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Abstract: The accumulation of metals in soil harms human health through different channels.
Therefore, it is very important to conduct fast and effective non-destructive prediction of metals
in the soil. In this study, we investigate the characteristics of four metal contents, namely, Sb, Pb,
Cr, and Co, in the soil of the Houzhai River Watershed in Guizhou Province, China, and establish
the content prediction back propagation (BP) neural network and genetic-ant colony algorithm BP
(GAACA-BP) neural network models based on hyperspectral data. Results reveal that the four metals
in the soil have different degrees of accumulation in the study area, and the correlation between
them is significant, indicating that their sources may be similar. The fitting effect and accuracy of the
GAACA-BP model are greatly improved compared with those of the BP model. The R values are
above 0.7, the MRE is reduced to between 6% and 15%, and the validation accuracy is increased by
12–64%. The prediction ability of the model of the four metals is Cr > Co > Sb > Pb. These results
indicate the possibility of using hyperspectral techniques to predict metal content.

Keywords: metal concentration; spectral reflectance; spatial distribution; machine learning

1. Introduction

As one of the important directions of soil remediation, the prevention and control of metal
pollution in soil has received more and more attention from all walks of life. At present, the source of
metals in soil is mainly divided into two parts: one is the natural background. Soil parent material
is one of the key factors determining the metal content of soil [1]. Metals will be released, migrated,
and enriched during the weathering and mining of the parent material, which may cause metal
pollution [2]. The highest content of trace elements in the soil inherited from the parent rock include Cr,
Mn, and Ni, followed by Co, Cu, Zn, and Pb [3]; human factors also contribute. With the acceleration
of urbanization, the continuous improvement of industrialization, and the rapid development of
agricultural intensification, a large number of metal pollutants accumulate in the soil. For example,
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sources of lead exposure in China include e-waste, traditional medicine, and industrial emissions [4].
Sb pollution sources include municipal waste, mining smelting, and combustion emissions containing
Sb fuel [5]. Among the above metals, Co, Cr, and Pb have been listed as carcinogenic by the Agency for
Toxic Substances and Disease Registry (ATSDR) [6]. The toxicity and carcinogenicity of Sb have also
been confirmed [7]. The enrichment of these harmful metals in soil changes the soil’s physical and
chemical properties, affects plant growth, and threatens people’s health through different means [8–10],
such as Pb exposure, which will adversely affect fetal neurodevelopment [11] and continue during
the course of life [12], while affecting several key human organ systems, including the cardiovascular
system [13,14], renal system [15,16], and hepatic system [17,18].

Studies have shown that metals in areas with high geological backgrounds are more likely to
exceed standards [19]. Ruan et al. pointed out that Guizhou is a typical karst province [20]. Due to
factors such as topography and soil parent material, the soil metal background is generally higher.
Wu et al. also mentioned that the soil background value of Sb in Guizhou is nearly twice the average
soil value in other parts of China [21]. On the one hand, the special geomorphological conditions and
the soil-forming environment in the karst area make the soil layer thinner as soil erosion is serious;
in addition, the soil has a weak ability to store nutrients. This has greatly stimulated the demand
for chemical fertilizers and pesticides, resulting in the accumulation of metals. On the other hand,
the spatial structure of karst “binary three-dimensional” also provides a powerful condition for the
migration and enrichment of metals. As the demand for social and economic development intensifies,
mining wastewater, industrial wastewater, domestic sewage, automobile exhaust, etc., enter the surface
and groundwater system. Finally, it enters the soil through various ways, such as farmland irrigation
and atmospheric deposition, causing metal pollution. However, the speed of financing and technology
in the region cannot keep up with the speed of economic development, and it is difficult to effectively
solve the problem of metal pollution in the region. Therefore, how to achieve rapid and efficient
treatment of metal pollution at a lower cost is the key.

