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Rapid agricultural intensification, industrial and urban devel-
opment, and increased fuel use in transportation and energy 
production have caused a dramatic increase in anthropo-

genic reactive nitrogen emissions over recent decades1,2, which 
have been predicted to increase in China. Reactive N in the 
atmosphere is deposited via both dry and wet pathways involving 
reduced NHx and oxidized NOy species1,3. Despite their impor-
tant and very different influences on the structure and function 
of terrestrial and marine ecosystems4–7, few studies have quanti-
fied the separate components and N deposition pathways at the 
large (especially national) scale. Increased N deposition has pro-
found consequences for natural and anthropogenic ecosystems. 
For example, N deposition provides a new source of fertilizer for 
plant growth but, conversely, can impact human health, modify 
biogeochemical cycles3, change ecosystem structures and func-
tions, and even result in species extinction8–12. N deposition may 
also influence ecosystem carbon cycles and, consequently, global 
climate change11,13.

China is one of the three regions with the highest N deposition 
in the world14. It has increased by approximately 60% over the past 
3 decades15. Previous studies have analysed the temporal and spatial 
variations of wet N deposition (FWet) and its components in China16–18,  
but have not explored the temporal dynamics of dry deposi-
tion (FDry), mostly because of the difficulty in directly measuring  
and monitoring dry deposition19,20. The lack of information on dry 

deposition, the ratio of dry to wet N deposition (RDry/Wet) and the 
ratio of reduced to oxidized species ( ∕RNH NOx y

) hinders our under-
standing of the spatial and temporal patterns of the flux of total N 
deposition (FTot).

Using a remote sensing model and nonlinear regression func-
tions linking reactive N emissions and N deposition, we constructed 
herein a dataset for FDry across China for the period of 1980–2015. 
Together with the FWet data collected from 956 monitoring sites across 
China (2,376 site years of data) during 1980–2015, we explored the 
spatiotemporal patterns of the components of atmospheric N depo-
sition (for example, FTot, FDry, FWet, RDry/Wet and ∕RNH NOx y

) and their 
underlying mechanisms. Given the rapid socioeconomic changes in 
China and the parallel evolution of industries, combustion technol-
ogies and agricultural intensification, understanding the patterns 
of N deposition and the environmental and climate implications 
of N deposition is essential for environmental policy decisions in 
China—the largest developing country. However, such an improved 
understanding can also provide insights for other developing coun-
tries, and the global community generally, on managing and miti-
gating N cycles under the balance of socioeconomic development 
and controlling pollution.

Current status of atmospheric N deposition in China
The average FTot for China has been estimated as 
20.4 ± 2.6 kgN ha−1 yr−1 in 2011–2015, where FDry and FWet were 
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10.3 ± 1.5 and 10.1 ± 1.2 kgN ha−1 yr−1, respectively (Table 1). 
Gaseous N and particulate N deposition contributed to 68.8 and 
31.2% of FDry, respectively (Supplementary Table 1). Total N deposi-
tion to China was 19.6 ± 2.5 TgN yr−1, which is very similar to its 
total anthropogenic N emission (about 20.8 TgN yr−1 in 201015) and 
close to a modelling estimate for 2008–2012 (16.4 TgN yr−1)21. In 
comparison, FTot in the United States and Europe was approximately 
6.01 and 10.02 kgN ha−1 yr−1, respectively22,23, and total N deposi-
tion in the United States and Europe was only 5.9 and 9.8 TgN yr−1, 
respectively23,24. Unexpectedly, FDry was comparable to FWet, with 
RDry/Wet approximately equal to 1 in China (Table 1), underlining 
the importance of FDry and its effects on terrestrial ecosystems. NHx 
deposition dominated over NOy in both FDry and FWet, with ∕RNH NOx y

 
values of 2.2 and 1.4, respectively.

