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ABSTRACT

The distribution of chemicals in forest soil layers is poorly understood. Hence, using
GCMS we identified the occurrence of main chemical compounds and their relative composition
in 3-different soil layers (litter, humus and subsoil layers) of rhododendron forest. We found that
the total contents of main chemical compounds in thododendron forest followed the order litter >
humus > subsoil layers. In all these 3-layers, the primary chemical was palmitic acid. The higher
fatty acids and alcohols significantly differed among the layers. The mannitol and pentadecanoic
acid showed the largest differences and their contents were highest in humus layer. This study
showed that the litter layer has more allelochemicals than humus and subsoil layers. These
results can be very important for ecosystem management and protection of rhododendron forest.
Key words: Allelochemicals, allelopathy, chemical compounds, GCMS, palmitic acid, phenolics,

rhododendron forest, soils, soil layers.

INTRODUCTION

Allelopathy affects the natural regeneration of forest communities (19,23,47). The
allelopathic compounds in soil exerts important influence on the soil environment and
plant growth (3). Because these compounds can strengthen the competitiveness of one
specie over another, or that of one individual plant over others, thus leading to altered
community and population structures (7,18,34). The allelopathy either promotes or inhibits
the growth and development of neighbouring plants under a plant canopy by releasing
chemicals into the environment (6,22,26,36,37).

Forest soil generally has thick litter and humus layer, so it is necessary to study the
distribution of allelochemicals in these layers to understand the status and functioning of
forest soils. However, further in-depth empirical research on both the humus and mineral
layer is still needed (8,33), especially in less studied forests. Forest soils have litter and
humus layers and the allelochemicals distribution in soil-related layers is very important
for functioning of forest soils. A thick litter layer inhibits the seedling emergence and
establishment and adversely affects the natural regeneration of forest (1,21,26,28,33,41,44).
However, the allelochemical research on litter layer is still needed (14,40), especially in
natural forests.

Baili Rhododendron Natural Reserve, northwest of Guizhou Province (China) is the
largest natural rhododendron forest in the same latitude and low-middle altitude areas. At
present,” thododendron forest, a subtropical evergreen broad-leaved forest, failed to
regenerate naturally thus finding out the distribution of allelopathic substances in different
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soil layers can further clarify the causes of degradation and thus help to protect this
specific forest. However, compared with other forest types, relatively little is known about
the chemical composition of the litter, humus subsoil layers in the rhododendron forest.
More study is needed to better understand the identity of ecologically important chemical
compounds. This study aimed to investigate the distribution of chemical compounds in
3- ground layers (litter layer, humus layer and subsoil layer) of wild rhododendron forest at
Baili Rhododendron Natural Reserve, northwest of Guizhou Province, China. Therefore,
this study can provide deep understanding of forest allelopathy through the soil chemicals
and the information to protect the secondary subtropical forests and the ecosystem
management.

MATERIALS AND METHODS

I. Study site and soil sampling

Baili Rhododendron National Forest Reserve (105°52'-106°03' E, 27°10'-27°20' N)
is located in northwest Guizhou Province, China. Elevation : 1060-2200 m. Annual Mean
temp : 11.8°C and annual rainfall : 1000-1100 mm. The forest communities are dominant
rhododendron species (e.g., Rhododendron delavayi Franch., Rhododendron agastum Balf.
f. et W. W. Smith, and Rhododendron irroratum Franch.); other plants include tree
seedlings, shrubs and herbs. The soils are mainly haplic acrisol with clay top.

In wild rhododendron forest (dominated by one species of rhododendron, e.g.,
Rhododendron delavayi, Rhododendron agastum, and Rhododendron irroratum) (Figure 1
A, B, C), samples of 3-layers (i). Litter (12 cm thick), (ii). Humus (0-10 cm in depth) and
(iii). Subsoil (S, 10-20 cm in depth)] were collected under the 50-years old tree canopy in
December 2016 from the nine plots (each 10 m x 10 m) (Figure 1D). Each rhododendron
forest (e.g., Rhododendron delavayi Franch., Rhododendron agastum Balf. f. et W.W.
Smith and Rhododendron irroratum Franch.) fixed 3- plots, from each plot 3- samples
(litter, humus and subsoil) were taken. The subsoil samples were collected from a pit [30
cm % 30 cm x 20 cm (length x width x depth)] dug along the four side directions and
mixed to form a composite sample. These soil samples were air-dried, then ground into
powder with pulverizer and stored at 4 °C for further analysis of chemicals.

