.19 g kg−1). The soil organic carbon
ranged from 15.95 to 192.91 g kg−1 (47.45 ± 26.99 g kg−1). The HI
ranged from 0 to 0.96 (0.32 ± 0.30). The SLOPE ranged from 0 to 54°
(26 ± 14°). Aspect ranged from −1 to 1 (−0.13 ± 0.77). Surface
curvature ranged from −2.67 to 4.44 (0.00 ± 1.20). Plan curvature
ranged from −2.29 to 2.57 (0.19 ± 0.73). Profile curvature ranged
from −1.52 to 2.66 (0.26 ± 0.64). Flow accumulation ranged from 0
to 337,920m2 (6714 ± 31,268m2). Topographic wetness index
ranged from 0.00 to 46,715 (1011 ± 5500). Details for these en-
vironmental factors are shown in Table 2.

3.2. Major controlling factors of soil moisture

Results of generalized linear model stepwise showed that, vegeta-
tion type explained variability in SM of 35.7%, aspect explained
variability in SM of 7.7%, height index explained variability in SM of
4.2%, bulk density explained variability in SM of 3.3%. Soil total ni-
trogen explained variability in SM of 3.1%. The interaction of aspect
and vegetation type explained variability in SM of 3.3%. Soil total
phosphorus explained variability in SM of 1.3%. The model totally
explained variability in SM of 58.8%. Details for the generalized linear
model stepwise are shown in Table 3.

3.3. Georeferencing precision of UAV photogrammetry

In Table 4 calculated the georeferencing precision of the UAV
photogrammetry. Residual errors on ground control points were cal-
culated for the DEM processed with the two workflows. For the DEM
which was georeferenced by ground control points, the RMSE of the
ground control points was 0.09m in 3D. Moreover, for the DEM which
was direct georeferenced by on-board GPS, the RMSE on ground control
points was 1.46m in 3D.

3.4. Optimal resolutions of topographic derivatives

The correlation coefficient between SM and ASTGTM2 derived to-
pographic derivatives (RAST) was lower than the correlation coefficient
between SM and UAV-derived topographic derivatives (RUAV) most of
time. For HI (Fig. 5.a), the RUAV were stable from 1m to 50m resolu-
tions. For SLOPE and ASPECT (Fig. 5.b, c), the RUAV reached their

Fig. 3. Soil moisture distribution in different vegetation type.

Fig. 4. Soil textures of 222 sampling points.

Table 3
Results of generalized linear model stepwise.

Environmental factors Explained variability in
SM (%)

Total explained
variability (%)

Vegetation type 35.7 35.7
Aspect 7.7 43.4
Height index 4.2 47.6
Soil bulk density 3.3 50.9
Soil total nitrogen 3.1 54.0
Aspect ∗ vegetation type 3.4 57.4
Soil total phosphorus 1.3 58.8

Table 4
Georeferencing precision of UAV photogrammetry.

Georeferencing methods
and control points

3D horizontal
error (m)

3D vertical
error (m)

3D
error
(m)

3D RMSE
(m)

Ground control points
georeferencing

0.09

Control point 1 0.07 −0.18 0.19
Control point 2 0.03 0.08 0.08
Control point 3 0.10 −0.03 0.10
Control point 4 0.04 −0.02 0.04
Control point 5 0.02 −0.01 0.02
Control point 6 0.00 0.00 0.00
Control point 7 0.08 0.06 0.10
Control point 8 0.00 0.00 0.00

On-board GPS direct
georeferencing

1.46

Control point 1 0.69 1.13 1.33
Control point 2 0.67 1.39 1.54
Control point 3 0.65 1.28 1.44
Control point 4 0.65 1.29 1.44
Control point 5 0.66 1.30 1.46
Control point 6 0.67 1.31 1.47
Control point 7 0.65 1.37 1.52
Control point 8 0.67 1.31 1.47
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highest value at 7m resolution. For SURF, PROF and PLAN (Fig. 5.d, e,
f), significant correlations (pUAV < 0.05) were shown after the 20m
resolution, and the RUAV reached the highest value at a resolution of
43m. For FACC and TWI (Fig. 5.g, h), significant correlations
(pUAV < 0.05) were shown after the 13m resolution, and the RUAV

reached the highest value at a resolution of 16m, and RUAV and pUAV
(significance) showed no clear pattern after 30m resolution. In terms of
maximum R values, the optimal resolutions were 7m for HI, SLOPE and
ASPECT, 43m for SURF, PROF and PLAN, 16m for FACC and TWI.