Most traditional methods aim to obtain the metal content of soil through extensive and long-term
sampling and to determine the physical and chemical properties in the laboratory. The accuracy of this
method is high, but it is limited by time-consuming and laborious processes and low efficiency [22,23].
Hyperspectral technology has been widely used to predict water and sugar contents because of its rapid,
high-efficiency, and wide-ranging characteristics, and has achieved good results [24,25]. It has also
been mainly applied to assess or predict soil carbon [26], organic carbon [27] and its components [28,29],
and other soil data. This technique has also been used to predict the content of metals in soils and
to confirm their feasibility [30,31]. Traditional hyperspectral content prediction models are divided
into linear and nonlinear models. Linear models are mostly multiple linear regression (MLR) [32],
multiple linear stepwise regression (MLSR) [33], principal component regression (PCR) [34], and partial
least squares regression (PLSR) [35]. The commonly used nonlinear models include support vector
machine regression [36] and neural network models [37]. Some studies have also utilized some
algorithms, such as genetic algorithms (GA), to improve these models and achieve good results.
For example, Luce et al. used an improved PLSR based on near-infrared spectroscopy to predict metal
contents in the biological solid- and lime-improved agricultural soil of a paper mill, thereby confirming
the potential of hyperspectral prediction of soil metals [38]. Shi et al. combined the reflectance spectra
of soil and rice to establish a modified PLSR model (GA-PLSR) based on GA and predicted the metal
As in agricultural soil [39]. However, most of the models are improved by a single algorithm, and using
a combined algorithm to improve the model is relatively rare.

For these reasons, the small watershed of Houzhai River in Guizhou Province, China, is selected
as our research area. The hyperspectral data of soil samples are obtained with a spectrophotometer.
Four metals, namely, Sb, Pb, Cr, and Co, in soil are determined by inductively-coupled plasma mass
spectrometry (ICP-MS). The spatial distribution characteristics of the metals in the watershed are
analyzed on the basis of geo-statistics. Then, a back propagation (BP) neural network model and a
genetic-ant colony algorithm BP (GAACA-BP) model are established on the basis of hyperspectral data.
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The correlation coefficient (R) of the measured value and the predicted value, the root mean square
error (RMSE), and the mean relative error (MRE) of the validation set are used to verify the accuracy of
the model. This study aims to demonstrate the reliability of the GAACA-BP model and the feasibility
of applying hyperspectral techniques to the prediction of metal content. This approach provides a new
idea for rapidly, efficiently, economically, and conveniently estimating the metal contents of soil.

2. Materials and Methods

2.1. Study Area and Soil Samples

The Houzhai River Watershed, with a total area of 75 km2, is located in Puding County,
Guizhou Province. The terrain is high in the southeast and low in the northwest of the watershed.
The highest elevation is 1560 m, and the lowest elevation is 1220 m. Triassic carbonate rocks and karst
landforms are widely distributed. The types of land use are diverse, mainly forestland in the upstream
and farmland in middle and lower reaches. The spatial distribution pattern of soil is complex and
includes limestone soil, paddy soil, and yellow soil.

Sample points are set in accordance with the grid method based on the ArcGIS software
(10.2, Environmental Systems Research Institute, Redlands, CA, USA). In actual sampling, the sample
information is recorded if samples cannot be collected, and it is replenished and collected nearby
based on actual and topographical features. A total of 98 topsoil (0–20 cm) samples were collected and
weighed to approximately 1 kg (Figure 1).
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Figure 1. The study area and sampling point. (a) the location of Guizhou Province in China; (b) the
location of Puding in Guizhou Province; (c) the location of the Houzhai River Watershed in Puding;
and (d) the distribution of sampling points in the Houzhai River Watershed.
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2.2. Measurement and Analysis of Metal Contents in Soil

After the soil samples were naturally air dried, decontaminated, ground, and passed through a
200-mesh nylon screen, each sample was divided into two parts, that is, one for chemical analysis and
the other for spectral analysis.

The soil sample was subjected to microwave digestion in several steps of hydrochloric acid,
nitric acid, hydrofluoric acid, and perchloric acid, and the metal content was determined by
four-stage rod-type inductively-coupled plasma mass spectrometry (Q-ICP-MS, PerkinElmer, Canada).
Quality control was conducted using the national standard sample GSB04-1767-2004 to ensure the
quality of the analysis. Determination of soil organic matter content was performed by the potassium
dichromate oxidation external heating method. Descriptive statistical analysis of conventional
indicators, such as maximum (Max), minimum (Min), mean, standard deviation (Stdev), and coefficient
of variation (CV), for soil metal content was performed in Excel, correlation analysis was performed in
SPSS 19.0 (International Business Machines Corporation, Armonk, NY, USA), visualization of correlation
coefficient (R) based on RStudio (Auckland University, New Zealand), and kriging interpolation was
conducted using the spatial analysis tool of ArcGIS 10.2.

2.3. Soil Spectrometry and Data Pre-Processing

Using a UV–VIS–NIR spectrophotometer by Agilent Technologies to obtain soil sample spectra.
The spectral reflectance of 98 samples was measured indoors with a band range of 500–2500 nm and a
sampling interval of 1 nm. Three spectral curves were collected for each soil sample and used as the
original reflectance spectra after the arithmetic mean.

