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A B S T R A C T

A series of Ag–Al alloy nanoparticles (NPs) were obtained on the silica substrates by ablating the Ag/Al bilayer
thin film with an Nd:YAG fiber pulsed laser at ambient conditions. The corresponding tunability of localized
surface plasmon resonance (LSPR) properties and the enhancement of Raman scattering intensity were realized
due to the various Ag–Al alloy nanosphere sizes and states of aggregation by varying laser powers. With the
increase of laser power, the crystalline quality of Ag–Al alloy NPs was improved with a red shift of the surface
plasmon resonance wavelength from 432 nm to 484 nm. Furthermore, the simulation result of finite-difference
time-domain (FDTD) showed a substantial agreement with experimental results.

1. Introduction

Due to the high detection sensitivity, there has been a focus on re-
search in Surface-enhanced Raman spectroscopy (SERS) for many years
since its discovery in 1970s [1–3]. SERS has been widely used as an
important spectroscopic tool for biology, near field optics, nanoscience,
medicine, and environmental monitoring [4–8]. Nowadays, there are
two main mechanisms of electromagnetic (EM) enhancement and
chemical enhancement to explain the SERS effect. In general, the EM
enhancement plays a dominant role, and it mainly associated with large
local fields caused by localized surface plasmon resonance (LSPR) [9].
In other words, an excellent SERS substrate would be obtained by
preparing metal nanoparticles (NPs) which have good LSPR properties.

According to the previous research, coinage-metal such as gold,
silver (Ag) and copper can provide a huge SERS effect when the metal
nanostructures are in several tens of nanometers in size [10,11]. Ag is a
very desirable material of SERS active substrate among these metals
due to its strong and tunable surface plasmon resonance from the
visible to near infrared spectral regions [12,13]. Nowadays, there are a
great number of methods which contain wet chemical techniques,
electron-beam lithography, focused-ion beam and photon lithography
to fabricate metal nanostructures [14–16]. The advantages of these
techniques are that they can fabricate SERS active nanostructures with
a wide range of geometries, large-scale uniformity and good

reproducibility [17]. Nevertheless, the methods above are facing pro-
blems with the intricate operation and significant cost due to the in-
troduction of other reagents or the requirement of high vacuum en-
vironment. Thus, it is of great significance to develop a cost-effective
and high-through-put method to fabricate SERS active nanostructures.

It is known that Ag follows the Volmer-Weber growth mode [18], in
which the deposited Ag atoms initially form isolated islands. The pure
Ag nanostructure is very difficult to be deposited on the substrate by
laser ablation. Accordingly, through the incorporation of aluminum
(Al) suppressing the 3D island growth of Ag and facilitating the for-
mation of Ag–Al alloy NPs [19]. We herein propose a facile and cost-
effective technique, pulsed laser ablation, to fabricate the Ag–Al alloy
NPs. The surface plasmon resonance wavelength of the NPs can be
tuned effectively by varying laser power. The influences of laser power
on the structure, optical absorption and Raman scattering properties of
NPs were also investigated. Moreover, the finite difference time domain
(FDTD) method was employed to calculate electric field distribution of
NPs.

2. Experiment

Prior to deposition, silica substrates were ultrasonically cleaned in
acetone, ethanol and deionized water for 15min respectively, and were
subsequently dried with a flow of nitrogen. The deposition chamber
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was evacuated to a base pressure of less than 5×10−4 Pa. Then, Ag
thin film and Al thin film with the respective thickness of 10 nm and
1 nm were deposited on the silica substrates successively by electron
beam evaporation at room temperature. The thickness of the film was
monitored by a quartz crystal microbalance. Following the deposition,
the blank silica substrates were covered on the surface of Ag/Al bilayer
film and the laser ablation was processed by an Nd:YAG fiber pulsed
laser with a wavelength of 1064 nm at ambient condition. The laser
parameters were as follow: laser beam power were set as 0.5, 1, 1.5, 2,
2.5 and 3W, respectively, the beam diameter was 0.01mm, the pulse
width was 100 ns, the frequency was 55 kHz, the scanning line spacing
was 0.01mm and the scan speed was set at 600mm/s. For comparison,
the single Ag thin film with thickness of 10 nm was also prepared in the
study. The Ag–Al alloy NPs were marked as sample 1 (S1), sample 2
(S2), sample 3 (S3), sample 4 (S4), sample 5 (S5), sample 6 (S6), re-
spectively, which are in accord with the increasing laser power
(0.5–3W). To better understand the process, a schematic of the ex-
periment process is shown in Fig. 1.

