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A B S T R A C T

Heavy metal pollution in soil has become a prominent problem affecting agricultural security and ecological
health. Hyperspectral remote sensing is used as a rapid method to predict soil heavy metal concentrations. The
processing of spectral data and the variables of the estimated model has an important impact on the predictive
model of soil heavy metal elements. In this paper, smoothed and resampled spectral reflections are preprocessed
by using three preprocessing methods, namely, standard normal variate (SNV), multiplication scatter correlation
(MSC) and normalization (NOR). Then, first and second order differential (FD and SD, respectively) and ab-
sorbance transformation (AT) are performed. Based on the adsorption and retention of heavy metals by various
soil components, the relevant spectral bands are extracted as modeling variables. An extreme learning machine
algorithm (ELM) is used to establish the model, and the effects of different factors on the model are compared.
Results show that the combination of the three preprocessing methods (SNV, MSC and NOR) with spectral
transformation can enhance the stability and predictive ability of the resulting model. The combination of SNV
and FD can predict the contents of Cr, Ni and Pb. The R2 of the model is 0.85, 0.87 and 0.80 respectively. The
optimal model of Cu is derived from the combination of NOR and SD (R2 = 0.84), and the spectral responses of
soil Cr, Ni, Cu and Pb, are closely related to clay mineral-related and organic matter-related bands. The model
established by the clay-related bands enhances the stability of the prediction of Ni content, and the RPD value
was increased from 2.46 to 2.72 compared with the full-band model. The combination of bands associated with
organic matter and clay minerals can accurately predict the content of Cr and Cu in soil; indeed, the predict
model R2 for these elements reaches 0.88. Accurate prediction of soil Pb by the full-band model indicates that the
Pb concentration in the study area is related to a various of soil chemical components. The prediction effects of
the four heavy metal elements show the order Cr > Cu > Ni > Pb. The results of the current study comple-
ment the theoretical basis for estimating the heavy metal content of soil by hyperspectral spectroscopy, and
provide important insights into the application of hyperspectral remote sensing to monitor other heavy metals.

1. Introduction

Heavy metal pollution is a major factor affecting the soil environ-
ment. The migration of heavy metals to farmland soil is slow, and these
metals are difficult to decompose, possibly resulting in deterioration of
soil quality and the ecological environment. When accumulated over a
long period of time, heavy metals can threaten food security and human
health ([1,2]). Therefore, rapid investigation of the distribution of

heavy metals in soil and effective control and prevention of heavy metal
hazards are crucial to prevent and control of soil pollution in primary
grain-producing areas and food security.

Compared with traditional analytical methods, hyperspectral tech-
nology is simpler, faster, more efficient, and lower cost [3]. The accu-
racy of soil estimation models built using hyperspectral data is influ-
enced by many factors. In most cases, the preprocessing of modeling
variables (spectral reflectance) can effectively eliminate and reduce the
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multicollinearity and randomness among bands, as well as improve the
accuracy and stability of the estimated model [4]. To improve the
practicability of the model, the current research focuses on the effects of
external factors, such as spectral pretreatment method, regression
modeling method, and soil composition, on the accuracy of heavy metal
concentration estimation model. Wavelet analysis and other methods
can effectively eliminate and reduce multicollinearity and randomness
among bands [5]. The influences of different soil spectral pretreatment
methods on the accuracy of soil nitrogen estimation model have been
compared and analyzed by some researchers. The results show that the
proper preprocessing method can effectively best eliminate the noise
and background information of the original spectral data [6]. The goal
of all preprocessing techniques is to reduce the unmodeled variability in
the data and enhance the features required in the spectrum. Soil spec-
tral features can be highlighted by using appropriate preprocessing
techniques. However, applying false types or severe preprocessing
methods will delete valuable information.