In the spectral measurement process, it is easy to be affected by random factors and cause errors.
The corresponding pre-processing of samples can effectively eliminate the “burr”, enhancing the
effective spectral information, and reducing the computational amount to improve the prediction
accuracy [40]. Common pre-processing methods include outlier removal, noise reduction, smoothing,
and resampling. In this study, standard values (Z-score) and principal component analysis (PCA)
were combined to remove the abnormal values and ensure the accuracy of the samples. The median
filter and Savitzky–Golay smoothing were combined to reduce and smooth the noise of the spectral
data. Then, the spectral data was resampled at an interval of 10 nm, which was regarded as the basis
for transformation.

The original spectral reflectance can be transformed in different forms to eliminate noise, purify
spectral information, and reduce error. To some extent, it can eliminate spectral translation caused by
moisture absorption, amplify spectral information, improve the collimation between spectral data,
prevent overfitting, and improve the stability of the model. Common transformation forms include
continuum removal, spectral derivative transformation, absorbance transformation, multiple scattering
correction (MSC), and standard normal variable (SNV) [41,42]. In our study, transformation included
the first derivative of reflectance (RFD), the second derivative of reflectance (RSD), absorbance (AB),
the first derivative of absorbance (AFD), the second derivative of absorbance (ASD), MSC, and SNV.

Z-score was performed in SPSS 19.0, and AB and derivative transformations were conducted in
Matlab 2016a (MathWorks, Natick, Massachusetts, USA). Others approaches were carried out in The
Unscrambler X 10.4 (Camo, Norway).

2.4. Model Establishment and Accuracy Verification

Pearson correlation analysis was performed to analyze the correlation between the variables after
re-sampling (OR), RFD, RSD, AB, AFD, ASD, MSC, SNV, and metal contents. The band corresponding
to the correlation coefficient with the largest absolute value was the characteristic band. The BP and
the GAACA-BP models were established by determining the spectral values corresponding to the
characteristic bands as input variables and the soil metal content as output variables. Correlation analysis
was conducted in SPSS 19.0, and the models were established in Matlab 2016a by writing a program.
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2.4.1. SPXY Sample Division Method

Samples should be divided into calibration and validation sets to verify the stability and reliability
of the model. Sample set partitioning based on joint x-y distance (SPXY) sample division method
is developed from the Kennard–Stone (KS) method, but the KS method considers x variables only.
By contrast, the developed method simultaneously considers x and y variables, thereby effectively
covering a multi-dimensional vector space and improving the predictive ability of the established
model [43]. Therefore, the SPXY method was used in our study to divide samples. Among them, 69
calibration sets accounted for 75% of the total samples, and 23 validation sets corresponded to 25% of
the total samples.

2.4.2. Establishment of the BP Model

A BP model is the most representative of various neural network models. It has a high fault
tolerance, and has strong abilities in terms of nonlinear processing, anti-interference, and anti-noise.
It is a nonlinear multivariate modelling method widely used in soil hyperspectral quantitative
analysis [44–47]. A three-layer network structure was used to construct the BP model with an output
node of 8, an input node of 1, a number of neurons in the hidden layer of 10, and a learning rate of 0.01.

2.4.3. Establishment of the GAACA-BP Model

The ant colony algorithm (ACA) combines distributed computing, positive feedback mechanisms,
and greedy search [48], resulting in a strong degree of parallelism and robustness in searching
for enhanced solutions, and which is easily integrated with other optimization algorithms.
However, ACA requires a long search time and is prone to prematurity and stagnation in solving large
optimization problems. GA is a global optimization search method based on random iterative evolution
of probabilistic significance, which has wide applicability [49]. It can be used for a global rapid search,
but it fails to utilize feedback information in systems effectively, often leading to redundant iterations
and low solving efficiency [50]. To overcome the defects of the two algorithms, we merged them
to optimize and improve the BP model, and a GAACA-BP model is established. At the early stage,
the characteristics of faster convergence and cross-variation operation of GA were used to avoid
falling into a local optimum, accelerate the convergence rate of ACA, and improve the efficiency of the
solution. In this way, the improved model has the advantages of GA, ACA, and neural networks [51,52].
The implementation of the GAACA-BP model is shown in Figure 2.
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2.4.4. Accuracy Verification of the Model

The model results are evaluated by R and the root mean square error (RMSE) of the measured
value and the predicted value. The closer R is to 1, the better the prediction effect, the smaller the RMSE,
and the better the stability of the model. The prediction ability of the model is expressed by the MRE.
The smaller the MRE is, the stronger the prediction ability of the model will be. Conversely, the larger
the MRE is, the weaker the prediction ability of the model will be. The formula for calculating the
MRE is as follows:

MRE =
1
n

n∑
i=1

∣∣∣∣∣Ym −YP

Ym

∣∣∣∣∣× 100% (1)

where Yp is the predicted value, Ym is the measured value, and n is the number of samples.