The spatial patterns of NHx and NOy fluxes in dry and wet depo-
sition in 2011–2015 were different (Fig. 1). The highest NHx wet 
deposition (FWet(NH )x

) was measured in North, East and Central 
China. The spatial patterns of NOy wet deposition (FWet(NO )y

) 
were similar to those of FWet(NH )x

, and NOy deposition exceeded 

Table 1 | atmospheric dry, wet and total N deposition to China 
in 2011–2015

Forms Dry Wet total

FTot 
(kgN ha−1 yr−1)a

NHx 7.1 ± 0.6 5.9 ± 0.7 12.9 ± 1.3

NOy 3.2 ± 1.0 4.2 ± 0.5 7.5 ± 1.4

NHx + NOy 10.3 ± 1.5 10.1 ± 1.2 20.4 ± 2.6

Total N 
deposition 
(TgN yr−1)b

NHx 6.8 ± 0.6 5.7 ± 0.5 12.4 ± 1.2

NOy 3.1 ± 1.0 4.1 ± 0.2 7.2 ± 1.3

NHx + NOy 9.9 ± 1.6 9.7 ± 1.3 19.6 ± 2.5

∕RNH NOx y
NHx/NOy 2.2 ± 0.2 1.4 ± 0.1 1.7 ± 0.1

RDry/Wet Dry/Wet – – 1.0 ± 0.1
aThe wet deposition of NHx and NOy was obtained by Kriging interpolation, while the dry 
deposition of NHx and NOy was calculated from remote sensing models (see Methods for details). 
The mean ± s.e. of each N deposition flux was calculated as the weighted average of 31 provinces 
in China, not including Hong Kong, Macao and Taiwan. The s.e. is the variation between the 
31 provinces. bTotal N deposition was calculated by multiplying the average fluxes by land area.
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Fig. 1 | Spatial patterns of atmospheric N deposition over China in 2011–2015. The spatial patterns of wet deposition were obtained by Kriging 
interpolation, and those of dry deposition were obtained from remote sensing models.
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10 kgN ha−1 yr−1 over approximately 5.12% of the land area in China. 
Meanwhile, the highest NHx and NOy dry deposition was measured 
in North China. FDry exhibited a decreasing gradient from North 
China to other regions. The spatial pattern of FTot was similar to 
those of the NHx and NOy fluxes.

Gradual stabilization of total N deposition
The temporal evolution of FTot has changed from a rapid increase 
towards stability (Fig. 2c), with a similar trend occurring in most regions 
of China (Supplementary Fig. 1). FWet reached a peak in 2001–2005,  
then decreased by 17%, whereas FDry continued to increase (Fig. 2a,b),  
and similar annual dynamics of FWet and FDry are provided in 
Supplementary Fig. 2. The stability of FTot is unexpected and inconsis-
tent with an earlier prediction of an ongoing increase in N deposition in 
China15. The cause is clear from a marked decline in FWet(NH )x

 (Fig. 2a).  
However, although FWet(NO )y

, FDry(NO )y
 and FDry(NH )x

 continued to 
increase during 2001–2010, FWet(NO )y

 and FDry(NO )y
 began to decrease  

after 2011 (Supplementary Fig. 2). Thus, the stabilization of FTot has 
been driven mostly by a gradual decline in FWet(NH )x

, but enhanced 
since 2011 by declines in both FWet(NO )y

 and FDry(NO )y
.

Measurements of FWet at 30 long-term wet N deposition monitor-
ing sites, with >10 years of continuous data, offer robust evidence 
that the FWet deposition in China followed a quadratic relationship 
over time (Supplementary Fig. 3). At the site level, decreasing trends 
in FWet were observed at 18 of the 30 sites. In total, the peaked value 
of FWet by averaging these 30 sites was 21.3 kgN ha−1 yr−1 in 2006–
2010. This decreased by 21% in 2011–2015. These results confirm 
the novel and important finding that the decreasing trend in FWet 
occurred in most regions across China.

a shift in wet and dry depositions
At a global scale, 40–80% of FNHx

 and 40–70% of FNOy
 are deposited via 

precipitation14. In China, atmospheric N deposition has shifted from 
being wet dominated to almost equal contributions of FWet and FDry 
(Fig. 3a). FWet accounted for 67% of FTot in 1980–1990, but decreased 
to 50% during 2011–2015 because FDry increased while FWet decreased.