Another important factor affecting the prediction ability of a model
is the choice of modeling variables (bands). Although soil spectroscopy
is an external reflection of the physical and chemical properties of
various soils, it is not necessarily the best indicator of a particular soil
component. Modeling the entire hyperspectral band tends to increase
the complexity of the model [7]. The retention of heavy metals by
spectral active components varies with soil conditions, such as soil or-
ganic matter, soil properties, soil types, and clay minerals. Most heavy
metals are adsorbed by soil components, such as clay minerals or or-
ganic matter [8]. Therefore, using the entire band in the prediction is
unnecessary [9]. Analysis of the adsorption and desorption of Cd, Cr,
Cu, Ni, Pb, and Zn confirms that adsorption of Pb and Cu is related to
the content of organic matter. The kaolin of clay composition has strong
adsorption on the heavy metal Ni element in soil [10]. Estimations of
heavy metal contents by hyperspectral technology are not only affected
by the spectral band but also by the noise of the original spectrum.
Therefore, specific processing methods and modeling variables should
be selected based on the spectral properties of the soil.

The current study proposes a method for rapidly estimating heavy
metal content based on hyperspectral correlation with soil components.
The effects of different pretreatments on the prediction model are also
compared. On the basis of the band depth of the hyperspectral, a
spectral absorption band associated with clay minerals and organic
matter is extracted. Models are established using these bands and ex-
treme learning machine algorithms. The factors influencing the pre-
diction model are comprehensively evaluated. This study can provide
theoretical and technical support for the high-spectral fast inversion of
heavy metals in grain-producing areas.

2. Materials and methods

2.1. Study area and sample collection

In this study, the Houzhai River Basin in Puding County, Guizhou
Province was used as the sampling area. The Houzhai River Basin is a
typical plateau karst basin. The geographical position is 105°40′ to
105°49′ E and 26°12′ to 26°18′N, in the central part of the Pearl River
Basin and the Yangtze River Basin, with a total area of about 81 km2.
The terrain in the area that is high in the southeast and low in the
northwest. It is open and flat, with an altitude of 1100–1400 m. The
climate type belongs to the subtropical plateau monsoon humid climate
in China, and the mountainous hills are the main topography. The land
use type is mainly agricultural land, and it is the main grain producing
area in Puding County. Fig. 1 is the location map of the study area.

Set the sample points according to the geographical conditions such
as the topographical features of the study area, the type of land cover,
and the corresponding area of the type of landscape. The sampling
depth is 20 cm, which is divided into 4 layers. Each layer collects 100 g
of soil, and 4 layers of soil samples are mixed to be the soil samples

corresponding to the sample points. The total number of samples is 100,
numbered according to the coordinates.

2.2. Measurement of elemental content and hyperspectral reflectance

The collected soil samples were air dried and sieved to remove
stones and large debris. They were then passed through a 2 mm sieve.
The screened soil samples were divided into three parts, two of which
were used for chemical element determination and spectral collection
in the soil laboratory; the third part was sealed for future reference to
prevent cross contamination.

The soil samples were subjected to microwave digestion (using the
HNO3-HCL-HClO4-HF solution). Inductively coupled plasma mass
spectrometry (ICP-MS, Thcrmo Electron, USA) was used to measure the
contents of four heavy metal elements such as lead, copper, nickel and
chromium. The hyperspectral data of the raw soil samples were mea-
sured by an ultraviolet-visible-near-infrared spectrophotometer. The
detection range is 500–2500 nm, with a total of 2000 bands and an
interval of 1 nm. Each sample was tested 10 times.

2.3. Data processing

Errors are affected by random factors during the spectrometry.
Spectral preprocessing can reduce the error caused by random factors in
the spectrum. The anomaly of the spectral data was detected by the
Mahalanobis distance, and the average value of the remaining spectral
data was used as the final reflectance spectrum. Sample outliers were
detected by The Unscrambler 10.4 software, and the four outliers de-
tected were removed from 100 sample points.