3. Results

3.1. Analysis of the Metal Content of Soil

3.1.1. Analysis of the Statistical Characteristics of Soil Metal Content

The contents of the four soil metals were measured through ICP-MS, and the results are shown in
Table 1. The four metal contents were more than one time higher than the background value based
on the background value of the soil average of the A layer in Guizhou Province [53]. In particular,
the over-standard rates of Sb and Pb reached 86% and 56%, and the accumulation degree in the soil of
the study area was much faster than Cr and Co. This indicates that there is exogenous input of metal
content in soil, and Sb and Pb are more affected by human activities.
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Table 1. Descriptive statistics and correlation analysis of soil metal content.

Descriptive Statistics Sb Pb Cr Co

Max 13 221.3 170 65.3
Min 1.1 26.12 53.29 8.54

Mean 3.5 65.51 105.44 23.74
Stdev 2.8 39.8 28.39 9.9
Kurt 2.1 3.15 −0.46 6.2
Skew 1.7 1.8 0.68 2.19

Cv 0.8 0.61 0.27 0.42
Background 2.2 35.2 95.9 19.2

Excessive multiples 1.6 1.86 1.1 1.24
Over-standard rates/% 56 86 10 24

R-Sb 1 - - -
R-Pb 0.8 1 - -
R-Cr 0.6 0.612 1 -
R-Co 0.4 0.694 0.555 1

Notes: R represents the correlation coefficient between the 4 metals; all of the above are extremely significant at the
0.01 level (both sides).

The CV reflects the relative variability of each variable. Table 1 also shows that the degree of
variation of the four metals in the study area from large to small is Sb > Pb > Co > Cr. Among them,
Sb has the highest CV of 0.81, and Pb has a CV of 0.61, which is second only to Sb, indicating that
the distribution of these two metals is uneven, and the dispersion is large, which may be controlled
by human factors. The two other metals have smaller CV values than the first two, suggesting that
they are relatively lightly mutated and that the spatial differentiation is relatively small. This result is
consistent with the conclusion of the previous paragraph.

The R between metals can explain the similarity of source pathways. The higher R is, the stronger
the dependence relationship between metals and the more similar the source will be. On the contrary,
the lower R is, the weaker the dependence relationship between metals and the more diverse the source
pathways will be. In Table 1, four heavy metals are significantly positively correlated at the 0.01 level,
which may suggest that similar sources exist in the study area to control the content and distribution
characteristics of heavy metal elements in the soil [54,55].

3.1.2. Analysis of the Spatial Distribution Characteristics of Soil Metal Content

The spatial distribution of the metal content in the study area was obtained by using the
interpolation tool of the ArcGIS platform to perform ordinary kriging interpolation on the four metal
contents (Figure 3). The contents of the four metals are high in the north and low in the south.
The spatial distribution patterns of Sb, Pb, and Cr are similar, and the high-value areas are mainly
concentrated near Qingshan Reservoir. Sb exhibits a high distribution in the northwest and a relatively
low distribution in the southwest and the east. The Sb content decreases from the high-value center to
the periphery. Pb is similar to Sb, in particular, high-value areas appear in the north, and relatively
low-value areas are in the southwest and the northeast. Cr also has a high value in the north and a
low value in the northeast. Different from the first three metals, the distribution of Co is relatively
scattered, with multiple islands and block distributions. It may be because the local area is affected by
human interference is more intense, but the interference area is small. The high-value area appears in
the northeast, the value in the southeast is relatively low. The distribution area in the high-value area
is relatively small, and the Co content in most areas is between 8.54 and 23.17 µg/g.
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3.2. Screening of Metal Feature Bands