I1. Preparation of samples

The pulverized samples (200 mg) were each placed in 10-ml centrifuge tube, to
which 80 pL of adipic acid (235.2 pgg™") and 5 ml methyl alcohol-water-chloroform
solution (v:viv = 5:3:2) were added. The mixed solution was centrifuged for 10 min at
6000 RPM to allow sampling of 0.5-ml supernatant liquid in a 5-ml centrifuge tube after
30 min of ultrasound-assisted extraction. The supernatant liquid was dried in nitrogen for
the derivation treatment and the dried samples were added the 200 pL
methoxyamine-hydrochloride solution at 20 to 50 pg min~', and then reacted in water bath
at 37 °C for 90 min after being swirled for 1 min. 100 pL. N-methyl-N-(trimethylsilyl)
trifluoroacetamide (MSTFA) was added to the mixed solution, swirled again for 1 min,
then reacted in the water bath at 37 °C for 60 min. After 1 h at room temperature, the
solution was filtered through 0.45-pm filter membrane and assayed using GC-MS.

I11. Instruments, reagents and chemical Analysis
The instruments used was GC-MS (7890A-5975C, Agilent, USA) equipped with a
multifunctional automatic sampler with CTC. The main chemical reagents and standard
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substances were : trichloromethane (chromatographic grade, TEDIA) and methyl alcohol
(chromatographically pure, TEDIA), with adipic acid serving as the internal standard
(purity > 99.5 %, Sigma-Aldrich).
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B. Rhododendron agastum
C. Rhododendron trroratum
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Figure 1. Rhododendron-dominated communities in Baili Rhododendron Natural Reserve

IV. Analysis of chemical compounds in different soil layers

The GC was conducted on HP-5 MS capillary gas chromatography columns (60 m
x 250 pm x 0.25 pum), with its injection port temperature, sample size, split ratio, and
column flow velocity set to 280 °C, 1 pL, 10:1, and 1.0 mL min~’, respectively.
Temperature programming was conducted as follows: the temperature was held at 60°C for
4 min, then increased to 280°C at 5°C min~', and held at that temperature for 5 min. The
MS was done under the following conditions: temperature of the ion source,
temperature of the quadrupole, ionization energy, and temperature of the transmission line
were respectively 230°C, 150 °C, 70 EV, and 280°C; full-scanning mode with the mass
range of 36 to 600 aum for the collection with a solvent delay of 15 min. The MS libraries
used to identify the compounds were NIST08 and Wiley08.

By retrieving the peaks from the total ion chromatograms (TICs) in the MS
computer data system and checking the standard mass spectra in Nist08 and Wiley08, the
chemical components of each phase were determined (Figure 2). Then, the contents of
each substance were measured for their respective amounts by using the internal standard
method, in which adipic acid served as a reference without considering calibration factors;
that is, F = 1.00 for all compounds. The formula used was :

’ m; = F x mysX Aj/As,

Where, m; : Amount of identified compound, mys : Amount of added internal
standard, A; and Aq are the peak areas of the identified compound and internal standard,
respectively.
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Figure 2. GC-MS chromatogram of chemicals in three different soil layers of rhododendron forest

Statistical analysis

For data analysis and figure drawing, we used software programs: SPSS v19.0 (IBM,
USA), and Microsoft Excel 2016 (Microsoft Corp., Redmond, WA, USA). Partial least
squares discrimination analysis (PLS-DA) was used to analyze the relationship between
allelochemicals and soil samples to verify difference between the samples by SIMCA
v13.0 (Umetrics, Umed, Sweden). At the same time, the variable importance plot (VIP) is
used to measure the influence intensity and explanatory power of each allelochemical on
the classification and discrimination of the samples, to assist in the screening of the
allelochemicals (chemicals with VIP >1.0 were selected as differentially allelochemicals)
(46).