From 1980 to 2015, RDry/Wet increased on average by 0.02 yr−1 
across China, with a general increase in all regions (Supplementary 
Fig. 4). In 2011–2015, N deposition in Northeast, North, East 
and Southwest China shifted from wet deposition dominating to 
approximately equal wet and dry deposition, with values of RDry/

Wet in the range 1.0–1.2. However, in Northwest, Central and South 
China, FWet remained dominant, with values of RDry/Wet in the range 
0.9–1.0, although RDry/Wet still increased.

Decreased contribution of reduced (NHx) components
∕RNH NOx y

 decreased significantly from 1980 to 2015, irrespective of 
changes in FTot, FWet and FDry (Fig. 3b). In particular, ∕RNH NOx y

 in FWet 
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Fig. 2 | temporal dynamics of wet, dry and total N deposition across 
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decreased from 4.8 ± 0.3 to 1.4 ± 0.1. During 2011–2015, ∕RNH NOx y
 

values were much higher in Northwest and Southwest China, and 
lower in the remaining regions of China (Supplementary Fig. 4). In 
comparison, ∕RNH NOx y

 in FWet increased from 0.7 in 1985 to 1.5 in 
2012 in the United States25. Thus, ∕RNH NOx y

 differed between devel-
oping and developed countries, which was probably the result of 
different phases of agriculture, industrialization and technological 
development.

The average ∕RNH NOx y
 in the 7 Chinese regions significantly 

decreased by 0.086 yr−1 from 1996 to 2015, but at different rates in 
different regions (Supplementary Fig. 4). The maximum decline 
rates were observed in Northwest, Central and Southwest China, 
with an average rate of 0.11 yr−1.

Contribution of socioeconomic structural changes
N fertilizer use (FN) and livestock cultivation (LC; that is, the num-
ber of large livestock units) are the main sources of anthropogenic 
NH3 emissions via volatilization. Energy consumption (EC, includ-
ing industrial production and the combustion of coal, coke, oil, 
natural gas and other fuels) is the main source of NOx

14,26. From 
1980–2015, FN, LC and EC increased first, then stabilized in recent 
years because of the change in socioeconomic policies in China 
(Fig. 4), which together determined the spatiotemporal changes of 
atmospheric N deposition.

Rapid changes in economic development, industry infrastruc-
ture, energy consumption, and agricultural and environmental poli-
cies altered FN, LC and EC, and their relative proportions (FN/EC or 
LC/EC), thereby influencing the emissions of reduced N and oxidized  
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N (ENH3
 and ENOx

, respectively) and thus the ratio of reduced to  
oxidized components (ENH3

/ENOx
) (Fig. 4 and Supplementary Fig. 5).  

Structural equation modelling showed that FN, LC and EC can  
together explain 96–99% of the spatiotemporal variation of reactive 
N emissions and 62–99% of the spatiotemporal variation of N depo-
sition (Supplementary Fig. 6). Moreover, the variation of ∕RNH NOx y

 
(73–97%) and RWet/Dry (43–84%) was explained well by the combined 
effects of mean annual precipitation (MAP), SO2 emissions and 
reactive N emissions (Supplementary Fig. 7).

Since the reform and opening of China in the late 1970s, crop 
production and animal husbandry have intensified, resulting in 
a large increase in emissions of NH3 and, consequently, a rapid 
increase in FNHx

 and FTot (Fig. 4). Since the mid-1990s, new agri-
cultural policies and regulations have been implemented to restrict 
N emissions, such as two Chinese Ministry of Agriculture policies 
entitled ‘Reducing the use of N fertilizer and improving the N use 
efficiency’ and the ‘Soil-testing and Fertilizer Recommendation 
Program’. These actions slowed the increases in FN and LC after the 
mid-1990s. In addition, the ‘Zero Increase Action Plan’ for national 
fertilizer use27 was enacted in the 2010s, showing the strong stance 
of the Chinese government on fertilizer control and improving N 
use efficiency. Consequently, NH3 emissions have been controlled 
and stabilized in recent years, leading to decreases in FNHx