Savitzky–Golay convolution with a window length of 9 was used to
smooth out the noise, and the breakpoint of the spectral curve at
800 nm repaired by the splicing correlation method was used (Fig. 2).
To reduce noise and computational cost, resampling at 10 nm intervals
to reduce redundancy was performed based on previous research [11].
The band reflectivity described below is the band reflectance obtained
after resampling. The resampled spectral data were preprocessed by
standard normal variate (SNV), normalized processing (NOR), and
multiplicative scattering correlation (MSC). Finally, the processed data
were separately differential and reciprocal logarithmically transformed.

2.4. Spectral bands related to soil components were extracted

Soil and its components have a great influence on the adsorption
and analytical equilibrium of heavy metal elements. Studies have
shown that some soil components (clay minerals, organic matter) have
a strong adsorption capacity for individual metal elements [10]. Ad-
sorption of metal elements by soil components provides a mechanism
for estimating the concentration of heavy metals in soils using spectral
reflectance. Considering the adsorption and retention of soil organic
matter and clay minerals for Cr, Cu, Ni, and Pb, these four metals are
taken as examples in this work.

In the reflection curve of soil the samples, three water absorption
peaks near 1413, 1922, and 2200 nm are evident; these peaks are pri-
marily caused by H2O molecules and eOH groups and metal eOH in
clay minerals [12]. The primary characteristics of the kaolinite spec-
trum are an absorption band at 2200 nm and a weak absorption band at
1900 nm [13]. When using the spectrum to predict the clay content, the
absorption bands at 1400, 1900, and 2200 nm are selected [14]. The
sensitive bands of soil organic carbon in different regions were ana-
lyzed, and results showed that most of the spectral response bands are
concentrated at 600–800 nm [15]. Referring to previous studies, this
study selected absorption characteristics based on band depth (Fig. 3).
The absorption characteristics in the band 600–800 nm are believed to
be related to organic matter, and the absorption peaks are related to
clay minerals at 1400, 1900, and 2200 nm.
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2.5. Modeling approach

The Extreme Learning Machine (ELM) is a new and efficient
learning algorithm that not only achieves better accuracy than tradi-
tional models, but also maintains faster training speeds [16]. ELM with
high generalization capabilities avoids many problems of the faced by
gradient learning. In this paper, the excitation function of ELM is the
“sig” function, and the number of hidden layer nodes is selected based
on the minimum average value of the iterative results, and the test is
repeated for 600 times. The final prediction model is determined when
the RMSE value in the model structure is the lowest. The ELM model
was built in Matlab R2010a software.

Three statistical methods were used to evaluate the fitted model:
coefficient of determination (R2), residual prediction deviation (RPD)
and root mean square error (RMSEp). The coefficient of determination
provides the percentage of variance explained by the model and is the
most widely used measure of fitness. Robust models typically have

lower RMSEP, higher R2 and RPD. Model accuracy is usually evaluated
using R2 and RPD because RMSEP is susceptible to measurement range.
The prediction results were evaluated using the following criteria: the
RPD and R2 values were better than 2.00 and 0.80, and the prediction
results were good; the RPD values were between 1.5 and 2.00, and the
R2 values were between 0.51 and 0.80, and the approximate prediction
was determined [17].

3. Results

3.1. Description of soils samples

The Kennard–Stone algorithm is used to select the most suitable
modeling and prediction samples. One-third of the entire data set was
selected as the training sample (n = 64), and the rest of the data were
used as test samples (n = 32). Statistical information of the contents of
Cr, Ni, Cu, and Pb is shown in Table 1. The average contents of Cr, Ni,

Fig. 1. Study area and the distribution of soil samples.

