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A B S T R A C T

Magnetite, as a common oxide mineral in banded iron formations (BIFs) and ore deposits, is an ideal provenance
indicator for mineral exploration, and its composition has long been used for genetic studies of ore deposits.
However, many ore deposits, particularly the BIFs worldwide, have undergone various grades of secondary
metamorphism or hydrothermal alteration. It is still unclear whether the original magnetite composition was
modified during the secondary processes and, if so, to what extent the compositions were modified. In this study,
we conduct mineralogical and LA-ICP-MS trace elemental investigations on magnetite from the amphibolite- to
granulite-facies metamorphosed BIFs in the southern North China Craton. The new results were compared with
those of unmetamorphosed and greenschist-facies metamorphosed BIFs worldwide to understand how the ori-
ginal composition of magnetite was modified during different grades of metamorphism. Magnetite grains from
the amphibolite- to granulite-facies BIFs have low Cr, Co, Ni and Ga (less than 10 ppm) and slightly variable V
and Zn. These elements do not show remarkable changes during high-grade metamorphism when compared with
the unmetamorphosed and greenschist-facies metamorphosed magnetite, indicating that these elements in
magnetite are immobile during metamorphism. A very narrow range of Fe2+/Fe3+ mole ratios of the high-grade
metamorphosed magnetite roughly suggest limited changes of oxygen fugacity during metamorphism, which is
also supported by the limited change of Cr and V contents. High Mn contents in these magnetite grains are
associated with low Mg contents possibly due to the fact that these elements occupy the same site in magnetite
structure. Compared with unmetamorphosed magnetite, the high-grade metamorphic magnetite in the BIFs of
the southern North China Craton has elevated Al, Ti and Mn. Such a change of magnetite compositions is mainly
controlled by coexisting Fe-Mg silicates that formed during high-grade metamorphism. For example, our new
results of trace elemental mapping on magnetite show that the edge of magnetite grains that are in contact with
Fe-Mg silicates (e.g., hornblende, grunerite and pyroxene) are remarkably enriched in Mg, Mn, Al, Si, and Na
compared to the cores (some elements up to 10 times more). All these features indicate that elemental diffusion
and exchange between magnetite and coexisting silicate minerals during high-grade metamorphism have ex-
tensively modified original compositions of magnetite from BIFs.

1. Introduction

Banded iron formations (BIFs) are iron-rich (15–40wt% Fe) and
siliceous (40–60 wt% SiO2) chemical sedimentary rocks that pre-
cipitated from seawater throughout the Precambrian Eon (James, 1954;
Gross, 1980). The amount of preserved BIFs on the present-day Earth is
estimated to be about 1014-15 tons (Isley, 1995), and BIFs are the
principle source of iron for the global steel industry, giving their greatly
economic importance (Bekker et al., 2010). Magnetite, as an abundant
and widespread oxide mineral in BIFs and other hydrothermal deposits,

is an ideal provenance indicator for mineral exploration and useful for
genetic studies of ore deposits (Grigsby, 1990; Dupuis and Beaudoin,
2011; Dare et al., 2012; Nadoll et al., 2014). However, most worldwide
BIFs and other types of deposits have undergone various grades of
metamorphosed alteration in later-stage. Therefore, clearly under-
standing how the primary chemistry of magnetite has been modified is
important for precisely interpreting its compositional data, particularly
when they are used for provenance discrimination.

Magnetite belongs to the space group Fd3m and has an inverse
spinel structure with the general stoichiometry of (Fe2+)(Fe3+)2O4
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(Bragg, 1915; Lindsley, 1976; Fleet, 1981; Wechsler et al., 1984). Some
trace elements can partially exchange with Fe in this structure and
occupy its site (e.g., Mg, Ni, Mn, Co, or Zn, which have a 2+ charge,
and Al, Cr, V, Mn, or Ga, which have a 3+ charge, can exchange with
Fe2+ and Fe3+, respectively. Titanium, which has a 4+ charge, can
also occupy the Fe3+ site when substitution is coupled with a divalent
cation (Wechsler et al., 1984)), leading to different genetic magnetite
with characteristic trace elemental concentrations (Dupuis and
Beaudoin, 2011; Dare et al., 2012; Nadoll et al., 2014). However,
magnetite geochemistry always records a mixed information as sec-
ondary alteration overprint. Numerous studies regarding the control-
ling factors (e.g., temperature, pressure, cooling rate, oxygen or sulfur
fugacity) of these trace elemental concentrations in magnetite are
mostly available for igneous magnetite (e.g., Buddington and Lindsley,
1964; Frost and Lindsley, 1991; Mollo et al., 2013). Recently, based on
this, some studies discussed similar factors controlling the chemical
modification of magnetite formed in hydrothermal processes by com-
paring different types of ore deposits (e.g., Nadoll et al., 2014; Chen
et al, 2015). Besides, some studies have tentatively considered that the
composition of metamorphic magnetite is likely controlled by tem-
perature (T) (Frost, 1991), oxygen fugacity (fO2) (Frost, 1991) and
metamorphic grade (Evans and Frost, 1975; Van Baalen, 1993; Skublov
and Drugova, 2003), but such interpretations have not been convin-
cingly confirmed, partially due to the lack of sufficient compositional
data for variably metamorphosed magnetite. More importantly, the
mechanism of these factors controlling is still not clear.

Most Archean to early Paleoproterozoic BIFs have undergone var-
ious grades of metamorphism with metamorphic temperature ranging
from 200 °C to 800 °C after diagenesis (French, 1968; Bonnichsen, 1969;
Klein, 1978; Konhauser et al., 2017). This temperature range is similar
to the ore-forming temperature of other important hydrothermal de-
posits, such as, 300 °C to 800 °C for porphyry ore deposit and 300 °C to
500 °C for skarn ore deposit (Ahmad and Rose, 1980; Sillitoe, 2010).
Mass of metamorphic reactions or recrystallization are happened be-
tween gangue minerals in BIFs under special conditions during such
high-grade metamorphism, leading to the formation of new Fe-rich si-
licates (e.g., minnesotaite, amphiboles, pyroxenes, and fayalite) and
metamorphic fluids (Klein, 2005). Most of these Fe-rich silicates are
enriched in Mg, Al and Ti, which likely affect the compositions of
magnetite during metamorphosed reactions (Skublov and Drugova,
2003). Notably, post-diagenesis metamorphic processes in BIFs are es-
sentially isochemical except for prevalent dehydration and decarbona-
tion and no other external factors need to be considered (Klein, 2005).
Therefore, magnetite geochemistry from variable metamorphosed BIFs
can help to investigate the controlling factors and their mechanism.