 (Fig. 4).
Industrialization and urbanization in China in the 1980s were 

relatively slow. However, from the 2000s onwards, rapid urbaniza-
tion, along with rapidly developing industry and increasing vehicle 
numbers, resulted in a rapid increase in EC and subsequent direct  
increases in NOx emissions. This resulted in a decrease in ∕RNH NOx y

,  
while a rapid increase was observed in FTot. Since 2010, new poli-
cies have been implemented for environmental protection, energy 
conservation and emission reductions, together with air pollution 
and vehicle-exhaust emission controls. The NOx emission inventory 
verified that ENOx

 stabilized and even decreased slightly in recent 
years, resulting in the observed decreases in FNOy

 in both dry and 
wet deposition in the past five years (Supplementary Fig. 2b,e).

Industrialization and urbanization also increased SO2 and 
NO2 emissions and thus ‘acid rain’. To mitigate the adverse effects 
of acid rain, a prevention plan for SO2 emissions was imple-
mented in two phases (1995 and 2008), which proved very effec-
tive (Supplementary Fig. 5b,e). SO2 emissions in China declined 
after 2005 (Supplementary Fig. 8), which has influenced RDry/Wet in 
N deposition over China. We found that SO2 emissions were sig-
nificantly negatively correlated with RTot(Dry/Wet) and ∕RNH (Dry Wet)x

,  
but showed no relationship with ∕RNO (Dry Wet)y

 (Supplementary 
Fig. 9). The potential mechanism by which SO2 emissions regu-
late RDry/Wet can be explained by reactive preference and the non-
reversible reaction between NH3 and H2SO4 relative to HNO3 or 
HCl (Supplementary Texts 1 and 2). Therefore, the reduction in SO2 
emissions has increased RDry/Wet in N deposition, and especially that 
of NHx deposition, supporting the results from the structural equa-
tion modelling (Supplementary Fig. 7).

Potential risks and challenges
Changes in N deposition and its composition in China can be char-
acterized by a recent stabilization of total N deposition, accompa-
nied by rapidly increasing dry deposition to a level approximately 
equal to wet deposition, and a decrease in ∕RNH NOx y

, caused by 
the socioeconomic structures and environmental policies of the 
Chinese government. The decrease of the NH4

+ deposition was first 
observed in China. This was inconsistent with the earlier predic-
tion of an ongoing increase15, and differed from global trends28. 
Therefore, it is necessary to rethink the potential influence of N 
deposition on the terrestrial ecosystems in China. Most studies have 
assessed the impacts under the scenario of a continuous increase in 
N deposition2,15, which now appears to be, at best, overestimated. 

Rather, models should consider a stable FTot, and the transitions 
in ∕RNH NOx y and RDry/Wet, to assess the importance of shifts in RDry/

Wet and the chemical forms of N6,29. For example, dry N deposition 
can be absorbed by the plant canopy, whereas wet N deposition is 
mainly deposited onto the soil4,30. In addition, plant carbon seques-
tration could be increased by an increase in RDry/Wet, because can-
opy N uptake can enhance carbon sequestration by trees6,31. Plants 
can selectively absorb reduced and oxidized N forms, and species 
composition in plant communities could be altered with changes 
in ∕RNH NOx y due to the preferential uptake of different N forms7,32,33. 
Also, the mechanisms by which NHx and NOy deposition influ-
ence soil acidification and greenhouse gas emissions differ8,34,35. The 
components of N deposition (RDry/Wet and ∕RNH NOx y) and how they 
vary over time need to be explicitly demonstrated.