The contents of Sb, Pb, Co, and Cr in soils and the spectral variables were subjected to Pearson
correlation analysis, and plotted correlation curves (Figure 4). The trajectories of the correlation curves
between the four metals and the spectral variables are substantially the same. The correlation curves of
OR and AB are opposite, and the trends of RFD and AFD, RSD and ASD, and MSC and SNV are similar.
The four metals were sensitive to the response at the near-infrared band, especially at 2140, 2220, 2260,
2380, and 2500 nm. The correlation between the transformed spectral variables and the metal contents
were significantly enhanced (Figure 5). At the 0.01 level, the metal content was significantly negatively
correlated with OR and significantly positively correlated with AB and AFD. The correlation of Sb was
more significant than that of the three other elements. After SNV transformation was performed, R of Sb
reached −0.812 at 2270 nm. Cr was next, and the maximum R was 0.743 at the band of 2380 nm after
AB transformation. The maximum R of Pb is 0.669 at the band of 2140 nm after AFD transformation.
Co had the lowest correlation, and the maximum R was only −0.547 at the band of 2220 nm after ASD
transformation. Each transform filters out an R with the largest absolute value. The corresponding
band is the feature band, and the spectral value of each feature band is considered as the input data of
the model.
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Studies have shown that metals that enter the soil through exogenous sources can be adsorbed
by clay minerals, SOC, iron oxides, etc., in the soil, and these key parameters of the soil have typical
spectral characteristics. Therefore, bands with significant correlations with these parameters can better
predict the metal content of the soil [56]. Pearson correlation analysis was performed between SOC
and metal content and the previously selected feature bands (Figure 5). The results show that at the
0.01 level, and all three are significantly correlated, that is, the selected bands can meet the requirements
for predicting heavy metal content.

3.3. Hyperspectral Prediction Model of Soil Metal Contents and Accuracy Verification

SPXY sample partition method is used to divide the 92 soil samples of four metals into calibration
and validation sets (Figure 6). The calibration set accounted for 3/4 and the validation set accounted
for 1/4. The BP and GAACA-BP models were established by considering spectral variables as input
data and metal content as output data, respectively.
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3.3.1. BP Model Establishment and Verification

In the results of the BP model (Table 2), the R of the calibration sets of the three metal contents,
except Co, was greater than 0.5, satisfying the accuracy requirements. The best modelling results are
observed in Sb where the R and RMSE reach the maximum and minimum, respectively. R is as high
as 0.89, and RMSE is only 2.82. The worst modelling results are detected in Co, where R and RMSE
were 0.44 and 28.89, respectively. On the contrary, the fitting effect of the validation set of the four
metals is less than 0.5, which fails to pass the precision verification. The worst effect is still observed in
Co, whose R and RMSE are 0.19 and 14.82, respectively. The validation set of Sb with the best effect
on the calibration set is not as good as expected, R is 0.21, and the RMSE is 1.40. The result is only
higher than that of Co. Thus, the traditional BP model is unstable, and an overfitting phenomenon
exists possibly because of too much learning that causes the noise in the prediction model to obliterate
useful information, resulting in poor generalization.
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Table 2. Calibration and validation results of BP and GAACA-BP models for soil metal elements content.

Models
Calibration Set Validation Set Mean

Rc RMSEc Rv RMSEv R RMSE

BP-Sb 0.89 2.82 0.21 1.40 0.55 2.11
BP-Pb 0.70 63.50 0.28 27.24 0.49 45.37
BP-Cr 0.76 35.49 0.34 26.03 0.55 30.76
BP-Co 0.44 28.89 0.19 14.82 0.32 21.85

GAACA-BP-Sb 0.92 0.41 0.82 2.16 0.87 1.285
GAACA-BP-Pb 0.76 49.28 0.76 13.21 0.76 31.25
GAACA-BP-Cr 0.80 31.02 0.94 7.91 0.87 19.47
GAACA-BP-Co 0.79 12.52 0.67 3.51 0.73 8.016