RESULTS AND DISCUSSION

Identification of chemicals in different layers

Total 27 primary chemicals were identified in litter, humus and subsoil layers of
rhododendron forest. In the subsoil layer, the main chemicals were : palmitic acid, lactic
acid, glycolic acid, stearic acid, and 3-picolinic acid. The main chemicals in the humus
layer were : palmitic acid, glycolic acid, lactic acid, glycerol and inositol, while the litter
layer had : palmitic acid, glycerol, inositol, stearic acid, and glycolic acid (Table 1). The
total quantity of all chemicals in litter, subsoil, and humus layers was 709.88, 493.44, and
347.49 ng g, respectively (Figure 3). These results showed that the main chemical
components in the 3-layers of rhododendron forest differed considerably.
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Table 1. Qualitative and quantitative analysis of primary chemicals in different layers
No. Compound name Retention | Formula [Match|RSD Relative concentration (ng g )
time /min /% | Litter layer Humus Subsoil
layer layer
1 Lactic acid 17.05 C3HgO; | 96 |11.2 074+190 [67.25+14.48] 61.03+7.92
2 Glycolic acid 17.47 C,H,O; | 93 [11.8] 56.07+4.15 [71.48+15.07| 38.55+3.69
3 Glycerol 23.36 C3H30; 92 112.0[132.13+12.13 | 43.47+3.85 | 21.65+1.85
4 3-Picolinic acid 23.82 | CeHsNO, | 98 [114 | 14.65+1.25 30.27+3.21 | 24.33+3.82
5 Phenylacetic acid 23.97 CsHsO, [ 84 [ 59 3.39+0.25 3.16+0.55 | 1.57£0.14
6 Succinic acid 24.33 CsHeO4 | 94 | 135 3.90+1.18 398+0.30 | 2.17£0.27
7 Glyceric acid 24.96 CsHeOs | 86 [ 6.7 3.95+0.77 449+0.22 | 3.08+0.44
8 Malic acid 29.05 CsHeOs [ 96 |11.8 436 +0.45 5.58+0.24 | 3.66+0.55
9 Proline 2993 |CsHoNO,| 97 [12.3] 12.20+542 |10.54+3.78 | 18.12+1.03
10 | 3-Hydroxybenzoic acid | 30.84 CHO; | 92 [142| 0.81%0.11 0.97+0.06 | 1.10+0.20
11 Threonic acid 30.95 CsHgO; | 89 | 114 0.79 £ 0.09 1.12+0.08 0.81+0.15
12 | 4-Hydroxybenzoic acid 32.29 C/HeO3 | 94 [10.0]| 2.60+0.18 2.65+0.12 | 1.89+0.23
13 4-1.-:]ydroxypheny1acctic 32.57 CgHgO5 | 97 | 11.1 0.49 £0.06 0.60+0.04 | 0.45+0.08
acl
14 Protocatechuic acid 36.59 C/HeO4 | 90 | 123 ] 23.65+3.31 9.36+047 [ 6.17+0.64
15 Myristic acid 36.92 [ Ci4Hp0, | 98 |10.1 | 14.64£1.15 8.41+041 3.77£0.22
16 | Pentadecanoic acid 38.18 [ Cy;sH300, [ 84 | 9.0 4.57+£0.19 749 £0.85 1.89+0.20
17 Palmitic acid 40.79 | Ci;¢HO,| 93 [ 84 [189.27+10.14 | 92.08 £3.33 | 81.02+5.36
18 Inositol 42.31 CeHi1206 | 97 [109] 61.16+7.17 |34.41£2.63 | 6.97+1.10
19 | Mannitol 43.2 CeH14O6 | 90 | 9.1 3.96 £0.57 1534 +2.16 | 1.96+0.40
20 Linoleic acid 43.84 | CigH30,| 93 [11.2 ] 20.06+1.98 248 £0.22 1.26+0.11
21 Oleic acid 43.91 | Ci3sH340, | 92 [10.5]| 28.60+1.85 9.91+0.84 [ 5.57+0.77
22 | a-Linolenic acid 44.02 | C;3H300, [ 95 [12.8 3.77+£0.14 3.63 £045 1.60 + 0.07
23 Stearic acid 4432 | Ci;sH3O,| 93 [102] 57.66+1.59 |29.30+1.15 [ 31.18 £2.66
24 Eicosanol 46.14 | CyHsO [ 89 135 2.71 £ 0.09 438+049 | 4.12+0.67
25 Eicosanoic acid 47.57 [CyHuO, | 84 [11.8[ 19.62+0.72 5.71+0.23 | 3.02+0.60
26 | Behenyl alcohol 49.31 CpHiO | 95 [10.6] 12.56+0.50 | 15.29+1.14 | 1422+2.17
27 | Docosanoic acid 50.92 [ CpHuO,| 97 | 9.8 22.59+0.90 |10.09+£0.49 [ 6.34+1.30
Major Classes of Primary Chemicals
(1) Higher fatty acids 171.51 77.02 54.63
(i1) | Organic acids 96.84 187.33 135.2
(ii1) | Phenolic acids 216.81 105.66 90.62
(iv) | Amino acids 12.20 10.54 18.12
(v) | Alcohols 212.52 112.88 48.92
Total 709.88 493.44 347.49
Note: 1) Means with their standard errors (n = 9) in brackets; 2) Matching rate refers to that between