Reducing N emissions while simultaneously sustaining eco-
nomic development is a major challenge for all countries. Our 
results showed that, in China, programmes to control N fertilizer 
use have markedly decreased FNHx

, providing a guide and a para-
digm shift for other developing countries. The next step must be to 
further reduce NOx emissions and achieve a continued decline in 
FNOy

. One possible strategy for this is to change the energy struc-
ture. For example, the ongoing West–East Electricity Transmission 
Project would transmit electricity from hydroelectric generators 
in West China to East China, replacing coal-fired power produc-
tion. Another possibility is to increase the chemical conversion of 
NOx during fossil fuel combustion. China’s Ministry of Ecology and 
Environment has taken several effective measures to modify heavy 
vehicle exhausts since 2013, promoting the application of selective 
catalytic reduction technology that can convert NOx into N2. These 
measures are expected to reduce NOx emissions and decrease FNOy

 
in China to some extent. The observed transitions in N deposition 
in China provide important insights into N cycle management and 
mitigation through rational socioeconomic policies that balance 
economic growth and pollution control in developing countries.
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Methods
Data sources for wet N deposition. Wet N deposition data were obtained from 
four sources: published peer review articles for 1980–2015; our own monitoring 
data from 41 sites of the Chinese Ecosystem Research Network for 2013–2015; 
monitoring data from 43 sites from the Nationwide Nitrogen Deposition 
Monitoring Network (NNDMN), established by China Agricultural University, for 
2010–2014; and monitoring data from 81 stations of the National Acid Deposition 
Monitoring Network, established by the China Meteorological Administration, 
for 1992–1993. The criteria for data selection were as follows: measurement of N 
concentrations or deposition fluxes in rainfall, including NH4

+ and NO3
− (dissolved 

inorganic nitrogen being the sum of NH4
+ and NO3

−); a sampling frequency of 
every precipitation event, daily or weekly; and a sampling period covering more 
than one year. The datasets included the name of the monitoring site, location, 
monitoring period, monitoring method, ecosystem type, annual precipitation, and 
the concentration and deposition of NH4

+, NO3
− and dissolved inorganic nitrogen.

If the data were the average N concentration in rainfall, the corresponding N 
deposition was calculated based on the N concentration and annual precipitation. 
If the data were bulk deposition, we converted bulk N deposition to wet N 
deposition (FWet). When analysing studies that measured N deposition using two 
sampling methods (bulk N deposition versus FWet), for NH4

+ and NO3
− deposition, 

we found a significant linear relationship between FWet deposition and bulk 
deposition (slope range: 0.67–0.77, R2 range: 0.91–0.94; all P < 0.0001). Therefore, 
we transformed bulk N deposition into FWet using a coefficient of 0.70. After 
rigorous data screening and quality control, we obtained a total of 2,376 site years 
(956 stations) of FWet during 1980–2015 (Supplementary Fig. 10).

To study the spatiotemporal pattern of wet N deposition, we divided the 
datasets into six subsets of five-year intervals. The number of monitoring sites in 
the 1980s was limited; hence, we treated the data from 1980–1990 as one subset. 
Therefore, the 6 datasets contained 126, 152, 135, 208, 260 and 171 sites for the 
periods of 1980–1990, 1991–1995, 1996–2000, 2001–2005, 2006–2010 and 2011–
2015, respectively. The monitoring sites covered the main terrestrial ecosystems in 
China, including forest, grassland, cropland, shrub land, desert, wetland and urban 
ecosystems.

Determination of the spatial patterns and temporal evolution of FWet. It should 
be noted that different scaling-up methods, from site to region, resulted in different 
estimates of N deposition in China, because of higher spatial heterogeneity and 
unbalanced economic development in different regions15–17. We analysed wet N 
deposition in China using three scaling methods, namely Kriging interpolation, 
arithmetic averaging and weighting based on land area (Supplementary Text 3 
and Supplementary Fig. 11), and compared the data with those of Europe and the 
United States (Supplementary Table 2). Ultimately, we chose Kriging interpolation 
to evaluate the spatial pattern of N deposition.

We constructed national-scale FWet maps using Kriging interpolation with 
ArcGIS version 10.0 software. Kriging is a method of providing unbiased estimates 
of variables in limited regions with minimum variance based on variogram 
theory and structural analysis, and has been widely used in the spatial evaluation 
of N deposition in different regions16,23. The inputs were site year data of wet N 
deposition (FWet(NH )x

 and FWet(NO )y
) with longitude and latitude for the periods of 

1980–1990, 1991–1995, 1996–2000, 2001–2005, 2006–2010 and 2011–2015. The 
specific process of interpolation included an exploration of data analysis, testing 
and transformation of the normal distribution of data, and determination of the 
optimum variogram model and its parameters. The details of the interpolation 
method have been published previously17. The spatial patterns of FWet(NH )x  and 
FWet(NO )y  were generated for the years of 1980–1990, 1991–1995, 1996–2000, 
2001–2005, 2006–2010 and 2011–2015, while those of FWet were obtained based on 
the sum of FWet(NH )x

 and FWet(NO )y
 in the corresponding periods.