3.3.2. GAACA-BP Model Establishment and Verification

The GAACA is used to improve the BP model, and a new GAACA-BP model is established.
As results show in Table 2, the R of the four metals is greater than 0.5, indicating that the model is
reliable and can be used to estimate the metal content. In the calibration set, the best effect is that of Sb,
with the maximum R of 0.92 and the minimum RMSE value of 0.41. Cr is also effective, with R and
RMSE of 0.80 and 31.02, respectively. Pb and Co are slightly less effective, but R is also greater than 0.7.
In the validation set, Cr has the best fitting effect with an R of 0.94 and RMSE of 7.91. The second is Sb,
whose R is as high as 0.82 and RMSE is 2.16. Pb has the third effect, while Co is the worst. The R values
of both metals is 0.76 and 0.67, respectively. The trend line and mean value are shown that the overall
predicted value of Pb and Co is higher than the measured value, whereas the overall predicted value of
Sb and Cr is lower than the measured value (Figure 7). In order to further verify the prediction effect of
the GAACA-BP model, this paper uses the same method and parameters to interpolate the measured
and predicted values based on the Arc GIS platform. As shown in Figure 8, the spatial distribution
characteristics of the measured values and predicted values of the four metals are basically the same,
especially in the high value region. Moreover, the larger the R, the smaller the difference in the spatial
distribution of the metals. From the perspective of space, Sb and Cr are underestimated, while Pb and
Co are overestimated, which is consistent with the research results in Figure 6.
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The fitting effect and stability of the new GAACA-BP model are greatly improved compared with
that of the BP model (Table 3). The improvement of the calibration set was relatively smaller than that
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of the validation set, where the most significant increase in R of Co is from 0.44 to 0.79 (34%). In contrast
to the validation set, the calibration set of the prediction accuracy of the metals is greatly improved,
and R is increased by more than 48% compared with that of the original BP model. The change in Sb is
the most significant, and R of the validation set increases from 0.21 to 0.82, indicating an increase of
61%. In summary, the adaptability of the GAACA-BP model from large to small is Sb > Cr > Pb > Co.

Table 3. Comparison of precision error between BP model and GAACA-BP model.

Elements
Calibration Set Validation Set

Rc RMSEc Rv RMSEv

Sb 0.03 −2.41 0.61 0.76
Pb 0.06 −14.22 0.48 −14.03
Cr 0.04 −4.47 0.60 −18.12
Co 0.35 −16.37 0.48 −11.32

4. Discussion

4.1. Factors Affecting the Distribution of the Metal Content

Different geographical factors, especially land use patterns, have various effects on the
accumulation of metal elements [57–61]. The soil metals in the study area have different degrees of
accumulation under various land use patterns, elevations, soil types, and slopes, but the cumulative
characteristics are generally consistent (Figure 9). From the perspective of land use, the average content
of Sb from high to low is building > grassland > cultivated land > forest. The average content of Pb is
grassland > cultivated land > building > forest. The average content of Cr is cultivated land > building
> grassland > forest. The average content of Co is cultivated land > forest > building > grassland.
The four metal elements are generally higher in cultivated land and lower in forest, indicating that
the accumulation of metals in soil may be caused by the application of agricultural materials, such
as fertilizers, organic fertilizers, and pesticides in agricultural activities. From the elevation point
of view, except for the content of Co, which is medium elevation (1300–1400 m) > low elevation
(1200–1300 m) > high elevation (≥1400 m), the other three metals are higher in elevation and lower in
content. This shows that the lower the elevation, the greater the possibility of metal accumulation;
From the soil type, the contents of Sb and Pb are yellow soil > lime soil > paddy soil, and the contents
of Cr and Co are yellow soil > paddy soil > lime soil. It can be seen that high concentrations of metals
tend to accumulate in yellow soil; From the aspect of slope, except for the content of Cr being flat slope
(0–6◦) > steep slope (≥25◦) > gentle slope (6–25◦), the accumulation characteristics of the other three
metals are more pronounced where the slope is smaller. Thus, the metals in soil easily accumulate in
the region with small topographic fluctuations and a flat terrain.



Sustainability 2019, 11, 3197 15 of 21

Sustainability 2019, 04, x FOR PEER REVIEW  15 of 21 

 
Figure 9. Accumulation characteristics of metals under different geographical factors. (a) Land use 
types; (b) elevation; (c) soil types; and (d) slope. The X-axis is a classification of geographical factors; 
the Y-axis is the metal content. 

4.2. Prediction Capability Analysis of the GAACA-BP Model 

MRE is often used to evaluate the predictive ability of the model. The smaller the MRE is, the 
stronger the prediction ability of the model will be [62–64]. In Table 4, the MRE of the original BP 
model of four metals (Sb, Pb, Cr, and Co) is between 21% and 79%, with Sb as the largest and Cr as 
the smallest. The MRE of the GAACA-BP model improved by GAACA is greatly reduced, and the 
range of MRE is 6%–15%. Therefore, the prediction accuracy of the model is between 85% and 94%. 
The error is reduced by 12–64 percentage points, that is to say, the accuracy is improved by 12–64 
percentage points. The most significant improvement is observed in the Sb content predicted by the 
GAACA-BP model, and the accuracy is increased from 21% to 85% (64%). Although the ability of the 
model to predict the Cr content is the least significant, the accuracy increases from 79% to 91%, which 
corresponds to an increase of 12%. In summary, the prediction ability of the GAACA-BP model for 
different metals from high to low is Cr > Co > Sb > Pb. 