In this study, we conducted mineralogical and trace elemental in-
vestigations on the metamorphosed BIFs in the Xuchang, Xincai and
Wuyang areas, which is located on the southern margin of the North
China Craton (NCC) (Fig. 1). The Xuchang and Xincai BIFs have un-
dergone amphibole-facies metamorphism whereas the Wuyang BIF has
undergone granulite-facies metamorphism with metamorphic tem-
peratures ranging from 650 °C to 810 °C (Qi and Yao, 1982; Qi, 1987; Lu
et al., 2013, 2014; Lan, 2015). These metamorphic BIFs are char-
acterized by different assemblage of Fe-rich silicates including amphi-
bole and biotite in amphibole-facies BIFs and clinopyroxene and or-
thopyroxene in granulite-facies BIF, thus providing a good opportunity
to examine the possible modifications of magnetite chemistry during
variable degrees of metamorphism. We obtained major elements of
magnetite by electron probe microanalyzer (EPMA) and trace elemental
compositions and elemental mapping of magnetite by laser ablation
inductively coupled plasma mass spectrometry (LA-ICP-MS). The new
dataset, in combination with previously published compositional data
for magnetite in unmetamorphosed and low-grade metamorphic BIFs
worldwide, allows us to discussed the compositional changes of vari-
able grade metamorphosed magnetite and extent to which the chem-
istry of magnetite is modified under different metamorphic grades.

2. Geologic setting

2.1. Regional geology

The NCC is one of the oldest cratons in the world and hosts a large
number of Paleoproterozoic to Archean BIFs (Liu et al., 1992; Zhang
et al., 2012). The basement of the NCC is mainly composed of Archean
to Paleoproterozoic tonalite-trondhjemite-granodiorite (TTG) gneisses,
meta-volcanic and sedimentary rocks, and sparse Paleoarchean and
Mesoarchean rocks (> 3400Ma) (Jahn and Ernst, 1990; Zhao et al.,
2001); it is overlain by Mesoproterozoic to Phanerozoic un-
metamorphosed sedimentary rocks (Jahn and Ernst, 1990). The NCC
was formed by the assembly of several micro-continental blocks (Zhao
et al., 2001; Zhai et al., 2005; Zhai and Santosh, 2011), and the con-
tinental crust of the NCC was largely formed by the end of the
Neoarchean (ca. 2.5 Ga) (Zhai and Liu, 2003), with two periods of
crustal growth occurring from 2.8 to 2.7 Ga and 2.6–2.5 Ga (Zhai et al.,
2005; Zhai and Santosh, 2011). Subsequently, the NCC underwent Pa-
leoproterozoic multi-stage rifting and collision to form a uniform block
ca. 1.85 Ga (Kusky et al., 2001; Zhai and Liu, 2003; Zhao et al., 2005;
Santosh et al., 2009), leading to corresponding multi-stage meta-
morphism overprint.

The Dengfeng, Taihua and Huoqiu complexes are the most widely
exposed Paleoproterozoic to Archean basement rocks in the southern
margin of the NCC (Fig. 1). These complexes comprise similarly two
distinct lithologic units including plutonic rocks and supracrustal as-
semblage. The plutonic rocks are composed of TTG gneisses and gran-
ites. The supracrustal assemblages of the Dengfeng, Taihua and Huoqiu
complexes, which are named as the Dengfeng Group, Taihua Group and
Huoqiu Group, respectively, are successions of metamorphosed vol-
cano-sedimentary rocks. The Dengfeng Group consists of mylonitic
metavolcanic rocks, biotite-hornblende gneisses, hornblende schists,
BIFs and garnet-biotite-quartz schists, and is subdivided into the Cao-
miaozhang, Wuzhuang and Huayang formations (HBGMR, 1989). The
mineral assemblages of garnet, staurolite, biotite and quartz indicate
that the Dengfeng Group has underwent amphibolite-facies meta-
morphism. Metamorphosed volcanic rocks in the different formations of
the Dengfeng Group have given similar zircon U-Pb ages between 2540
and 2508Ma (Kröner et al., 1988; Wan et al., 2009; Diwu et al., 2011).
Meta-mafic volcanic rocks in the Dengfeng Group have geochemical
features similar to MORB and island arc tholeiites, which is interpreted
to have erupted in a back-arc basin (Zhou et al., 2009).

The Taihua group has been tentatively subdivided into the
Neoarchean lower Taihua Group and Paleoproterozoic upper Taihua
Group based on rock types and ages (Zhang et al., 1985; Kröner et al.,
1988; Xue et al., 1995; Tu, 1998; Wan et al., 2006; Yang, 2008). The
lower Taihua Group, which underlies the upper Taihua Group, is
mainly composed of meta-mafic rocks that occur as enclaves of, com-
monly less than 100m in length in the widely distributed TTG rocks
(Zhang et al., 1985; Kröner et al., 1988). The upper Taihua Group,
exposed mainly in the Tongguan, Luoning, Lushan and Wuyang areas
(Fig. 1), has thickness of several kilometers and is composed of meta-
pelites, meta-arenites, BIFs, meta-carbonates, carbonaceous meta-
morphic rocks and meta-mafic rocks (Shen, 1994; Xue et al., 1995; Tu,
1998; Wan et al., 2006). The upper Taihua Group has variable lithology
assemblages and was subdivided into different formations in different
location. For example, the upper Taihua Group in the Wuyang area was
subdivided into the Zhaoanzhuang, Tieshanmiao and Yangshuwan
formations (Liang et al., 1981; Yu et al., 1981, 1982, 1983). Based on
their distribution, mineral assemblages and composition, the protoliths
of the rocks in this area represent a suite of sequences containing mafic
volcanic rocks, chemical sedimentary rocks, pelites, arenites and car-
bonaceous clastic rocks that were deposited in a back-arc basin (Lan
et al., 2017). The Taihua group in the Wuyang area has undergone
multiple amphibolite- to granulite-facies metamorphic events (e.g.,
1.96 Ga, 1.85 Ga; T=650–810 °C, P=4.9–10.8 kbar, Lu et al., 2013,

C. Lan, et al. Ore Geology Reviews 112 (2019) 103019

2



2014) and complex tectonic deformation.
The Huoqiu Group can be divided into three formations due to poor

outcrop in the field. According to the rock association and information
from drill core, the geological framework of this region is mostly in-
ferred through available information from lithological association and
drill-core data. Thus, the lower units comprise the Huayang and the
Wuji formations which are conformably overlain by the upper Zhouji
Formation. The Huoqiu group predominantly consists of the
Neoarchean metasedimentary rocks, marbles, amphibolites and BIFs in
the Huoqiu area (Qi and Yao, 1982; Wan et al., 2010). The Huoqiu
Group has undergone multiple amphibolite-facies metamorphic events
including 2.7 Ga (Yang et al., 2012) and 1.84 Ga (Wan et al., 2010) with
metamorphic conditions of 650 to 750 °C and 5.5 ± 0.5 kbar (Qi and
Yao, 1982; Qi, 1987). The Huoqiu Group has formed in a sea basin on a
continental margin based on multiple facies (carbonate, oxide and si-
licate facies) of therein BIF (Huang, 2014; Huang et al., 2016; Liu and
Yang, 2015).