The structural properties and the crystallinity of the samples were
characterized by X-ray diffraction (XRD) using a Rigaku MiniFlex600
system with Cu kα radiation (λ = 0.15408 nm). The surface mor-
phology were examined with atomic force microscopy (AFM)(XE-100,
Park System) with the scanning area of 3 μm × 3 μm as well as
scanning electron microscope (SEM) (S-4800, Hitachi). Thermo
Scientific K-Alpha+ was used to study on the XPS. The optical ab-
sorption of the samples was measured with an UV–vis–NIR double
beam spectrophotometer (Lambda 1050, Perkins Elmer). Raman scat-
tering spectra were obtained by using a confocal microprobe Raman
system (inVia Raman Microscope, Renishaw) with 633 nm laser. All the
measurements were carried out at room temperature.

3. Results and discussion

3.1. Structural properties

Fig. 2 reveals the XRD patterns of Ag thin film and Ag–Al alloy NPs.

The Ag film exhibit isolated island distribution when the thickness is
very thin due to the Volmer-Weber growth mode of Ag [19]. Thus the
Ag film with 10 nm thickness, too thin to vary the phase of the film from
an amorphous state to a polycrystalline state, cannot be observed the
diffraction peak. There are two diffraction peaks at around 38.2° and
44.5° in Ag–Al alloy NPs, which corresponds to the (111) and (200)
crystal plane of Ag (JCPDS: 04–0783). As shown in Fig. 2, the highly
intense diffraction peak was located at 38.2°, indicating a preferential
orientation of the silver grains along the (111) crystallographic direc-
tion [20]. Typically, for non-epitaxial deposition on a substrate, the film
structure tends to be a (111) or (001) plane because these planes exhibit
minimal surface free energy [21]. It means that the (111) textured film
must form an effective equilibrium state in which sufficient surface
mobility is imparted under certain deposition conditions to strike the
atoms. With stronger laser power, the diffraction peak intensity of
Ag–Al alloy NPs tends to gradually increase, which can be attributed to
the recrystallization of crystal grain. The study shows that laser ablation
has a significant influence on the grain growth of Ag–Al NPs film.

3.2. Surface morphology

Fig. 3(a) and (b) shows the representative AFM micrographs with a
scanning area of 3 μm×3 μm obtained from Ag thin film and Ag–Al
alloy NPs with laser power of 3W. The morphology of Ag thin film
exhibits consecutive and smooth with the values of the root mean
square (RMS) surface roughness of Ag thin film is 2.532 nm. After laser
ablation, the alloy particles deposited on another substrate and ex-
hibited spherical or ellipsoidal structures. It means that good textured
Ag–Al alloy NPs can be obtained by laser ablation. Fig. 3(c) and (d)
show the SEM images of Ag thin film and Ag–Al alloy NPs with laser
power of 3W. Ag thin film consisted of fine island-like grains with sizes
ranging from 10 to 20 nm, while Ag–Al alloy NPs film made up of el-
lipsoidal structures with size about 80–150 nm. It is apparent that laser
irradiation breaks Ag thin film into defined particles which have a
discontinuous structure. These SEM results are consistent with those of
in AFM images.

The RMS surface roughness Ag–Al alloy NPs are 9.724, 10.176,
10.951, 11.295, 11.981 and 12.366 nm, respectively, as shown in
Fig. 4(a). The laser-induced thermo-elastic force causes the alloy par-
ticles to peel off from the bilayer sample [22]. Thereby, the as-de-
posited film with consecutive surface was transformed into orderly
spheroidal structure. When the laser power is 0.5W, the amount of
alloy particles peeled off is relatively small due to the low laser energy,
resulting in the limited collections between alloy particles and then
forming clusters with small size [23]. As shown in Fig. 4(b), with the
increase of laser power, the average particle size of Ag–Al alloy NPs also
increases, which is consistent with the RMS surface roughness results.

3.3. Composition and valence state

Fig. 5 shows the XPS spectra of Ag–Al alloy NPs with laser power of
3W. As shown in Fig. 5(a), the Al, C, Ag, Na and O peaks can be

Fig. 1. A schematic diagram of the experiment process.