To verify the accuracy of the interpolation, we validated the results using 
independent data from the period 2011–2015. The validation data were derived 
from the NNDMN networks of 43 monitoring stations20. The R values for the 
correlation of FWet(NH )x

, FWet(NO )y
 and FWet were 0.78, 0.63 and 0.78, respectively. 

The root mean square error was lower than 5.0 for all comparisons (Supplementary 
Fig. 12). These results show that Kriging interpolation can depict the spatial and 
temporal patterns of wet N deposition.

Sources of remote sensing data. NO2 column data. NO2 vertical tropospheric 
columns were derived from the Tropospheric Emission Monitoring Internet 
Service (www.temis.nl). The NO2 column data were obtained from three 
satellites: the Global Ozone Monitoring Experiment (GOME), Scanning Imaging 
Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) and 
Ozone Monitoring Instrument (OMI)36,37. Supplementary Table 3 presents the NO2 
column data from the satellites. We downloaded the global monthly product of 
the NO2 columns between January 1996 and December 2015 as an ESRI grid and 
calculated the mean annual NO2 column.

We used the NO2 column data from the 3 satellites to cover a 20-year 
period, because no other long-term data from the satellites were available. 
Differences in overpass time between the sensors, such as OMI aboard Aura 
with an overpass time of 13:30 and SCIAMACHY aboard Envisat with an 
overpass time of 10:00, caused NO2 columns to be observed by satellites 

differently38. To determine the differences between the annual NO2 column data 
originating from different satellites, we compared data from grids observed 
simultaneously by two satellites during overlapping time periods, such as GOME 
(1996–2003) versus SCIAMACHY (2002–2012) (choosing data from 2002), and 
SCIAMACHY (2002–2012) versus OMI (2004–present) (choosing data from 2005) 
(Supplementary Fig. 13). The results showed that the observational data from 
GOME were approximately 10% higher than those obtained from SCIAMACHY, 
and SCIAMACHY data were approximately 30% higher than those from OMI. 
Using Supplementary Equations (1) and (2), the GOME and SCIAMACHY data 
were normalized to the OMI data (Supplementary Fig. 14). The data from GOME 
covered the period 1996–2002, the data from SCIAMACHY covered the period 
2003–2004, and the data from OMI spanned 2005–2015.

NH3 column data. NH3 columns were derived from the Infrared Atmospheric 
Sounding Interferometer—a Fourier transform infrared spectrometer that was 
launched aboard the polar sun-synchronous MetOp platform in October 200639,40. 
It crosses the equator at 09:30 and 21:30 local solar time, can offer near-global 
coverage twice per day, and has a square footprint of 12 km × 12 km at nadir 
and an elliptical footprint of 20 km × 39 km off nadir, depending on the satellite 
viewing angle41.

We obtained the daily NH3 column data from the ESPRI Data Centre, from 
January 2008 to December 2015, including day and nighttime data. The availability 
of measurements was determined using the method of Liu et al.42. The observations 
had to meet 3 criteria: the cloud coverage was <25%; the relative error was <100%; 
and the absolute error was <5 × 1015 molecules cm−2. After eliminating invalid 
values, the remaining negative values were replaced by the mean of ambient 0.05° 
data. We calculated the annual NH3 column mean by averaging the daily NH3 
columns within 0.25° latitude × 0.25° longitude.

Determination of the spatial patterns and temporal evolution of dry N 
deposition. In our previous research, we developed remote sensing models to 
estimate global FDry using NO2 satellite and ground measurements43. NNDMN uses 
the same FDry monitoring methods at 43 sites across China20, providing a useful 
approach for directly estimating FDry with empirical remote sensing models.