Figure 9. Accumulation characteristics of metals under different geographical factors. (a) Land use
types; (b) elevation; (c) soil types; and (d) slope. The X-axis is a classification of geographical factors;
the Y-axis is the metal content.

In summary, the metals in the soil in the study area are greatly affected by human activities,
especially agricultural activities, and the migration process of the metals in the soil in the study area is
speculated on the basis of the following: soil metals enter the soil with the input of different types
of agricultural materials, such as fertilizers and pesticides. Under the action of transportation and
accumulation, it gradually accumulates in the middle and lower reaches of the watershed with a
relatively low altitude, small slope, flat topography, and extensive yellow soil areas.

4.2. Prediction Capability Analysis of the GAACA-BP Model

MRE is often used to evaluate the predictive ability of the model. The smaller the MRE is, the stronger
the prediction ability of the model will be [62–64]. In Table 4, the MRE of the original BP model of
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four metals (Sb, Pb, Cr, and Co) is between 21% and 79%, with Sb as the largest and Cr as the smallest.
The MRE of the GAACA-BP model improved by GAACA is greatly reduced, and the range of MRE is
6%–15%. Therefore, the prediction accuracy of the model is between 85% and 94%. The error is reduced
by 12–64 percentage points, that is to say, the accuracy is improved by 12–64 percentage points. The most
significant improvement is observed in the Sb content predicted by the GAACA-BP model, and the
accuracy is increased from 21% to 85% (64%). Although the ability of the model to predict the Cr content
is the least significant, the accuracy increases from 79% to 91%, which corresponds to an increase of 12%.
In summary, the prediction ability of the GAACA-BP model for different metals from high to low is
Cr > Co > Sb > Pb.

Table 4. Comparison of precision Accuracy between BP model and GAACA-BP model.

MRE Accuracy

Elements BP GAACA-BP MRE Reduction BP GAACA-BP Accuracy Increase

Sb 79% 15% 64% 21% 85% 64%
Pb 50% 15% 35% 50% 85% 35%
Cr 21% 9% 12% 79% 91% 12%
Co 50% 6% 44% 50% 94% 44%

In the past, a large number of surveys on soil were carried out around the world, such as the
Forum of European Geological Surveys (FOREGS), the Geochemical Mapping of Agricultural and
Grazing Land Soil in Europe (GEMAS), and Eurostat Land Use/Land Cover Area frame Survey (LUCAS).
A large number of soil samples were collected. Based on this, many scholars have simulated the spatial
distribution of soil metals and obtained reliable results [65,66]. For example, Lado et al. used the
geostatistical method to simulate the distribution of eight metals including Pb and Cr in the topsoil based
on the FOREGS Geochemical database. The spatial distribution map was drawn using the regression
regression-kriging method, and a large number of raster maps were used to improve the prediction [67].
Although the results of this study are satisfactory, compared to hyperspectral models, this traditional
method requires more cost to perform large-scale sampling, and improved prediction also requires
more data support. Comparing Table 5, the prediction effect of the traditional method is not necessarily
better than the hyperspectral model. The hyperspectral model is relatively simple, convenient, low-cost,
and more applicable.

Table 5. Comparisons of study results with other similar studies. a

The Sampling Area Metals N Content Range
(mg/kg) Model Prediction

Accuracy References

An arid area in Jiuquan, Gansu Cr 394 30.49–73.59 SLMR/PLSR (H) R = 0.481/0.479 [68]
Major agricultural production

areas in Zhejiang Province Cr 643 10–126 PLSR (H) R2 = 0.7 [69]

The middle of Gulin County,
Sichuan Cr 39 103–397 RBF (H) R2 = 0.73–0.86 [70]

26 European countries Cr 1588 1–2340 RK(T) R2 = 0.21 [67]
The Houzhai River Watershed

in Guizhou Cr 92 53.29–170 GAACA-BP (H) R = 0.94 This study

The southeast part of Wuhan
City, Hubei Pb 170 22.90–61.90 PLSR (H) R2 = 0.56–0.77 [71]

Major agricultural production
areas in Zhejiang Province Pb 643 14–69 PLSR (H) R2 = 0.33 [69]

26 European countries Pb 1588 1.5–5200 RK (T) R2 = 0.35 [67]
The Houzhai River Watershed

in Guizhou Pb 92 26.12–221.3 GAACA-BP (H) R = 0.76 This study

a: N = Number of samples; SLMR = stepwise multiple linear regression; PLR = partial least-squares regression; RBF
= Radial Basis Function Neural Network; RK = regression-kriging; H = hyperspectral model; T = traditional method.