Fig. 2. Pretreatment of spectral data: (a) original spectrum, (b) smoothing, (c) removing the break point at 800 nm.
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Cu, and Pb do not exceed the national environmental quality standard
for secondary pollution (GB 15618-1995). However, they all exceed the
background values of soil heavy metals in Guizhou Province. The over-
standard rates of Ni and Cu were 27.55% and 7.14%, respectively. The
contamination factor (CF) of three heavy metals, namely, Cr, Ni, and
Cu, was between 1 and 2, and a slight pollution hazard is observed. The
pollution factor of Pb is > 2, which indicates moderate pollution. As an
important major grain-producing area, the study area should strengthen
efforts to investigate and dynamically monitor soil quality to discover
and control soil heavy metal pollution in a timely manner.

3.2. Model construction and evaluation

3.2.1. Prediction model based on different preprocessing methods
The spectral data processed by MSC, SNV, NOR, first-order differ-

ential (FD), second-order differential (SD), and absorbance transfor-
mation (AT) were used as model variables, and heavy metal estimation
models were established by the ELM method. The models were eval-
uated by R2 and RPD. The larger the R2 and RPD of the test sample, the
stronger the model prediction ability. Fig. 4 shows the model effects of
the four heavy metals under different pretreatment combinations.
Spectral data modeling after SNV-AT pretreatment failed, and no sta-
tistics are given for this process. The results of the four pretreatments
indicate that differential transformation of the spectrum is beneficial to
the effect of the model. Peaks are observed in the four sets of differ-
ential transformations. The transformation of the SNV group in the
three pretreatments has a great influence on the prediction ability of the
model. The best modeling accuracy of the elements Cr, Ni, and Pb is
obtained by the SNV group. Furthermore, the SNV–FD combination
showed the best prediction effect (model parameters are: R2 = 0.85,
RPD = 2.59; R2 = 0.87, RPD = 2.46; R2 = 0.80, RPD = 2.10). The best
predictive model for Cu is based on a combination of NOR-SD pre-
processing, with an R2 of 0.84 and RPD of 2.53. For the elemental Cr,

Ni, and Cu prediction models, R2 is concentrated around 0.80, and the
RPD value is within 2.00–3.00; thus, the contents of these elements can
be predicted well. The contents of elemental Pb can be approximated.
The model prediction results of these four elements show the order
Cr > Cu > Ni > Pb.

3.2.2. Prediction model based on different modeling variables
The bands related to clay minerals and organic matter are obtained

on the basis of the previous analysis. The two bands and their combi-
nation are used as modeling variables to establish models to estimate
the contents of heavy metals in four soils. Fig. 5 compares the model
effects of the entire visible near-infrared spectral reflectance (VS), or-
ganic matter-related bands (OM), clay mineral-related bands (CM), and
their combination (OC). Table 2 shows the prediction effect for each
heavy metal element based on different model variables.

As shown in Fig. 5, the prediction models of Cr and Ni are sensitive
to the clay mineral-related bands. The model R2 established by the clay-
related bands is stably above 0.80, and the RPD values are in the range
of 2.00–3.00. The prediction ability of the model for this element is
excellent. By contrast, the accuracy of predictions using organic matter-
related spectral bands is very low. The predictions of Cu and Pb are
related to the organic matter-related bands. The prediction model R2 of
Cu is above 0.80, while that of Pb is above 0.70. It can be seen from the
Fig. 5 that the accuracy of the model is in equilibrium under different
preprocessing methods. In Table 2, the best predictive effect on the soil
heavy metal element Ni is the model established by the clay mineral
related zone, here, R2 is 0.86, and RPD is 2.72. The best model for
predicting Cr and Cu is established in the combined band; in this case,
the model R2 values are 0.88, and the RPDs are 2.89 and 2.73, re-
spectively. The model established by the complete VNIR–SR can predict
Pb the best; the R2 of this model is 0.80, and its RPD is 2.10. The results
of the Pb prediction model of the organic matter-related and clay mi-
neral-related bands are similar.

Fig. 3. Selection of bands related to soil properties based on band depth.

Table 1
Descriptive statistics of the elements concentrations.