Fig. 2. XRD patterns of Ag thin film and Ag–Al alloy NPs.
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observed. The peak of O1s may be derived from the oxide of Al. Peaks
such as NaKL1 and Na1s are from the silica substrate. There is no po-
tential contamination during the laser ablation process, and has no
impact on subsequent research. According to Fig. 5(b), two peaks at
approx. 368.3 eV and 374.3 eV are observed in samples, belonging to
3d5/2 and 3d3/2 of Ag atom [24,25], respectively. The Ag 3d5/2 peak
appearing at 367.2–367.7 eV corresponds to oxidized states such as
Ag2O and AgO [26–28]. However, no peak in the XPS spectra appears in
this binding energy range, indicating that no appreciable oxidation
occurred during laser irradiation. In Fig. 5(c), an independent peak at
around 73.2 eV corresponds to 2p of Al atom can be detected. The
binding energy of Al2O3 (i.e., 74.9 eV) is higher than 73.2 eV, while the
metallic Al (i.e., 72.6 eV) is lower than 73.2 eV [29,30]. That is, most of
Al in the alloy NPs was activated to form Al–O-related chemical bonds.
As shown in Table 1, the relative content of Ag in Ag–Al alloy NPs can
be obtained by analyzing the XPS peak areas of Ag 3d5/2 peak and Al 2p

peak. As the laser power increases, the Ag content gradually increases
from 54.48% to 91.56%, while the Al content decreases accordingly. As
a result, the oxidation of Al and the decrease of Al content induced the
variation of local dielectric environment in Ag–Al alloy NPs. Combined
with the optical absorption discussed in section 3.4, our experimental
results demonstrate that Al plays an important role in tuning the LSPR
wavelength.

3.4. Optical absorption

The plasmon resonance peaks observed in the absorption spectrum
can well reflect the variety of local electromagnetic field between the
NPs, which plays an important role in the enhancement of SERS. Fig. 6
shows the absorption spectra of Ag 10 and Ag–Al alloy NPs. According
to Fig. 6(a), the Ag 10 exhibits strong absorption in the visible range
with broad absorption band because of the continuous film structure.

Fig. 3. AFM images of (a) Ag thin film and (b) Ag–Al alloy NPs with laser power of 3W. SEM images of (c) Ag thin film and (d) Ag–Al alloy NPs with laser power of
3W.

Fig. 4. (a) The surface roughness of Ag–Al alloy NPs corresponding to various laser power. (b) The average diameter of Ag–Al alloy NPs with different laser power.
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However, the absorption peaks of Ag–Al alloy NPs shift to the shorter
wavelength with a relatively narrowed peak after laser ablation. For
Ag–Al alloy NPs with increasing gradually laser power from 0.5 to 3W,
the LSPR wavelength shows a red shift from 432 nm to 484 nm. At the
same time, the LSPR peaks were also enhanced in intensity. In Fig. 6(b),
there is a wave crest which represents the wavelength corresponding to
the maximum absorption in each absorption spectrum, and the value of
these wavelengths is 432, 438, 454, 464, 474 and 484 nm, respectively.

According to Fig. 6, the LSPR peak of the alloy NPs can be tuned
effectively by varying the power of the laser irradiation. As is known,
structured thin films will be more prone to LSPR [31]. Therefore, no
LSPR absorption peak of Ag thin film can be observed due to its non-
structured and consecutive surface [32]. However, when the pulsed
laser is applied to ablate the Ag/Al bilayer film, a great quantity of
metallic particles was peeled and formed the nanosphere structures
which enable LSPR peak in samples. According to the Gans theory, a
classical quasistatic theory for calculating the light absorption of NPs in
ellipsoidal structures, the plasmon wavelength and absorption cross-
section vary with the particles size and shape [33].

Greater laser power will cause larger size of the NPs which has
higher absorption cross-sections, leading to the enhancement of LSPR
peak intensity. Meanwhile, the introduction of Al can cause the changes
of local dielectric environment between particles. When the incident
light is absorbed by the Ag–Al alloy NPs, the local electromagnetic field
coupling will take place between the particles, which acts as a critical
role in regulating the peak position of the LSPR. As the laser power

increases, the content of the Al in the Ag–Al alloy NPs will decrease, the
size of the Ag–Al alloy NPs will increase in the meantime. As a result,
the LSPR resonance peak appears a red shift, which is well predicted by
the Maxwell–Garnett (MG) theory [34].