3.5. Importance of remote sensing variables for SM estimation

Fig. 6 illustrates the VIP and the scaled regression coefficient for
each variable in the PLSR (mentioned in Section 2.6). Note that all the
considered variables might be related to the SM to some extent, how-
ever, only certain variables had VIP higher than 1.0. The highest VIPs
were obtained for B3 (1.51) and B5 (1.50), followed by HI2 (1.45), B1
(1.42), B8 (1.42), NDVI (1.37), B2 (1.37), SLOPE2 (1.33), B6 (1.30), B7
(1.26), B4 (1.26), SURF2 (1.07) and PROF2 (1.03). Higher HI2,
SLOPE2, SURF2, and B4 corresponded with higher SM (as indicated by
the positive regression coefficients), while the opposite was found for

Fig. 5. Pearson correlation coefficients between SM and topographic derivatives. Correlation coefficients between SM and UAV-derived topographic derivatives from
1m to 50m resolutions were scattered by black points which belong to left Y axis, with the matching p values scattered by red points which belong to right Y axis.
Besides, at the last column, the correlation coefficients and p values between SM and ASTGTM2-derived topographic derivatives of 30m resolution were marked by
black and red cross. p values> 0.05 were not marked. The abbreviations for the variables are listed in Table 1. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 6. Variable importance for the projection (bar)
and regression coefficients (dot) of each predictor in
PLSR. The predictors were ranked within each group
(Landsat-8, Radarsat-2, ASTGTM2, UAV) in des-
cending order based on their VIP. The important
predictors with VIP being higher than 1.0 are con-
secutively numbered to show their relative im-
portance. Scaled regression coefficients show the di-
rection in which the predicted response (SM)
depends on the predictors. The straight solid line
(VIP=1.0) indicates a threshold above which the
predictors are considered to be important for pre-
dictive purposes. The abbreviations for the variables
are listed in Table 1. Topographic derivatives derived
from ASTGTM2 and UAV are distinguished by 1 and
2, respectively.
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PROF2, NDVI, B1, B2, B3, B5, B6, B7 and B8 (as indicated by the ne-
gative regression coefficients).

The VIPs for UAV based variables were often significantly higher
than those from the ASTGTM2 (Fig. 6). There were increasing differ-
ences between these two groups in the following order: HI (0.91 vs.
1.45, ASTGTM2 vs. UAV), SLOPE (0.39 vs. 1.33), SURF (0.35 vs. 1.07),
PROF (0.39 vs. 1.03), PLAN (0.30 vs. 0.92), FACC (0.54 vs. 0.92),
ASPECT (0.86 vs. 0.96), TWI (0.53 vs. 0.73).

3.6. Variables selection and the performance of the SM estimation

As mentioned in Section 3.3 above, seven variables with VIP higher
than 1.0 were selected using this method for SM estimation (Table 5).
Table 5 shows the performance of 6 regression models with different
predictors. For Validation-B (n=222), with the decreasing number of
predictors, the AIC decreased from −2.186 to−2.214, RMSE increased
from 0.074 to 0.076, and R2 decreased from 0.38 to 0.36. The AIC was
the lowest value in model ‘M6’. The scatter plot (Fig. 7) shows the
Validation-B (n= 222) of ‘M6’.

4. Discussion

Based on the Landsat-8, Radarsat-2, ASTGTM2, and UAV photo-
grammetry DEM, and 222 soil sampling observations, this study in-
vestigated the major controlling factors of soil moisture and assessed
the relative importance of different variables (optical and infrared
bands, microwave backscatter coefficients, topographic derivatives) in
SM estimation in a karst mountainous catchment.