Element Number Min Max Mean SD CV CF BV GradeII

Cr 96 53.29 184.00 105.90 29.14 0.27 1.25 84.4 250
Ni 96 23.14 160.00 52.93 26.61 0.50 1.61 32.9 60
Cu 96 23.45 141.00 52.50 23.69 0.16 1.95 26.9 100
Pb 96 19.88 221.27 63.94 39.71 0.62 2.04 31.3 350

SD: standard deviation; C.V.: coefficient of variation; CF: Contamination factor; BV: Background value for soils in Guizhou; Grade II: National soil environmental
quality standard (GradeII) (pH > 7.5).
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Fig. 6 shows a scatter plot of the predicted and measured values of
each element. Each sample point is concentrated near the 1:1 line. The
ELM algorithm exhibits good stability for the elements Ni and Cu, and
the predicted value is close to the measured value over the entire
concentration range studied. Elemental Cr and Pb samples at con-
centrations between 80 and 130 and 20–140 mg/kg, respectively, are
accurately predicted. As shown in Table 2, prediction of Cr, Ni, and Cu
by the ELM model can achieve good results; here, R2 and RMSE are
approximately 0.80 and 10.00, respectively, and the model performs
well. However, the prediction results of Pb are relatively poor, in-
dicating that the ELM method has poor applicability when the sample
range is very large.

4. Discussion

4.1. Influence of different preprocessing techniques on the accuracy of the
models

The pretreatment techniques mainly include scattering correction
and spectral derivative. The data preprocessing methods include MSC,
SNV, and NOR, followed by spectral derivative transformation. The
modeling effects of the different spectral preprocessing methods shown
in Fig. 4 reveal that the spectral modeling effects are improved after
SNV, NOR, and MSC processing. The performance of the model ob-
tained by MSC and SNV pretreatment is better than that of the control
group. The performance of MSC preprocessing fluctuates among the
models with R2 values ranging from 0.70 to 0.84 and RPD values ran-
ging from 1.80 to 2.50. Spectral derivative preprocessing removes ad-
ditive and multiplicative effects in the spectrum, and models built by
differential and absorption conversion show improved predictive power

[18]. The combination of SNV and FD or SD performs better than other
methods and is advantageous for predicting Cr, Ni, and Pb. To predict
Cu, the combination of NOR and SD is the best pretreatment. The SNV
preprocessing method can eliminate the multiplicative interference of
granularity [19]. As shown in Fig. 4, the three pretreatments of SNV,
MSC, and NOR reveal different reflectance scales, and the trends of
model performance have obvious similarities. These results represent a
powerful spectral preprocessing technique that separates and removes
complex effects from physical phenomena, leaving accurate soil spec-
tral information that is conducive to modeling.

4.2. Influence of soil composition related variables on the accuracy of the
models

Adsorption of heavy metals in soil is an important factor in con-
trolling the concentration of metal in soil. The content of heavy metals
is affected by of pH, soil organic matter, and clay mineral content [20].
Adsorption and desorption experiments of soil heavy metal show that
kaolinite has a marked retention effect on Cr, Ni, and vermiculite. Or-
ganic matter and Fe–manganese oxide have strong adsorption and re-
tention effects on Pb. Clay minerals also have a certain influence on this
element [21]. Fig. 5 shows that clay mineral-related bands can stably
predict Cr and Ni. Furthermore, organic matter-related bands can stably
predict Cu and Pb, which can be affected as little as possible by the
pretreatment method. These results confirm the retention of soil com-
ponents. Selection of bands associated with soil components can im-
prove the accuracy of the prediction models for Ni, Cr, and Cu. To some
extent, the complete spectral bands associated with these three ele-
ments are preserved, which reduces dimensional and accuracy errors of
the model variables. The prediction ability of the complete VNIR–SR

Fig. 4. Prediction effect of four elements under different pretreatment technologies.
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model is optimal for Pb, which indicates that Pb in soil is also affected
by other factors, such as iron oxide. It also facilitates the prediction of
the element Pb. Therefore, the band associated with soil components is
the core of the overall VNIR–SR estimation of soil Pb concentration. The
results of the adsorption experiments are also confirmed.