3.5. SERS performance

In order to prove the superiority of the SERS performance of Ag–Al
alloy NPs, both Ag thin film and Ag–Al alloy NPs were used as SERS
substrates. The probing molecule Rhodamine B (Rh B) is a typical ar-
tificial dye and was chosen as a test compound for researching the
application of the samples. In this study, the Rh B molecule solutions
with the concentration of 10−4mol/L are drop deposited onto the
surface of samples. As shown in Fig. 7, Ag thin film and Ag–Al alloy NPs

Fig. 5. XPS spectra of Ag–Al alloy NPs with laser power of 3W: (a) survey spectrum, (b) Ag 3d and (c) Al 2p.

Table 1
Composition ratios of Ag–Al alloy of as-ablated samples.

Sample S1 S2 S3 S4 S5 S6

Ag 54.48% 63.33% 68.24% 75.36% 82.64% 91.56%
Al 45.52% 36.67% 31.76% 24.64% 17.36% 8.44%

Fig. 6. (a) Absorption spectra of Ag thin film and Ag–Al alloy NPs with various laser power; (b) Absorption maximum.

Fig. 7. Raman scattering spectra of Rh B on Ag thin film and Ag–Al alloy NPs
with different laser power.
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can be measured the Raman peaks of Rh B. Due to the aromatic stretch
vibrations of the chromophore [35], three strongest Raman peaks can
be found at about 1648, 1361 and 1504 cm−1, which being assigned to
C=C stretching modes of aromatic rings. After laser ablation, the SERS
signal intensity of the Ag–Al alloy NPs have been significantly enhanced
compared to Ag thin film. In the meantime, the Raman signal intensities
show an increasing trend with laser power between 0.5W and 3W.
Apparently, the SERS enhancement of alloy NPs samples can be flexibly
adjusted by varying laser power.

The excitation of surface plasmon resonance can result in a shift in
the optical resonance properties of coinage-metal nanostructures,
causing the local electromagnetic field enhanced significantly, thereby
generating the enhancement of SERS [12,36]. According to the ab-
sorption spectrum discussed in section 3.4, the Ag–Al alloy NPs have a
good LSPR performance than Ag thin film, resulting in a better SERS
performance. In accordance with the electromagnetic enhancement
theory [37], the Ag thin film has non-structured and smooth surface
which causes the less tips or “hot spots”, resulting in weakening of both
the local electrical fields and SERS enhancement. Conversely, the alloy
NPs irradiated by the laser possess more tips and “hot spots”, which
generate stronger local electromagnetic field. As the laser power in-
creases, the size of Ag–Al alloy NPs become larger which generating
higher Raman cross-section, leading to a gradual increase in the in-
tensity of the Raman signal. In consequence, the alloy NPs samples
exhibit structured and rougher surface leading to the SERS enhance-
ment [38], as shown in Fig. 7. The SERS enhancement is also corre-
spond with the variation trend of the surface roughness simultaneously
in Fig. 4(a).

To further verify the conclusions above, the simulation of FDTD was
used to calculate the electric field distribution for all samples. In this
simulation, a 633 nm laser irradiated perpendicularly to the x-y plane of
the samples with the polarization along the y-axis direction. Fig. 8 il-
lustrates the electric field intensity of Ag thin film and Ag–Al alloy NPs.
The electric field intensity of the Ag thin film is weak due to the smooth
surface, while the electric field strength of Ag–Al alloy NPs is stronger,
which shows the consistency of the above SERS performance.
Fig. 8(b)–(f) exhibit the spatial distribution of the electric field intensity
of Ag–Al alloy NPs with various particle sizes and different content of
Ag, respectively. The tip or “hot spot” formed on the localized surface

between the spacing of NPs, and the intensity of the electric field in-
creases significantly as the lager NPs and the content of Ag increases.
On the whole, the increase in particle size and the content of Ag lead to
a gradual increase of SERS intensity, which can be attributed to the
stronger intensity of tips or “hot spots”. The simulation results are well
consistent with the experimental results above.

4. Conclusions

In conclusion, the SERS performance of Ag–Al alloy NPs which were
tuned by laser ablation with different laser power has been studied in
this paper. The results show that the LSPR wavelength of Ag–Al alloy
NPs shows an obvious red shift by varying the laser power. Moreover,
the Raman scattering intensities were observed to be obviously en-
hanced because of the lager particle size and the states of aggregation of
Ag–Al alloy NPs, which is consistent with the results of FDTD simula-
tion. These findings provide a cost-effective and simple way to fabricate
SERS active substrate, which might play a crucial part in the develop-
ment of practical applications of nanoscience.
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