4.1. Major controlling factors of SM

According to the generalized linear stepwise, vegetation type, as-
pect, height index, soil bulk density, soil total nitrogen and soil total
phosphorus showed good explanation to SM (Table 3), which indicated
that vegetation cover, topography and soil properties were the major
controlling factors to SM in karst region. After a dry winter, SM hadTa
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Fig. 7. Plots of the observed and predicted SM. This plot displays the observed
versus predicted values of the 222 sampling points of the strongest model
(SM=9.27 ∗ 10−2HI− 1.82 ∗ 10−5B5+0.519). Height index (HI) is a precise
description of sampling points' location on hillslope, detailed in Table 1. B5 is
the near-infrared band of Landsat-8, detailed in Table 1. R2 is fraction of SM-
variation modeled which indicates the goodness of fit. RMSE is the root mean
square error of the fit for observations in the model.
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higher value in wood-shrub land, woodland and shrubland, and had
lowest value in farmland (Fig. 3), which indicated wood and shrub
might have a greater tolerance to extreme drought under climate
change (Tong et al., 2018).

4.2. Predictors selection for SM remote sensing

According to the PLSR analysis, the optical (B1, B2, B3, B4) and
infrared bands (B5, B6, B7) and part of topographic derivatives (HI,
SLOPE, SURF, PROF) exhibited high VIP (Fig. 4), which indicated that
these variables were more sensitive to SM than those with lower VIP
and had potential to be the predictors for SM remote sensing. The op-
tical and infrared bands can estimate SM by observing vegetation
growth conditions as vegetation cover has some linkage to SM (Chen
et al., 1996; Raich and Tufekcioglu, 2000). As for the topographic de-
rivatives, they determine the lateral transport of runoff, SM accumu-
lation, and solar radiation, which are strongly related to distribution of
SM (Beldring et al., 1999; Burt and Butcher, 1985). Therefore, results of
the analysis on SM major controlling factors were consistent with the
results of predictors selection for SM remote sensing, which provided
the basis for the following modeling of SM remote sensing.

The NDVI had relatively high VIP (1.37), which indicated that ve-
getation is an important predictor for SM. However, negative correla-
tions between NDVI and SM were found in this study. This might be
attributed to the timing of the field sampling, which occurred in March,
as it was the start of the growing season for crops. Crops had lush fo-
liage which led to high NDVI values but also high water consumption
by plants (and therefore low SM). As for shrubs and woods, it was still
the dormant period for the vegetation in March which led to low NDVI
values and low water consumption by vegetation (and therefore high
SM). Similar results have been found in previous studies (Daubenmire,
1968; Ma et al., 2004; Méndez-Barroso et al., 2009; Unger and Kaspar,
1994).

In contrast to the variables from Landsat-8, the Radarsat-2 variables
showed no significant correlations to SM (the highest VIP was 0.71)
(Fig. 4), which indicated that the variables represented by microwaves
might be of minor importance for SM estimation in this region. How-
ever, previous studies demonstrated a strong relationship between
backscatter and moisture in the bare fields (Dubois et al., 1995; Fung
et al., 1992; Oh et al., 1992). This can be attributed to high scatter of
the microwaves in heterogeneous mountainous regions, which results
in severe interference of the backscatter (Lakhankar et al., 2009; Li
et al., 2014b; Mätzler and Standley, 2000). Ancillary information (ve-
getation water content (Ceccato et al., 2001), canopy structure (Clark
et al., 2004), soil surface roughness (Jester and Klik, 2005) and dead
vegetation (Xu et al., 2014)) is needed in natural landscapes to use
microwaves to assess SM (Wigneron et al., 2003). However, this an-
cillary information is difficult to gather, especially in variable terrain
and landscapes (Kornelsen and Coulibaly, 2013). Thus, it is still a
challenge to use microwave remote sensing for SM in heterogeneous
mountainous areas.

4.3. Optimal resolutions for topographic derivatives

The highly heterogeneous landscape resulted in topography influ-
encing SM. The results showed that the correlation between topo-
graphic derivatives and SM varied with DEM grid resolution (Fig. 3).
The finest resolution did not show the strongest correlations to SM
(Fig. 3). This may be because the microtopography does not dominate
the hydrological processes of the landscape (Sørensen and Seibert,
2007; Thomas et al., 2017). Generally, the correlation initially in-
creased with an increase in the DEM resolution to its highest value at
the optimal resolution, and then decreased (Fig. 3). This result sug-
gested that optimal resolution may represent a balance of hydrological
effects from microtopography (small scale) and the hillslope (relative
larger scale) (Cavazzi et al., 2013; Smith et al., 2006; Thomas et al.,

2017). The variation of resolution had no significant influence on
height index and aspect, the reason should be that the long slope length
made the height index and aspect calculated in different DEMs
(1–50m) almost the same. The optimal resolution of slope gradient was
7m, which indicated that the corresponding unit of surface runoff
(Thomas et al., 2017) mainly ranged within meters in this region. The
optimal resolution of curvatures was 43m, the reason should be that
the curvatures calculated in such resolution correlated well with height
index (sampling points with positive value of curvatures located at the
mountain top which had high height index). Curvatures, flow accu-
mulation and topographic wetness index calculated in meters resolution
had no correlation with SM, which indicated that surface relief in me-
ters scale had no significant effect on SM distribution.