ion source EI and the standard MS library NIST08. When the matching rate with NIST08 was < 50%,
Wiley08 was instead applied; 3) RSD refers to the mean of each sample after triplicate testing; 4)
Relative content represents that relative to adipic acid, the interior standard (assuming that the
correction factor was 1).

Using GC-MS, 5-types of chemicals were identified in litter, humus and subsoil
layers and some of them are known allelochemicals (35). Figure 4 shows, the contents of
five types of chemicals: higher fatty acids, organic acids, phenolic acids, amino acids, and
alcohols in different layers. Among them, organic acids and phenolic acids were dominant
in the subsoil and humus layers, while, phenolic acids and alcohols were dominant in litter
layer. The chemical components in litter layer significantly differed from those in humus
and subsoil layers, except the amino acids. Higher fatty acids and alcohols differed
significantly in 3-layers. The relative content of phenolic acids and alcohols in litter layer
were about 2 folds than in subsoil or humus layer (Figure 4).
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Figure 3. Total content of chemicals in different layers of rhododendron forest
Note: Error Bars are Standard Errors of the means, n = 9.
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Figure 4. Relative concentrations of chemicals in different layers in of rhododendron forest
Note: Error Bars are Standard Errors of the means, n = 9.

Distribution of chemical compounds in soil layers

PLS-DA scatter diagram for the chemical contents, showed significant differences
between the subsoil layer and other two layers, but, there was no significant difference
between litter and humus layers (Figure 5A). This indicated certain non-random
differences among the chemicals’ distributions in the soil of the rhododendron forest.
Generally, the R? intercept and Q” intercept limits for a valid model should be less than 0.4
and -0.05, respectively (11). Our intercepts for R’ and Q* were 0.070 and -0.288,
confirming the validity and reliability of the model (Figure 5B).
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Figure 5. PLS-DA based on the chemical compounds in three soil layers of rhododendron forest.
PLS-DA scores plots (A) and the permutation tests (B)

Variable importance for the projection (VIP) can quantify the contribution of each
variable to the sample classification and VIP values > 1.0 presumably contributed to a
clear differentiation of the samples (30). Since the VIP values of 12 substances > 1.0, this
showed significant differences in rhododendron forest (Figure 6). Mannitol and
pentadecanoic acid showed the largest difference (VIP-values >1.5) and their contents
were ranked as humus > litter > subsoil layers.
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Figure 6. VIP of chemicals in three layers of rhododendron forest. The numbers of Var ID correspond
to the numbers in Table 1.