2.2. The Xuchang BIF

The ~2.54 Ga Xuchang BIF (Kröner et al., 1988; Wan et al., 2009;
Diwu et al., 2011) is hosted in the Wuzhuang Formation of the Deng-
feng Group, which was completely covered by Quaternary sediments.
Strata associated with the Xuchang BIF consist mainly of amphibolite
and plagioclase-biotite leptynite. Drilling revealed that the ore body in
this area is 150 to 300m underground and more than 10 to 50m thick.
Multiple BIF layers of the ore bodies extend steadily along the strike of
the strata, and they have variable thickness ranging from a few meters
to fifty meters. Each of the ore body is 45° SW dipping and is composed
of Fe ores with 1 to 6 layers, each of which has an average thickness of
up to ~10m. Ore types of the Xuchang BIF are dominated by banded
quartz-amphibole-magnetite ore, which is composed of magnetite,
amphibole, minor grunerite and biotite. The Fe-rich bands are com-
posed of magnetite, amphibole and minor biotite and quartz. Magnetite
grains in the Fe-rich bands are either dispersed in the amphibole matrix
or therein as inclusions, whereas the Si-rich bands are composed of
quartz and minor amphibole and biotite.

Fig. 1. Geological distribution of the exposed Archean to Paleoproterozoic basement including Dengfeng, Taihua and Huoqiu complexes in the southern margin of
the North China Craton (NCC), and the location of the study BIF deposits in this paper (modified after Diwu et al., 2014).

Fig. 2. (a) Geological map of Neoarchean supracrustal rocks in the Xincai area showing the distribution of the Xincai BIF and exploration line 0 (modified after
GIIHP, 2008). (b) Cross-section profile of line 0 showing distribution of the Xincai BIF and associated rocks (modified after GIIHP, 2008).
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2.3. The Xincai BIF

The 2.5–2.7 Ga (Lan et al., 2019) Xincai BIF located in Xincai
County that is 70 km west of the Huoqiu BIFs along the NW-SE trending
BIF-bearing supracrustal belt (Fig. 1) (Cui et al., 2008). The BIF-bearing
supracrustal rocks in the Xincai area were completely covered by
Neoproterozoic strata and Quaternary sediments (Fig. 2). Drilling re-
vealed that the supracrustal rocks in this area are 700m underground
and more than 300m thick (Fig. 2b). Strata associated with the Xincai
BIF consist mainly of amphibolite, BIF and biotite schist (Fig. 2b). Mi-
neral assemblages of amphibole-garnet-biotite in the biotite schist
generally reflect amphibolite-facies regional metamorphism. A series of
ore clusters can be observed in Chenkong, Dadengzhuang, Jiaozhuang,
Gezhai, Liuying and Liancun in eastern Xincai County and Chendian
and Hewu in western Xincai County (Fig. 2a). From the drilled section
(Fig. 2b), multiple BIF layers of the eastern BIF bodies extend steadily
along the strike of the strata, and they have variable thickness ranging
from a few meters to tens of meters. The Xincai BIF comprises alter-
nating Fe-rich and Si-rich bands, ranging from<1mm to 5mm in
thickness. On the basis of their biotite and grunerite contents, the
Xincai BIF can be classified as Type I with abundant biotite and gru-
nerite and Type II with minor biotite and grunerite. The Fe-rich bands
of Type I BIF are composed of magnetite and biotite, grunerite and
minor quartz (Fig. 3c and d), whereas the Fe-rich bands of Type II BIF
are composed of magnetite and minor biotite and grunerite (Fig. 3a and
b). Minor pale green to pale brown grunerites occur in the Fe-rich bands
(Fig. 3). Single magnetite grains in the Fe-rich bands vary from<10
µm to 0.5mm in length (Fig. 3). The Si-rich bands in both type of ores

are composed of quartz, minor grunerite and magnetite (Fig. 3b and d).
Quartz grains in the Si-rich bands range from microcrystalline
(< 10 µm) to 1mm in diameter, are interlocking, frequently display
optical wave extinction and contain small magnetite inclusions (Fig. 3b
and d).

2.4. The Wuyang BIF

The 2.47–2.15 Ga (Lan et al., 2017) Wuyang BIF is hosted in the
Tieshanmiao Formation, which has a NW-trending strike, and is
~14 km long and extends from Shangmiao to Hewan villages (Fig. 4a).
The Wuyang BIF in the Shangmiao-Jingshansi-Lenggang mine occurs in
the core of a NW-trending regional-scale anticlinorium. The ore bodies,
which are 5–83m thick, are variably dipping and composed of Fe ores
with multiple layers (2 to 12 layers), each of which has an average
thickness of up to ~6m. On the other hand, the BIF in the Tiegukeng-
Tieshanmiao-Hewan mine (Fig. 4b) occurs in the southern limb of the
anticlinorium and has undergone strong deformation related to folding
(Fig. 5a and b). In this mine, the ore body is 27–49° SW dipping
(Fig. 4b) and is composed of Fe ores with 1 to 3 layers, each of which
has an average thickness of up to ~10m. The bands of the metamorphic
BIF are broadly parallel to the schistosity of the interlayers of biotite-
plagioclase gneiss (Fig. 5b and f). Two types of iron ores can be iden-
tified based on their macro- and micro-textures: banded quartz-pyr-
oxene-magnetite ores (BPM, Fig. 5d–f) and disseminated pyroxene-
magnetite ores (DPM, Fig. 5d–f). The DPM ores are present either as
lenses within the BPM ores (Fig. 5d) or as bands that are sharply par-
allel to the BPM ores (Fig. 5e).

Fig. 3. Photographs of the Xincai BIF in the Xincai area showing the mineralogy and typical textures. BIF sample which is composed of Fe-rich and Si-rich bands
(plane-polarized light). (a) Variable quartz, grunerite and biotite in Fe-rich band. (b) Minor quartz and grunerite in Fe-rich band. (c) and (d) Abundant biotites and
grunerites in Fe-rich band. Qtz-quartz; Gru-grunerite; Bt-biotite; Mt-magnetite.
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Fig. 4. Geological distribution of the exposed Taihua Complex in the Wuyang area (modified after WUSTEEL, 2003): (a) Geological map showing distribution of the
Taihua Complex, overlain Mesoproterozoic and Neoproterozoic strata. (b) Geological map of the Wuyang BIF in the Tiegukeng-Tieshanmiao-Hewan (TTH) mining
field showing distribution of the BIF and pyroxenite intrusions.