4.4. Potential of UAV photogrammetry on hydrological research

Comparing UAV DEM with ASTGTM2 at the same resolution (30m),
topographic derivatives obtained from the UAV photogrammetry DEM
had higher correlations with SM than those from ASTGTM2 (Fig. 3).
The reason might be that the UAV aerial triangulation has higher pre-
cision (RMSE=0.09m) (Gindraux et al., 2017; Gonçalves and
Henriques, 2015), and the lower precision of ASTGTM2 results in errors
on steep hillslopes, especially in mountainous areas (DeWitt et al.,
2015; Hirano et al., 2003; Holmesa et al., 2000; Mukherjee et al., 2013).
Results of the PLSR showed that HI, SLOPE, SURF and PROF were
strongly correlated with SM (Fig. 4). However, FACC and TWI exhibited
low VIP (Fig. 4), and the reason may be that the FACC does not consider
evaporation and percolation. In karst region in southwest China, the
large number of cracks and conduits in the carbonate bed rock can
result in water leakage through these conduits (Li et al., 2017; Zhang
et al., 2014) and therefore the flow accumulation area derived from
DEM might not represent the real flow accumulation of the sample site.

With respect to the choice of DEM data sources, there are three
primary options: interferometric synthetic aperture radar, photo-
grammetry, and LIDAR. They are suitable for different fields according
to the platform (DeWitt et al., 2015). Space borne DEMs are suitable for
regional research as they have the advantage of capturing images over a
large spatial area; aerial borne DEMs are suitable for catchment hy-
drological research due to their high resolution and high precision; and
LIDAR is known as the most reliable method since it has the highest
precision. However, UAV photogrammetry has a competitive advantage
over LIDAR in terms of usability and cost (Colomina and Molina, 2014).
Wilkinson et al. (2016) confirmed that both LIDAR and photo-
grammetry methods are suitable for the acquisition of outcrop. Previous
studies applied UAV photogrammetry on research of soil erosion, and
the quality was encouraging (D'Oleire-Oltmanns et al., 2012; Pineux
et al., 2017). Compared to ASTGTM2 topographic derivatives, this
study shows a higher correlation of UAV topographic derivatives with
SM (Fig. 3) and a much higher VIP in PLSR analysis (Fig. 5). Moreover,
the precision of the UAV photogrammetry DEM in this study
(RMSE=0.09m) was precise enough for the calculation of topographic
derivatives on their optimal resolution (7m). Even more, the simplest
direct georeferenced triangulation was qualified to these calculations to
some extent, since its horizontal error was< 0.7m and the relative
height difference (vertical error) did not affect the calculation (Table 4).
Thus, while high-resolution and high-precision elevation data are
temporally limited, UAV photogrammetry is a good choice for catch-
ment hydrological research.

4.5. Soil moisture remote sensing model

According to the VIP, 7 predictors were selected to develop multiple
linear regression model for SM estimation (Table 3). The model (M6)
took HI and B5 as predictors, which suggested that topography and
vegetation are important factors for soil moisture estimation. Previous
studies also illustrated the importance of topography and vegetation on
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soil moisture remote sensing. For example, Vivoni et al. (2008a) found
no significant correlation between SM and radar signal in a region with
high topographic and vegetation variability (northern Sonora, Mexico),
and pointed out that hypsometric averaging (R2= 0.57) could improve
the basin average SM estimation compared to arithmetic averaging
(R2=0.09), and suggested that topographic information could improve
SM estimation. Méndez-Barroso et al. (2009) analyzed vegetation dy-
namics using remotely-sensed enhanced vegetation index images, re-
sults indicated that changes in vegetation greenness were directly re-
lated to hydrologic conditions and also correlated well with soil
moisture. Peng and Wang (2012) analyzed sixty-one rainfall events at
the same catchment as ours, results demonstrated that surface runoff
was affected by vegetation cover. Inevitably, SM was affected by ve-
getation cover. Liu et al. (2016) confirmed that portion of karst land-
form and vegetation cover were the most influencing factors for actual
evapotranspiration in this region, which in turn affected the hydrologic
processes. From the above, lots of studies drew similar conclusions on
the importance of topography and vegetation, which provided good
supports for our validity and conclusions.