Earlier studies found that the chemicals and soil microorganisms in the wild
rhododendron forest community inhibits the seed germination (9,31,43). Moreover, some
chemicals in the litter leachates inhibits the seed germination and seedlings growth (31)
and also exerts allelopathic effects on soil microorganisms in wild rhododendron forest
(9,43). Since the allelochemicals produced by dominant plant species continuously
accumulates in the subsoil, thereby they influence the surrounding soil properties and
growth of understory vegetation (21,26,38). By analyzing the contents of chemical
compounds in different layers of rhododendron forest in China, we identified 5- types of
chemicals in all litter, humus and subsoil layers. The total concentration of chemical
compounds followed the order : litter > humus > subsoil. The litter layer chemical
compounds significantly differed from humus or subsoil layers (except amino acids). This
study also determined the differences in the chemical compounds among soil layers.
Moreover, the VIP values of 12 chemicals were > 1.0, which significantly distinguished
the chemicals in 3-soil layers. Litter and humus layers are important for forest regeneration
(13,39). Allelochemicals in the litter, humus and subsoil are important in plant-soil
interactions and some of these compounds could influence the humus and soil properties
(8,24). However, various layers have different effects. For instance, seed germination and
seedling growth can be inhibited by compounds in litter and humus layers, but the subsoil
affects the root growth of seedlings (29,42). In this study, chemicals in litter layer seem to
be more important in forest soil ecosystems.

Chemical compounds in plant-soil system and their effects on forest regeneration

In this study, we identified 27 compounds in rhododendron forest in China, with
phenolic acids and alcohols as the main allelochemicals in litter layer and mannitol,
pentadecanoic acid (VIP > 1.5) and phenolic acid as the major constituents of soil humus
(Figure 4). Alcohols, fatty acids, organic and phenolic acids are very important in soil
processes, because they affect the forest regeneration (15,16). The main allelochemicals in
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litter layer were phenolic acids and alcohols. Mannitol and pentadecanoic acid showed the
largest differences among other chemicals (VIP > 1.5). Pentadecanoic and palmitic acids
are important compounds in plant roots, litter and microbial residues in soils (17,48). They
are substrates for microbial metabolism serving as intermediates for biogeochemical
reactions in soils (25,32). The plants and their ectomycorrhizas can affect the
allelochemicals in forest soil (oxalic, citric, malonic, succinic, acetic, formic and lactic
organic acids) (16) i.e. they, can increase the concentrations of some simple organic acids
(glycolic acid). Generally, phenolic acids and alcohols allelopathic effects inhibits the seed
germination and seedling growth of plants (2,4,5,6,20,27,35,45).

The allelochemicals may inhibit the natural regeneration of rhododendron species
and finally reduced the understory biodiversity. The litter layer plays vital role in forest
ecosystems and it contributes the largest nutrients and carbon input of forest soils (12,49).
However, litter layer is also the major source of plant-derived allelochemicals (alcohols
and phenolic acids) in subsoil, which may inhibit the forest regeneration. Water-soluble
chemicals in the litter layer are released through the rainwater as leachates and enter in the
subsoil, where they can be decomposed by microorganisms (10,49) showing the toxic
effect on growth of understory plants species.

CONCLUSIONS

Chemical compounds found in litter, humus and subsoil layers negatively affected
the natural regeneration of rhododendron forest. Palmitic acid was the primary chemical in
all three soil layers, whereas mannitol and pentadecanoic acids were also important
chemicals in these soil layers. All allelochemicals were mainly present in litter layer,
where they may inhibit the forest regeneration. However further experiments on the action
of the particular chemical compounds on the plant species, needs to be evaluated. These
findings may have implications for forest management by removing the source of
chemicals from litter layer promoting the natural regeneration of rhododendron forest.
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