In theory, when the same band is selected, models built using the
entire VNIR–SR should achieve at least the same prediction accuracy.
The prediction accuracy of the entire VNIR–SR may be higher than that
of the organic or clay-related bands because the former may contain
more useful spectral information, although they are not as significant as
the latter. For the elements Cr and Cu, the model established by using
the combined bands, the model has better performance. In this model, a
useful band for element concentration estimation can be extracted at a
low computational cost.

4.3. Application prospect of hyperspectral remote sensing

In terms of environmental monitoring, traditional methods for

investigating the spatial distribution of soil heavy metals, such as on-
site sampling, indoor chemical analysis, and geostatistical interpola-
tion, are expensive and labor-intensive [22]. Hyperspectral inversion of
soil heavy metal content, the possibility of mapping heavy metal con-
centration maps is constantly confirmed [18,23]. At the same time, the
application of hyperspectral technology faces several challenges. For
example, the low signal-to-noise ratio of the sensor negatively affects
the quality of the hyperspectral images obtained. Several techniques,
including preprocessing techniques, stable fitting models, and variable
extraction methods, have been adopted to improve the quality of hy-
perspectral data. Studies have also shown that the range of soil element
concentrations also has a certain impact on model accuracy [24,25].
Therefore, when establishing the related estimation model, considering
the influence of various factors on the prediction model is necessary.
Heavy metal pollution in agricultural soils seriously threatens food se-
curity. Remote sensing images have broad application prospects in soil
heavy metal pollution monitoring due to its periodicity, wide area
coverage, and high efficiency.

Fig. 5. Prediction results based on different model variables: (a) Cr; (b) Ni; (c) Cu; (d) Pb
OM bands: Organic matter-related spectral bands; CM bands: Clay mineral- related spectral bands; OC bands: Organic and clay mineral related spectral bands.

Table 2
Prediction accuracy of the optimal model based on different model variables.

Element VNIR-SR (500-2400 nm) OM bands CM bands OC bands

R2 RMSEp RPD R2 RMSEp RPD R2 RMSEp RPD R2 RMSEp RPD

Cr 0.85 11.15 2.59 0.85 11.23 2.57 0.86 10.90 2.65 0.88 9.99 2.89
Ni 0.87 10.74 2.46 0.83 11.46 2.30 0.86 9.70 2.72 0.86 10.33 2.55
Cu 0.84 9.32 2.53 0.86 8.82 2.67 0.85 8.79 2.68 0.88 8.64 2.73
Pb 0.80 18.58 2.10 0.78 19.87 1.97 0.74 20.93 1.87 0.72 20.94 1.87
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5. Conclusions

The combination of NOR, MSC, and SNV and differential transfor-
mation can enhance the performance and stability of heavy metal
prediction model. The combination of SNV and FD can predict the
contents of Cr, Ni, and Pb. Accurate prediction of Cu is achieved by the
model established by the combination of NOR and SD. The bands re-
lated to soil composition can improve the accuracy and stability of the
Cr, Ni, Cu, and Pb prediction models and verify the effectiveness of the
proposed method. The spectral responses of soil Cr, Ni, Cu, and Pb are
closely related to the relevant bands of clay minerals and organic
matter. The model established by band related to clay minerals has
good prediction ability for Ni content. The combination of the bands
associated with the two soil components (organic matter and clay mi-
neral) can stably predict soil Cr and Cu. Accurate prediction of soil Pb
comes from the entire VNIR-SR model, which indicates that the con-
centration of Pb in the study area is related to a various of soil chemical
components. The ELM algorithm can improve the training speed and
accuracy of the model but has poor prediction results for Pb with large
sample ranges. Therefore, ELM is only suitable for samples with a small
magnitude. Finally, according to the prediction results of the models,
the ELM models established show the order Cr > Cu > Ni > Pb.
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