The soil moisture estimation model (M6) had the determination
coefficient of 0.36 (Fig. 5) at point scale. Since few studies accessed the
evaluation of SM remote sensing models on point scale in karst catch-
ments, we can only evaluate the reliability of our model based on
comparing our accuracy with globally averaged accuracy. Dorigo et al.
(2015) evaluated the ESA CCI (European Space Agency's Water Cycle
Multi-Mission Observation Strategy and Climate Change Initiative
projects) soil moisture product using ISMN (the International Soil
Moisture Network) ground-based observations, and the average R2

between remote sensed soil moisture and in-situ observations was 0.21.
Colliander et al. (2017) validated the SMAP (NASA Soil Moisture Active
Passive mission) surface soil moisture products with 13 validation sites
over the 2.5-month period in 2015, and the average R2 of all sites was
0.22. Wagner et al. (2003) evaluated the agreement between ERS
(European Remote Sensing Satellites) surface soil moisture product
with model and precipitation data, results showed that mountain area
SM estimation had the worst accuracy and ranked last 5% globally.
Compared to these studies, our study was conducted in the most chal-
lenging area (the complex structure of earth's critical zone led to
complex SM variation), but the performance of M6 (R2=0.36) was still
better than global average level (R2= 0.22). Thus, the performance of
M6 might be acceptable.

Overall, the topographic and vegetation information were im-
portant for improving SM estimation (Fig. 4). As for the topographic
derivatives, the resolution affected their sensitivity to SM (Figs. 3, 4).
The final model, based on the selected predictors with relatively high
VIP, exhibited acceptable accuracy. These results provide helpful sug-
gestions for SM estimation in heterogeneous mountainous catchments.
Further study is needed to fully understand the mechanism of micro-
wave scattering in these landscapes.

5. Conclusions

Based on the Landsat-8, Radarsat-2, ASTGTM2, UAV photo-
grammetry DEM, and 222 soil sampling observations, this study in-
vestigated the major controlling factors of SM and made an attempt on
SM remote sensing in karst mountainous catchments. Results showed
that vegetation type (35.7%), aspect (7.7%), height index (4.2%), soil
bulk density (3.3%), soil total nitrogen (3.1%), aspect interact with
vegetation type (3.4%) and soil total phosphorous (1.3%) totally ex-
plained 58.8% of the SM variability. Among all the vegetation types,
wood-shrubland, woodland and shrubland had relatively higher SM,
while abandoned land and farm land had relatively lower SM, which
indicated wood and shrub might have a greater tolerance to extreme
drought under climate change. The correlation between topographic
derivatives and SM varied with the DEM resolution. The optimal re-
solution was 7m for height index, slope gradient and aspect from north

to south, 43m for surface curvature and profile curvature and plan
curvature, 16m for flow accumulation and topographic wetness index.
The UAV photogrammetry DEM had good precisions both for ground
control points georeferencing (RMSE=0.09m) and on-board GPS di-
rect georeferencing (RMSE=1.46m), which were precise enough to
calculate topographic derivatives on their optimal resolutions.
Meanwhile, compared to the ASTGTM2, the UAV-derived topographic
derivatives showed higher correlations to SM, suggesting that UAV
photogrammetry has potential use in catchment hydrological research.
According to the PLSR results, the optimal predictors with high VIP,
including HI, SLOPE, B1, B3, B5, B8 and NDVI, were selected out to
develop the SM estimation model. The relatively high determination
coefficient (R2= 0.36) indicated that the accuracy of final model
(SM=9.27E−2HI− 1.82E−5B5+ 0.519) was acceptable. Though the
R2 of the final model was still low, these results provide useful in-
formation for soil moisture remote sensing in karst mountainous areas
and similar heterogeneous landscapes.
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