Fig. 5. Field relationships of different type rocks. (a) Tiegukeng open pit in the Wuyang area from Google Earth (2014) showing the Wuyang BIF, wall rocks and
cross-sections I-I′ and II-II′. (b) Cross-section I-I′ showing interlayers of the BIF rocks and biotite-plagioclase gneiss. (c) Cross-section II-II’ showing an intrusion of
2–10m thick pyroxenite stretches into the BIF body locally. (d-e) Contact relationship of the banded quartz-pyroxene-magnetite ore (BPM) and disseminated
pyroxene-magnetite ores (DPM) from cross-section II-II’. (f) Contact relationship of the BPM and biotite-plagioclase gneiss rocks.
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Banding and lamination are typical structures in the BPM samples
(Fig. 6a and b). The mineral assemblages of the BPM typically consist of
quartz, magnetite, and clinopyroxene (Fig. 6c and d) with subordinate
orthopyroxene observed elsewhere (Fig. 6e). In most case the ortho-
pyroxene and clinopyroxene grains occur in the same bands (Fig. 6e).
The orthopyroxene in the BPM is hypersthene in content. Combined
with associated clinopyroxene in the same sample, it is suggested that
the Wuyang BIF has underwent granulite-facies metamorphism. The Fe-
rich bands in the BPM consist of magnetite and clinopyroxene (Fig. 6c),
whereas the Si-rich bands mainly comprise quartz, with minor mag-
netite and clinopyroxene (Fig. 6d). The clinopyroxene grains (40–45 vol
%) in the Fe-rich bands are green in color and coarse-grained (0.2 to
2mm), as well as enhedral or subhedral; they lack exsolution (Fig. 6c)
and are commonly intergrown with magnetite (Fig. 6c). The quartz
grains (25–30%) in the Si-rich bands are anhedral and interlocking and
they are extremely variable in terms of size (0.05 to 0.5 mm). They
mostly display wave extinction under optical microscopy, and they
generally contain minor inclusions of dominantly magnetite (Fig. 6d).
The magnetite grains in the BPM samples are mostly dispersed in the
quartz or pyroxene matrix (Fig. 6c–e). The DPM samples are different
from the BPM samples due to their lack of banded textures (Fig. 6f) and
lower contents of quartz but higher contents of clinopyroxene (Fig. 6g
and h). The magnetite grains in the DPM samples are also dispersed in

the clinopyroxene matrix (Fig. 6g and h). The magnetite and pyroxene
grains in DPM are commonly in contact, typically with a triple junction
of 120° (Fig. 6h); this feature is similar to that observed in the BPM
samples (Fig. 6c).

3. Analytical methods

Magnetite grains from the Xincai, Xuchang and Wuyang BIFs were
selected for major and trace elemental analyses. The major element
contents of magnetite crystals in polished thin sections were de-
termined by a JEOL JXA-8230 EPMA equipped with five WDS spec-
trometers plus one energy-dispersive spectrometer was used to acquire
backscattered electron (BSE) images and the mineral compositions of
magnetite at the Key Laboratory of Mineralogy and Metallogeny,
Guangzhou Institute of Geochemistry, Chinese Academy of Sciences,
Guangzhou, China. The elements of interest (Si, Al, Mn, Mg, Fe, Ti, V,
Ca, Ni and Cr), expressed as oxides, were analyzed using a voltage of
15 kV and a beam current of 20 nA, focused to a spot of less than 1 μm
in size. Chemically analyzed natural magnetite, rhodonite, diopside,
olivine, almandine garnet and rutile as well as pure vanadium and
nickel served as standards. All raw data were corrected by ZAF, and V
data were corrected to avoid the interference of Ti-Kβ radiation. The
peak and background counting times were 20 s and 10 s for Si, Al, Fe,

Fig. 6. Photomicrographs of the Wuyang BIF. (a-b) BPM in hand and section, showing clear Si-rich band and Fe-rich band. (c) Magnetite and clinopyroxene in Fe-rich
band, showing grains contact in typically triple junction with 120° each other (plane-polarized light). (d) Quartz and minor magnetite in Si-rich band (plane-polarized
light). (e) BPM showing clinopyroxene coexisting with orthopyroxene, quartz and magnetite (plane-polarized light). (f-g) DPM in hand and section. (h)
Clinopyroxene and magnetite contact in typically triple junction with 120° each other (plane-polarized light). Qtz-quartz; Cpx-clinopyroxene; Opx-orthopyroxene;
Mt-magnetite.
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Mg and Ca, 40 s and 20 s for Ti and Mn, and 60 s and 30 s for Cr, Ni and
V, respectively. The EMPA data served as the basis for LA-ICP-MS data
calibration.

The trace element contents of magnetite crystals in polished thin
sections were determined by LA-ICP-MS at the Guangzhou Institute of
Geochemistry, Chinese Academy of Sciences, Guangzhou, China. This
LA-ICP-MS system consists of a Resonetics Resolution M-50 laser ab-
lation system coupled to an Agilent 7500a Inductively Coupled Plasma
Mass Spectrometer. Helium, as a carrier gas, and argon, as a makeup
gas, were mixed via a T-connector prior to entering the ICP. A spot size
with a diameter of 44 μm at 5 Hz was applied. Each analysis started
with a 20 s measurement of the gas blank, followed by 40 s of data
acquisition from the sample. Iron contents that were independently
determined by EMPA were used as the internal standard to correct for
the inter-element fractionation and differences during each individual
analysis of magnetite. Samples were measured in short runs bracketed
by the external standards Glass KL-2 and NIST SRM 610, with reference
values taken from Pearce et al. (1997) and Tu et al. (2011). Detailed
analytical procedures and instrumental operating conditions have been
described by Tu et al. (2011). The sum of all element concentrations,
expressed in oxide form (according to their oxidation states in magne-
tite), is considered to be 100wt% for a given anhydrous mineral (Liu
et al., 2008; Gao et al., 2013). Data processing was performed using the
software ICPMSDataCal, as scripted by Liu et al. (2008). This software
was also used for the integration selection of background and analysis
signals, the correction of time drift and quantitative calibration. All
laser ablation data were processed by non-automatic spectra reduction
to exclude spectra or parts of spectra that were affected by mineral
inclusions.

LA-ICP-MS trace elemental mapping was conducted at the School of
Marine Sciences of the Sun Yat-sen University (Guangzhou, China),
using a 193 ArF Excimer Laser Ablation system (GeoLasPro) coupled
with an Agilent 7700X ICP-MS. The detailed equipment setting and
analytical procedures and data reduction have been described by Li
et al. (2018) and are briefly summarized here. A beam size of 24 μmwas
employed and the energy density was 5 J/cm2 with a repetition rate of
10 Hz. The target area was defined by the Matrix program which con-
sisted of rows and columns. To generate an evenly-spaced spot matrix,
adjacent spots were ablated in a successive manner with no spacing in-
between, and a small overlap (2 µm) was programmed to avoid un-
ablated gaps. Finally, a square area of 600 μm×600 μm was ablated to
cover the sample (30 spots/per line× 30 lines). For data reduction, we
defined a relative coordinate of the raw data to each spot by using an
in-house Excel add-in and then generated the element distribution maps
via the software IoGAS v6.1 (http://reflexnow.com/iogas/). It is rea-
sonable to assume that the elemental signals along the rims of fish-
debris grains are relatively low, as spot analysis ablated more matrices
(e.g. resin).