Because NO2 is a source of gaseous HNO3 and particulate NO3
− (ref. 26), ground 

concentrations of NO2, HNO3 and NO3
− can be estimated using NO2 satellite 

measurements43. We explain herein the methods used to evaluate the spatial 
patterns of FDry at an annual scale in China using NO2 FDry as an example. First, 
the NO2 ground concentrations from the 43 monitoring sites and corresponding 
annual NO2 columns were paired. Second, an appropriate model (linear or 
nonlinear) was selected to establish an empirical model, and the intercept was 
set to zero to decrease the overestimation of low NO2 deposition values. Third, 
leave-one-out cross-validation was used to validate the models. In this analysis, 
each monitoring site was individually removed, and the estimated value from 
the models of the remaining sites was compared with the original value. Fourth, 
the spatial pattern of the NO2 ground concentrations was evaluated using the 
established empirical models. Fifth, the spatial pattern of the NO2 deposition 
fluxes was estimated based on the NO2 ground concentrations multiplied by the 
corresponding deposition velocity. The spatial patterns of NH3 and NH4

+ were 
estimated with the same method using the NH3 column and ground measurements 
from the NNDMN.

The empirical models for estimating the ground concentrations of NO2, 
HNO3, NO3

−, NH3 and NH4
+ were established (Supplementary equations (3)–

(7)) and the results of cross-validation are as expected (Supplementary Fig. 15). 
GlobCover 200944 was used to determine land use, and the velocities of different 
N components for various land-use types were derived from the literature 
(Supplementary Table 4).

Based on the aforementioned methods and the long time series of NO2 and 
NH3 column data, we estimated the FDry of NO2, HNO3 and NO3

− in 1996–2015, 
as well as the FDry of NH3 and NH4

+ in 2008–2015. Because the NH3 columns in 
2015 showed a sharp increase, possibly due to artificial causes from the updated 
input data42, the spatial patterns of NH3 and NH4

+ in 2015 were replaced with 
those from 2014.

Analysis of spatiotemporal variability of N deposition. The main sources 
of NH3 and NOx emissions are N fertilizer, livestock cultivation and fossil fuel 
combustion. NH3 and NOx in the atmosphere ultimately deposit to land and 
water surfaces after a series of chemical conversions and physical transport. 
Therefore, N emissions and their driving factors can affect the spatiotemporal 
variability of N deposition. We first analysed the single effect of N emission 
and its driving factors, including FN, LC and EC, on N deposition by regression 
analyses (Supplementary Tables 5 and 6). Then, we analysed the effect of driving 
factors on N emissions (Supplementary Table 7). Finally, we looked at the effect 
of N emissions on N deposition (Supplementary Table 8). Due to a lack of NH3 
column data in 1980–2007 and NO2 column data in 1980–1995, annual dry NHx 
and NOy deposition fluxes in these periods were predicted from ENH3

 and ENOx
 

(Supplementary Table 8). The temporal and spatial changes in the MAP exerted 
a weak impact on the amounts and components of N deposition (Supplementary 
Tables 5 and 6).
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We determined the prediction functions of wet and dry N deposition as driving 
parameters (Supplementary Table 9). The statistical relationships were used to 
describe the temporal and spatial variations in FWet(i) and FDry(i) as equations (1) and 
(2), respectively:

= × − × × + × + × +F F a b F c L d E e[1 exp( ( ))] (1)iWet( ) max N C C

= × × + × + × +F a b F c L d E e( ) (2)iDry( ) N C C

where the Fmax values for FWet(NH )x
, FWet(NO )y

 and FWet in the temporal variation of 
FWet(i) were 10, 5 and 15 kgN ha−1 yr−1, respectively, and the Fmax values for FWet(NH )x