At present, the researches on hyperspectral variable prediction of metal content are mostly based
on linear model, while the researches on nonlinear model including neural network are relatively
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rare. Among the four metals studied in this paper, the spectral prediction studies of Sb and Co are
also rare for Pb and Cr. Therefore, this paper makes a simple comparison between the results of the
prediction of Pb, Cr by linear or nonlinear models and the results of this paper. It can be seen from
Table 5 that whether it is Cr or Pb, this paper can achieve a better effect than other studies, especially
the prediction effect of GAACA-BP on Cr. At the same time, it can be found from the comparison that
the prediction accuracy of the nonlinear model seems to be generally better than the linear model.
Of course, the accumulation of heavy metals is affected by many factors. In this paper, only a small
part of the literature is selected as a comparative analysis. Whether this discovery is universal or not,
further research is needed in future studies.

4.3. Insufficient and Prospects of Research

The small watershed of a typical karst plateau in Guizhou is selected as the study area.
The statistical and spatial distribution characteristics of four metals (Sb, Pb, Cr, and Co) in the
soil are analyzed. An original BP metal content prediction model is constructed on the basis of
hyperspectral data, and the model is improved on the basis of GAACA. The results confirm that the
improved GAACA-BP model is more stable and reliable. This finding not only has a practical value for
the monitoring of soil metal pollution in the watershed but also has a certain reference value for other
similar studies. However, the research still has the following shortcomings:

Although the spatial distribution characteristics and possible influencing factors of the four soil
metals in the study area are analyzed, the internal migration mechanism is not examined in depth.

The model itself has certain limitations. On the one hand, using Matlab for programming is
difficult. On the other hand, the influencing factors of soil metal contents are different because of
various regions. The applicability of the model in different regions or geographical backgrounds
remains to be verified.

Limitations of indoor hyperspectral. Although indoor spectroscopy requires much less time and
labor compared with traditional methods, a smaller amount of field sampling is necessary compared
with that of satellite-borne or aircraft-mounted hyperspectral images. Indoor spectroscopy may be
subject to the limitations of equipment and cause measurement errors.

In future research, the factors affecting the accumulation of metals will be further analyzed,
and hyperspectral imagery carried by satellite or aircraft will be used. Combined with the characteristics
of karst area, geographical factors will be used as variable factors to further improve the prediction
model. Isotopes can also be used to investigate the effects of metal accumulation in soil on human health.

5. Conclusions

Sb, Pb, Cr, and Co have different degrees of accumulation in the soil in the study area. Among them,
the accumulation of Pb is the most serious, followed by Sb. The spatial differentiation characteristics
and dispersion of these two metals are more significant than that of Cr and Co. The four heavy metal
elements show a significantly positive correlation at the 0.01 level, indicating that they may have
similar source pathways, but the degree of impact is slightly different.

The spatial distribution of the four metals is generally high in the north and low in the south.
The regularity of Sb, Pb, and Cr is evident and similar. The high-value area appears near the Qingshan
Reservoir and decreases from the high-value center to the periphery. The east is relatively lower
than the southwest. The spatial distribution of Co is relatively scattered, and it is distributed in
a combination of multiple islands and blocks. Moreover, these four metals in the study area are
likely interfered by human factors, especially agricultural activities, and are highly accumulated in a
cultivated land with a relatively low elevation, flat terrain, and wide distribution of yellow soil.

The prediction model of soil metal content established by the BP neural network has a good
modelling effect but the prediction effect is not ideal. The MRE is larger, between 21% and 79%, and the
R value is less than 0.5, denoting a failed accuracy verification. Thus, the original BP model is extremely
unstable, and an overfitting phenomenon exists.
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The GAACA-BP model is greatly improved by the GAACA in terms of the modelling effect and
prediction accuracy compared with those of the original BP models. The R and spatial distribution
characteristics of measured and predicted values confirm that the model is reliable and can be used
to predict the metal content of soil. The prediction accuracy of the improved model is between 85%
and 94%, which is 12–64 percentage points higher than that of the original model. Among them,
the improvement effect of Sb is the most evident. In general, the prediction ability of the GAACA-BP
model for different elements from strong to weak is Cr > Co > Sb > Pb.
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