4. Analytical results

4.1. LA-ICP-MS trace elemental mapping of magnetite

Representative elemental maps of magnetite from the Xuchang,
Xincai and Wuyang BIFs are presented in Figs. 7–9. Inner and edge
zones in magnetite grains from these BIFs are different in terms of Mg,
Mn, Al, Si and Na compositions. The magnetite edge in contact with
high Mg-Mn-Al hornblend and grunerite from the Xuchang and Xincai
BIFs show higher Mg, Mn and Al concentrations than the inner (Figs.
7b-d and 8b-c and f). Similar features are also observed in magnetite
from the Wuyang BIF. The magnetite rim closed to the high Mg-Mn-Na
clinopyroxene from the Wuyang BIF also has higher Mg, Mn, Al and Na
contents than the inner (Fig. 9b-c and e-f). However, these magnetite
grains do not show clear Ti and V zonations (Figs. 7e-f, 8g-h and 9g-h).

4.2. Magnetite chemistry

4.2.1. Magnetite in the Xuchang BIF
Trace element compositions of magnetite in these metamorphic BIF

samples are provided in Table S1, which is available online. Trace
element concentrations of magnetite in the Xuchang BIF contain high Al
(243–550 ppm), variable Ti (79–411 ppm) and extremely low Mg
(8–27 ppm), Mn (17–66 ppm), Zn (6–11 ppm), V (19–30 ppm), Cr
(5–14 ppm), Co (less than 1 ppm), Ni (less than 3 ppm) and Ga
(3–7 ppm). Compared with unmetamorphosed magnetite worldwide,
these magnetite grains in the Xuchang BIFs have relatively high Al and
Ti contents (Fig. 10a).

4.2.2. Magnetite in the Xincai BIF
The magnetite grains in the Type I BIF have concentrations of Al

(346–438 ppm), Ti (150–418 ppm), Cr (10–41 ppm) and V (21–59 ppm)
higher than those of the magnetite (Al: 96–176 ppm; Ti: 29–46 ppm; Cr:
3–10 ppm; V: 6–8 ppm) grains in the Type II BIF (Table S1). In contrast,
magnetite grains in the Type II BIF have Mn concentrations (up to
1146 ppm) higher than those of the Type I magnetite grains (151 to
212 ppm). Both Mg and Zn contents of magnetite from the Type II BIF
are slightly higher than those from the Type I BIF. The contents of Co,
Ni and Ga in the magnetite grains in both the Type I and Type II
samples are extremely low and less than 5 ppm (Table S1). Compared
with those published data of unmetamorphosed magnetite, Al, Ti, V and
Cr contents are relatively high in these magnetite grains from the Type I
samples but relatively low in magnetite from the Type II samples of the
Xincai BIF (Fig. 10b).

4.2.3. Magnetite in the Wuyang BIF
On the basis of their different pyroxene and magnetite composi-

tions, the BPM samples of the Wuyang BIF can be classified as Type I
and Type II. The former has clinopyroxene containing 1281 ppm Al and
90 ppm Ti, whereas the latter has clinopyroxene with much lower Al
(143 ppm) and Ti (54 ppm) contents (pyroxene data are from Lan et al.,
under review). The magnetite grains in the Type I samples have con-
centrations of Mg (37–601 ppm), Zn (12–28 ppm), Al (358–849 ppm)
and Ti (74–125 ppm) that are higher than those of the magnetite (Mg:
34–76 ppm; Zn: 4–18 ppm; Al: 53–99 ppm; Ti: 4–12 ppm) grains in the
Type II samples (Table S1). The Mn concentrations of magnetite from
both sample types are indistinguishable (385–869 ppm) (Table S1). The
contents of V, Cr, Co, Ni, Ga, Ge and Sn in the magnetite grains in both
the Type I and Type II samples are extremely low and less than 10 ppm
(Table S1). Compared to the magnetite from the BPM samples, those in
the DPM samples are characterized by variable contents of Mg
(22–177 ppm), Al (131–997 ppm), Ti (77–320 ppm), Mn
(436–2750 ppm) and Zn (5–40 ppm) (Table S1). The contents of other
elements, such as V, Cr, Co, Ni and Ga, in the magnetite of the DPM are
generally less than 10 ppm (Table S1). Compared with those published
data of unmetamorphosed magnetite, Al and Ti contents are relatively
higher in these magnetite grains from the Type I samples of the BPM
and from the DPM samples of the Wuyang BIF (Fig. 10c and d).

5. Discussion

5.1. Initial composition of magnetite in BIF

The initial composition of magnetite in BIF is mainly controlled by
the origin of magnetite and compositions of contemporary Paleo-sea-
water.

5.1.1. The origin of magnetite in BIF
Petrographic evidence certainly implies a secondary origin for

magnetite in BIFs (Ayres, 1972; Ewers and Morris, 1981). Magnetite
can be the metamorphic by-product of hematite and siderite during
post-diagenetic metamorphism with temperatures ranging from 480 °C
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to 650 °C and pressures of 5–12 kbar (Ewers and Morris, 1981; Koziol,
2004), or formed through the conversion of pre-existing hematite and
Fe(II)-rich hydrothermal fluids at less than 200 °C (Ohmoto, 2003;

Alibert, 2016). The reduction of ferricoxyhydroxides through dissim-
ilatory iron reduction (DIR) is also a likely source for the magnetite in
BIFs at a low temperature (Lovley, 1993; Johnson et al., 2008).

Fig. 7. Petrography of the ablation mapping area (a) and quantitative LA-ICP-MS trace element maps of the magnetite+ hornblende+quartz assemblages from the
Xuchang BIF, all maps show log ppm abundances (b-f). Qtz-quartz; Hbl-hornblende; Mt-magnetite. The box is the edge of magnetite grain in-contact with hornblende,
which has elevated Mg concentration.

Fig. 8. Elemental distribution of the magnetite+ grunerite+ quartz assemblages from the Xincai BIF: (a) Petrography of the ablation mapping area. (b-h)
Quantitative LA-ICP-MS trace element maps and all maps show log ppm abundances. The dash lines present heterogeneous composition of magnetite grains. (i)
Petrography of the X-ray mapping area, showing that metamorphic fluids produced during metamorphism. (j-m) Quantitative X-ray trace element maps, showing
that elements from metamorphic fluids incorporated in magnetite. Qtz-quartz; Gru-grunerite; Mt-magnetite.
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Fig. 9. Petrography of the ablation mapping area (a) and quantitative LA-ICP-MS trace element maps of the magnetite+ clinopyroxene assemblages from the
Wuyang BIF, all maps show log ppm abundances (b-h). Cpx-clinopyroxene; Mt-magnetite.