,  
FWet(NO )y

 and FWet for the spatial variation of FWet(i) were 15, 10 and 25 kgN ha−1 yr−1, 
respectively. As with the contribution of precipitation to gross primary productivity 
in the ‘Miami model’45, the relationship between wet N deposition and N emissions 
also showed a saturation curve. Therefore, we determined Fwet as equation (1), and 
the determination of Fmax was based on the maximum value of wet N species in 
their temporal or spatial variation. In the equations, a is a constant coefficient, b, c 
and d represent the emission factors of FN, LC and EC, respectively, and e represents 
the natural source of N deposition (≤1 kgN ha−1 yr−1 for NHx or NOy in dry or wet 
deposition; ≤2 kgN ha−1 yr−1 for total dry or wet deposition). For the temporal 
scale, the units of FN, LC and EC were 104 tN yr−1, 104 heads yr−1 and 104 t coal yr−1, 
respectively. At the provincial scale, the units of FN, LC and EC were tN km−2, 
heads km−2 and t coal km−2, respectively.

Considering the combined effects of FN, LC and EC, a general model was 
developed, as in equation (3), to describe the temporal and spatial variations in 

∕RNH NOx y
 in N deposition:

= × × + × ∕ × +∕R b F c L d E ea [( ) ( )] (3)(NH NO ) N C Cx y

Sources of statistical data. The annual precipitation for the period 1980–2013 was 
obtained from the China Meteorological Administration, comprising 756 weather 
stations across China. The MAP in each province was calculated based on the 
annual precipitation from the weather stations in each specific province. The data 
on the annual amounts of FN, LC, poultry production, industrial production and 
EC between 1980 and 2015 were derived from the National Bureau of Statistics of 
China (http://data.stats.gov.cn/), China Statistical Yearbook and China Energy 
Statistical Yearbook.

N and SO2 emissions in China. Annual NH3, NOx and SO2 emissions in 
China between 1980 and 2015 were obtained from the literature and the China 
Environment Yearbook (Supplementary Table 10). Because fewer emissions 
data were available in 2010–2015 than before 2010, we processed the data 
between 2011 and 2015 differently. If the emissions data were available until 
2011, but not until 2015, we approximated data to 2015 according to the 
trend of emissions using an optimal fitting model. Finally, we obtained the 
averaged N and S emissions for each specific year (Supplementary Fig. 8). The 
provincial NH3, NOx and SO2 emissions in China in 2012 were derived from 
the Model of Multi-resolution Emission Inventory for China established by 
Tsinghua University46–49, which was downloaded from http://www.meicmodel.
org/index.html.

Data analysis. All data were analysed with SPSS version 13.0 statistical 
software. The correlation analyses relating FN, LC, EC, precipitation, and spatial 
and temporal variations in N deposition used linear or nonlinear regression 
models according to the values of the correlation coefficients (r) and P. We used 
multiple regression analysis to establish the equations for exploring the spatial 
and temporal variations in N deposition. The structural equation model was 
used to explore the predicators of the spatiotemporal patterns of wet and dry N 
deposition and their ratios. All figures were drawn using SigmaPlot version 12.0 
software. The spatial pattern figures for N deposition were plotted with ArcGIS 
10.0 software.

Uncertainty analysis. The estimation methods for N deposition represented one 
of the sources of uncertainty, such as the empirical remote model for FDry and the 
interpolation method for wet deposition. The validation showed that the regression 
coefficients were greater than 0.6 for both FDry and FWet (Supplementary Figs. 12 
and 15). However, the limited number of observation sites for FDry, and the uneven 
distribution of observation sites for FWet, require better data in the future for 
higher precision. Also, the effects of the changes in precipitation on atmospheric 
N deposition were difficult to quantify. Models could be used to study the effects 
of changing rainfall intensity or rainy days under global climate change scenarios. 
Finally, organic N deposition was not considered here because of the limited 
availability of data, complexity of its components, and transformation processes. 
Some studies have reported that dissolved organic N deposition at a global scale 
accounts for 25–30% of FWet

50, suggesting that dissolved organic N deposition 
requires much more work in the future.

Data availability
The data that support the findings of this study are available from the corresponding 
author upon request. The data sources for the NO2 column, NH3 column, social 
statistics, and NH3, NOx and SO2 emissions can be found in the Methods.

Code availability
The code used to generate and process NH3 column data can be accessed on 
request to Y.J.
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