Fig. 10. Normalized multielemental patterns of magnetite from the Xuchang (a), Xincai (b) and Wuyang (c-d) BIFs. Normalizing values are the average composition
of magnetite from the unmetamorphosed BIF from the Sokoman Iron Formation (Chung et al., 2015): Mg=148, Mn=201, Al= 129, Ti= 30, V= 22, Zn= 10,
Cr= 6, Co=15, Ni= 1, Ga= 2 (all in ppm). The chemical compositions of magnetite from amphibolite- to granulite-facies BIFs exhibit systematic changes of Mn,
Al and Ti with increasing metamorphic temperature and can be divided into different types based on the compositions of coexsiting silicate minerals. Type I of the
Xincai BIF is the magnetite coexisting with abundant biotite and grunerite, whereas Type II of the Xincai BIF is the magnetite coexisting with minor biotite and
grunerite. Type I of the Wuyang BIF in Fig. 10c is magnetite coexisting with Al-Ti-rich clinopyroxene, whereas the Type II of the Wuyang BIF in Fig. 10c is magnetite
coexisting with Al-Ti-poor clinopyroxene.
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Recently, experiments showed that magnetite in BIF could have pre-
cipitated directly from seawater through the reaction of settling ferri-
hydrite and hot Fe(II)-rich hydrothermal fluids that existed in the
deeper water (Li et al., 2017). Although magnetite in BIFs has different
origin, oxygen isotope compositions indicated formation temperatures
of the earliest hematite in BIF as low as ~25 °C, whereas the earliest
magnetite in BIF between 50 °C and 100 °C and the slightly later mag-
netite up to ~250 °C (Konhauser et al., 2017). Klein and Fink (1976)
concluded that the essentially unmetamorphosed assemblages of the
Sokoman Iron Formation in the Howells River area were formed at
temperature of 150 °C or less. French (1973) suggested that greenalite-
containing assemblages in BIFs reflect late-diagenetic conditions with a
temperature range of 100 °C to 200 °C. Some other reported that the
recorded peak burial metamorphic temperatures of the BIFs from the
Koolyanobbing-Marda greenstone belts and Weld Range in the Yilgarn
Craton, Western Australia; the Marra Mamba and Mt Sylvia Formations
in Hamersley Province, Western Australia; and the Caué Formation,
Quadrilátero Ferrífero (QF), Brazil, range from 200 °C to 350 °C
(Rosière and Rios, 2004; Klein, 2005; Angerer et al., 2012, 2013;
Duuring and Hagemann, 2013). Obviously, magnetite always occurred
in most of BIFs in a low temperature. Therefore, we consider that
magnetite under a very low temperature (e.g., less than 150 °C) can
represent the initial phase of itself.

5.1.2. The composition of the Precambrian ocean
It is hard to directly constrains on the composition of the

Precambrian oceans due to absent of modern analogues. Most studies
always use the sediments (e.g., BIF) from the seawater to quantitative
ascertain the seawater composition (Holland, 1984; Maliva et al.,
2005). The composition of the earliest oceans was ferruginous, silic-
eous, possibly mildly sulfidic and contained abundance of mafic-vol-
canic associated trace transition elements, such as Ni, Cr, Zn (Holland,
1984; Arndt, 1991; Saito et al., 2003; Maliva et al., 2005; Konhauser
et al., 2009; Mloszewska et al., 2012). Some elements in the Archean to
Proterozoic seawater did not change significantly, e.g., dissolved Zn
concentrations (Planavsky et al., 2010). Sulfate, Mo and Cr have an
abundance in the early to middle Paleoproterozoic ocean as oxidative
weathering of continent was increasing (Konhauser et al., 2011). Con-
temporaneous BIF can also have geochemical changes as the seawater
composition changed. However, most of previous studies suggested that
magnetite from Archean to Paleoproterozoic BIFs has no great differ-
ences at the same metamorphosed grade except those formed at special
conditions, such as alteration by mafic rock or continental Cr flux input
(Bhattacharya et al., 2007; Pecoits et al., 2009; Konhauser et al., 2011;
Nadoll et al., 2014). Besides, types of BIFs (Algoma and Superior types)
were formed in different geological setting (near spreading centers or
island arcs and near-shore continental shelves, respectively) as con-
tinent and oceanic evolution happened (Gross, 1980). The composition
of local seawater of this two different setting could be different, such as
Al-Ti-rich near shore continental shelves. Mass data also suggested that
no significant differences between Algoma- and Superior-type BIFs has
been observed (Nadoll et al., 2014). This is possibly not hard to un-
derstand because those compatible elements (e.g., Ti, Al) have low
solubility in fluids at low temperatures (Ray and Webster, 2007; Nadoll
et al., 2012, 2014). Therefore, we consider that initial composition of
magnetite in BIFs contain low trace elements (e.g., Mg, Al, Ti, V, Cr, Zn)
although compositions of Paleo-seawater changed over time.

5.1.3. Initial composition
Previous studies always considered that magnetite geochemistry in

low-grade metamorphosed BIFs with metamorphic temperatures of
200 °C to 350 °C or below represent the original magnetite concentra-
tion and used them as a low temperature spectrum to compare with
other types of ore deposits (Nadoll et al., 2014; Dare et al., 2014). In
actually, this magnetite geochemistry has a variable range. For in-
stance, Nadoll et al. (2014) obtained variable compositions of

magnetite from the low-grade metamorphic BIFs (with metamorphic
temperatures of 200 °C to 350 °C) with Mg (200 to 1000 ppm), Mn (20
to 100 ppm), Al (40 to 200 ppm), Ti (10 to 30 ppm) and other elements
(V, Cr, Co, Ni, Zn) less than 10 ppm. Angerer et al. (2012) reported
variable Mg (147 to 1380 ppm), Al (115 to 407 ppm) and Ti (3 to
59 ppm) contents of the low-grade metamorphic magnetite. Dare et al.
(2014) reported high Al (up to 1375 ppm), Ti (~441 ppm), V
(~91 ppm), Cr (~37 ppm) and Zn (~34 ppm) contents of the low-grade
metamorphic magnetite. Although magnetite in those low-grade me-
tamorphic BIFs still represent a relatively low-temperature spectrum
compared with other different geological settings, e.g., porphyry ore
deposit and skarn ore deposit, some elemental contents of magnetite
have changed during low-grade metamorphism. Compared with above,
Chung et al. (2015) reported that unmetamorphosed magnetite from
the Sokoman Iron Formation has very low Mg (~148 ppm), Mn
(~200 ppm), Al (~129 ppm), Ti (~30 ppm), V (~22 ppm), Zn
(~10 ppm), Cr (~6 ppm), Co (15 ppm), Ni and Ga (less than 2 ppm). As
BIF is marine chemical sediments, original Fe-oxides in it have lower
trace elements (e.g., Mg, Mn, Al, Ti, V et al.) at such low formation
temperature compared with other hydrothermal deposits. Therefore,
we consider that those unmetamorphosed magnetite can represent the
original composition of magnetite in BIFs, which can be used as a basic
value to compare with other magnetite from different metamorphosed
BIFs to further investigate the influence of metamorphism. While the
low-grade metamorphic magnetite has variable chemical compositions
affected by some factors which need to be further discussed in the
flowing text.

5.2. The effects of metamorphism on modification of magnetite

5.2.1. Oxygen fugacity
It should consider the effects of oxygen fugacity on magnetite geo-

chemistry because oxygen fugacity maybe changed during meta-
morphism. Vanadium (e.g., +3, +4 and +5) and Cr (e.g., +2, +3 and
+6) have variable valence states in nature; therefore, their incorpora-
tions in magnetite are strongly linked to oxygen fugacity (Nielsen et al.,
1994; Klemme et al., 2006; Righter et al., 2006; Ryabchikov and
Kogarko, 2006), because only V(III) and Cr(III) that substitute for Fe3+,
are relatively compatible with magnetite structure (Barnes and Roeder,
2001; Bordage et al., 2011; Toplis and Corgne, 2002). For example,
increasing fO2 could decrease the partition coefficients of V and Cr into
magnetite in an iron-rich melt/liquid (Toplis and Corgne, 2002). The
atomic ratio of Fe2+/Fe3+ in iron oxide can reflect oxidation state of
iron (Chang et al., 2016). The oxidation state of iron is the key para-
meter in the magmatic oxygen fugacity calculation, and the Fe3+/ΣFe
ratio of magma can be used to estimate their oxygen fugacity (Bézos
and Humler, 2005). Based on this, we considered that atomic ratio of
Fe2+/Fe3+ in magnetite can coarsely estimate the oxygen fugacity
change. It can conclude that weak changes in oxygen fugacity occur
during metamorphism based on very narrow range of Fe2+/Fe3+ ratios
of the amphibolite-facies metamorphosed magnetite (from 0.4896 to
0.5056; ave. 0.5021) and of the granulite-facies metamorphosed mag-
netite (from 0.4940 to 0.5073; ave. 0.5017) (Table S1). The Cr and V
contents in these variably metamorphosed magnetite grains are vari-
able, but not over a wide range (less than 30 ppm), and lack of a strong
positive correlation between them (Fig. 11). Therefore, the effect of
oxygen fugacity on the modification of magnetite chemistry may be
negligible during metamorphism.

5.2.2. Metamorphic temperature
Metamorphic temperatures from the low- to high-grade metamor-

phosed BIFs are highly variable: approximately 200 °C to 350 °C for the
greenschist-facies metamorphosed BIF, 350 °C to 640 °C for the am-
phibolite-facies metamorphosed BIF and ≥750 °C for the granulite-fa-
cies metamorphosed BIF. Magnetite grains from the amphibolite- to
granulite-facies BIFs display low Cr, Co, Ni and Ga contents (less than
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10 ppm) and slightly variable V and Zn contents, and their contents do
not show clear correlations with metamorphic temperatures, indicating
that these elements are immobile as temperature changed. Aluminum
and Ti incorporation in magnetite is largely temperature-controlled in
igneous systems, and tend to enriched in magnetite forming in rela-
tively high temperatures (Nielsen et al., 1994; Toplis and Carroll,
1995). Temperatures recorded for hydrothermal alteration and vein
formation generally lie below magmatic temperatures. Nadoll et al.
(2014) found that Al and Ti have on average considerably greatly
concentrations in igneous magnetite than for hydrothermal occurrences
on a deposit scale and considered that temperature is a major governing
factor for the composition of hydrothermal magnetite. Compared with
those published data of unmetamorphosed magnetite, the magnetite in
relatively high-temperature, amphibolite- to granulite-facies metamor-
phosed BIFs have elevated Mn, Al and Ti (Fig. 10), indicative of effects

of metamorphic temperatures. Besides, the diagrams of Ti/V ratio vs. Al
and Ti vs. V also display clear rising trends of Al and Ti as temperature
(Fig. 12). Besides, elements which occupied the same site in magnetite
crystal have a negative relationship with each other in composition.
High Mn contents in the amphibolite- to granulite-facies metamor-
phosed magnetite thus lead to low Mg contents in them (Fig. 10).

5.2.3. Coexisting mineral
The gangue minerals in BIFs react with each other under special

conditions during metamorphism, leading to the formation of new Fe-
rich silicates (e.g., amphiboles, pyroxenes, and fayalite) and fluids by
the following dehydration or decarbonation reactions (Klein, 2005),
followed by the reactions below:

+ → +Fe Si O (OH) 4SiO 2Fe Si O (OH) 2H O6 4 10 8
greenalite

2 3 4 10 2
minnesotaite

2
(1)

+ → + +Fe Si O (OH) O 2Fe Si O (OH) 2Fe O 3H O6 4 10 8
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2 3 4 10 2
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3 4
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2
(2)

+ + → +FeCO 4SiO H O Fe Si O (OH) 2CO3
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2 2 3 4 10 2
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+ → +

+ +
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2
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2
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7Ca(Fe, Mg)(CO ) 8SiO H O (Fe, Mg) Si O (OH) 7CaCO

7CO

3 2
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2 2 7 8 22 2
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3
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+ + → +8(Fe, Mg)CO 8SiO H O (Fe, Mg) Si O (OH) 7CO3
siderite

2 2 7 8 22 2
grunerite

2
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→ + +7Fe Si O (OH) 3Fe Si O (OH) 4SiO 4H O3 4 10 2
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2 2
(7)

+ → +Ca(Fe, Mg)(CO ) 2SiO Ca(Fe, Mg)Si O 2CO3 2
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2 2 6
clinopyroxene

2
(8)

+ → +(Fe, Mg)CO SiO (Fe, Mg)SiO CO3
siderite

2 3
orthopyroxene

2
(9)

→ + +Fe Si O (OH) 7FeSiO SiO H O7 8 22 2
grunerite

3
orthopyroxene

2 2
(10)

These metamorphic reactions in BIFs are essentially isochemical
except for prevalent dehydration and decarbonation. Theoretically, no
metamorphic reactions happened between magnetite and these gangue

Fig. 11. Chromium vs. V diagram of magnetite from the unmetamorphosed and
variously metamorphosed BIFs (values in ppm). Data from selected magnetite
from unmetamorphosed BIF (Chung et al., 2015), greenschist-facies BIFs
(Angerer et al., 2012; Dare et al., 2014; Nadoll et al., 2014), amphibolite-facies
BIFs (Dai, 2014 and this paper) and granulite-facies BIF in the Wuyang area
(this paper). There is no obviously strong positive correlation between the Cr
and V contents in magnetite from unmetamorphosed BIF to variously meta-
morphosed BIFs.

Fig. 12. (a) Ti/V ratio vs. Al diagram of magnetite from different metamorphosed grade BIFs with different metamorphic temperature. (b) Titanium vs. V diagram for
the different metamorphic grade magnetite (values in ppm). A rising Al and Ti/V ratio, and a decreasing V and rising Ti as temperature increases can be observed in
different metamorphosed grade magnetite, compared to unmetamorphosed magnetite, respectively. Data from selected magnetite from unmetamorphosed BIF
(Chung et al., 2015), greenschist-facies BIFs (Angerer et al., 2012; Dare et al., 2014; Nadoll et al., 2014), amphibolite-facies BIFs (Dai, 2014 and this paper) and
granulite-facies BIF in the Wuyang area (this paper).
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minerals or new-formed Fe-silicates. However, mass data show that the
trace elemental variations of magnetite are correlated with the coex-
isting minerals of different metamorphic grades. For instance, magne-
tite from the greenschist-facies metamorphosed BIFs with Al-rich
gangue minerals (e.g., feldspar, biotite) has extremely high concentra-
tions of Al (up to 1375 ppm Al) and Ti (Table S1). The Al, Ti and V
contents in magnetite from the amphibolite-facies metamorphosed BIFs
containing minor grunerite and biotite (Type II) are lower than those in
BIFs containing abundant grunerite and biotite (Type I) (Fig. 10b). In
the granulite-facies metamorphosed BIFs, magnetite associated with
low-Al-Ti clinopyroxene (Type II) has lower contents of Al, Ti and V
than those associated with high-Al-Ti clinopyroxene (Type I) (Fig. 10c).
Trace elemental mapping suggests further that the edge of magnetite
grains in contact with these Fe-silicates (hornblende, grunerite, pyr-
oxene) shows zones of elevated Mg, Mn, Al, Si, Na and their inner is
depleted in these elements (Figs. 7–9), indicating that elemental dif-
fusion and exchange between magnetite and these Fe-silicates greatly
happened in high-grade metamorphism. Mueller (1967) also concluded
that elemental diffusion and exchange can be used to interpret com-
positional changes of adjacent minerals as an important mechanism
during isochemical process.

5.2.4. Metamorphic fluids
Element activity is very extensive and strong in hydrothermal fluids,

which is the most important control factors for minor and trace element
concentrations in hydrothermal magnetite (Nadoll et al., 2014). For
instance, fluids associated with skarn deposits always are enriched in K,
Ca, Mn, Zn et al (Meinert et al., 2005). Above provided metamorphosed
reactions in BIFs can produce some fluids at different metamorphosed
temperature. These fluids either contained alkaline elements (e.g., K,
Na; e.g., reaction (4)) or produced by (K, Na)-bearing silicates (e.g.,
grunerite) may scrape elements (e.g., Al) from these Fe-silicates. It is
observed that the metamorphic fluids occurred in the amphibolite-fa-
cies Xincai BIF and Si, Ca and Al from the fluids cutting in-contact si-
licates incorporated into magnetite (Fig. 8i–m), although fluids from
those metamorphic reactions are not very (K, Na)-rich and maybe have
no greatly effects on elemental changes of the system compared with
classical hydrothermal ore deposits (e.g., skarn). Alternatively, our
previous work considered that pyroxene in the Wuyang BIF is not a
product of reaction between pre-existing minerals but dehydration and
recrystallization of original Ca-Fe-Mg-Mn gel. And dehydration was

happened at diagenetic stage and it was dry during metamorphism in
later-stage (Lan et al., under review). In this case, no metamorphic fluid
was produced. Elemental diffusion and exchange happened by other
way, such as pressure solution, except metamorphic fluids during me-
tamorphism.

5.3. Implications for provenance discrimination

Most of trace elements (e.g., Mg, Mn, Al, Ti) in magnetite from BIFs
are more or less changed, while the other elements (e.g., Zn, V, Cr, Co,
Ni, Ga) in magnetite from various metamorphosed BIFs have no clear
changes during metamorphism based on above discussion. The latter
can be used to genetic discrimination of magnetite although their
contents are low. The reduction of Mg and increase in Al, Ti and Mn
contents in magnetite from metamorphosed BIFs suggested that ele-
mental diffusion and exchange happened between coexisting silicate
minerals and magnetite. The elements of Mg, Mn, Al and Ti in mag-
netite from metamorphosed BIFs are greatly controlled by metamorphic
temperature and coexisting minerals. Aluminum and Ti in magnetite
from metamorphosed BIFs are especially affected by coexisting silicate
minerals because magnetite grains in BIFs with mass of silicate minerals
or Al-Ti-rich pyroxenes have higher Al and Ti contents than those in
BIFs with minor silicates minerals or Al-Ti-poor pyroxenes under the
same metamorphosed temperature, respectively (Fig. 10b and c).

Previous studies have used a statistical approach, e.g., principal
component analysis (Grigsby, 1990; Nadoll et al., 2012) or empirical
approaches based on large databases of magnetite composition to
identify combinations of elements and/or element ratios which is the
most diagnostic for discrimination purposes (Dupuis and Beaudoin
2011; Nadoll et al., 2014). Data of these magnetite compositions were
from different magmatic and hydrothermal setting with special mag-
netite composition (Reguir et al., 2008; Pecoits et al., 2009; Rusk et al.,
2010; Dare et al., 2012; Angerer et al., 2013). The elements of Ti, Al, V,
Ni, Cr, Mn and Ca have been used to discriminate between different
types of iron ores such as BIF, skarn, porphyry and Kiruna ores (Dupuis
and Beaudoin, 2011; Nadoll et al., 2014). As Ni and Cr concentrations
in magnetite from BIF are very low and have no greatly changes during
metamorphism, we focus on the Ti, Al, V and Mn diagram by Nadoll
et al. (2014). We put all the data including from the unmetamorphosed
to high-grade metamorphic BIFs on the diagram and found that the
values of Ti+V and Al+Mn of these metamorphic magnetite grains
were still different from any other types of hydrothermal and magmatic
ore deposits except overlap with skarn deposit (Fig. 13). The overlap
area is mainly the high-grade metamorphosed magnetite and our study
reveals that some elements (Al and Ti) in magnetite can up to 10 times
compared to those unmetamorphosed magnetite during high tempera-
ture (Fig. 10c and d). Therefore, it should be caution when we used
high-grade metamorphosed (especially granulite-facies metamor-
phosed) magnetite chemistry to discriminate ore type. We found great
temperature and coexisting mineral dependence of Al and Ti in mag-
netite, which can be used as an importantly considerable factor to other
hydrothermal ore deposits.

6. Conclusions

1) Magnetite grains from the amphibolite- to granulite-facies BIFs
display low Cr, Co, Ni and Ga contents and slightly variable V and
Zn contents. These elemental concentrations have no great changes
in magnetite during high temperature metamorphism.

2) Compared with those published data of unmetamorphosed magne-
tite, a rising trend of Al, Ti and Mn concentrations in the amphi-
bolite- to granulite-facies metamorphosed magnetite as temperature
increase, indicative of greatly temperature dependence.

3) Elemental diffusion and exchange between magnetite and coexisting
silicate minerals are relatively extensive under high-grade meta-
morphism by metamorphic fluids or other way, such as pressure

Fig. 13. Magnetite discrimination plots for various ore deposit types by Nadoll
et al. (2014) (Al+Mn vs. Ti+V (wt.%)) using data from selected magnetite
from unmetamorphosed BIF (Chung et al., 2015), greenschist-facies BIFs
(Angerer et al., 2012; Dare et al., 2014; Nadoll et al., 2014), amphibolite-facies
BIFs (Dai, 2014 and this paper) and granulite-facies BIF in the Wuyang area
(this paper).
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solution.
4) Our study reveals that some elements (Al and Ti) in magnetite can

up to 10 times compared to those in unmetamorphosed BIF during
high temperature. Therefore, it should be caution when we used
high-grade metamorphosed (especially granulite-facies metamor-
phosed) magnetite chemistry to discriminate ore type.
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