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ABSTRACT
We present a 2.5-dimensional (2.5-D) finite element algorithm for direct current (DC) resistivity
modelling in anisotropic media with singularity removal. First, we provide the weak form of the
integral equation for the boundary value problem and simplify the Euler angles while calculat-
ing the primary potential so that the Fourier transform of the background potential with the dip
angle can be avoided because it is mathematically difficult. A two-layered model is then simu-
lated when the first covering is anisotropic. The relative error between this numerical solution
and the analytical solution is < 1%. We then model a number of more complicated scenarios,
using the algorithm developed in this paper. We test the model response to a small body at
depth whose resistivity is isotropic, and then test whether the longitudinal or transverse resistiv-
ities affect the final results more. Based on this analysis, we found that longitudinal resistivity has
more of an effect on the apparent resistivity than transverse resistivity in collinear arrays, such
as pole–pole, dipole–dipole and Wenner arrays. Finally, through calculation of the current den-
sity and anomalous current density of several arrays, we conclude that the causes of different
responses of longitudinal and transverse resistivity by each array is the distribution of current
density in the subsurface. We also show that the sensitivity of each array type to variations in
longitudinal and transverse resistivity can be understood when looked at from the perspective
of current density.
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Introduction

Modelling and inversion techniques for data col-
lected using direct current (DC) resistivity based on
isotropic media are well developed. Unfortunately,
the electric conductivity of the Earth’s subsurface is
often anisotropic; research and simulation based on
anisotropic media is becoming a popular topic. Asten
(1974) obtained an analytical solution for a current
point source in a homogeneous anisotropic half-space
in which one of the principal axes is parallel to the
ground surface. Lindell et al. (1993) used an image
source method to compute the electrical potential in
an azimuthally anisotropic half-space caused by cur-
rent point current, but did not provide an analytical
solution for the arbitrarily anisotropic half-space. Li and
Uren (1997a, 1997b) also adopted the image source
method to deduce and compute the field potential
in three-dimensional (3-D) arbitrarily anisotropic half-
space; they also deduced and analysed the potential
features of 3-D anisotropic half-spacewith two horizon-
tal layer and two vertical boundary planes, respectively.
All this researchhas laid the foundation for further study
of the effects of anisotropy.

Some numerical methods have been adopted in
research regarding DC anisotropic media modelling.

Li and Uren (1997c) presented an approach to compute
the DC potential in an arbitrarily anisotropic half-space
with an embedded 3-D perfect conductor by solving
the integral equation that arises from the current point
source. Through their simulation, they concluded that
neglecting the anisotropy effect on the potential could
lead to serious misinterpretations of field data and
that forward modelling would also aid interpretations.
Yin and Weidelt (1999) provided the analytical solu-
tion for a DC, one-dimensional (1-D) layered earth with
arbitrarily anisotropic media and investigated the 1-D
inversion. They concluded that the non-uniqueness in
the geoelectrical inversion for an anisotropic model is
inherent, even with sufficient and accurate data (Yin
2000). This consequence supports the difficulty asso-
ciated with the inversion of anisotropic media. Li and
Spitzer (2005) present a 3-D finite element (FE) scheme
for DC resistivity modelling in anisotropic media using
parallelepiped-shaped elements. Later, Zhou, Green-
halgh, and Greenhalgh (2009) presented a new numer-
ical scheme called Gaussian quadrature grids (GQG) for
2.5-/3-D DC resistivity modelling in anisotropic media
that makes it easier to deal with complex topography
than using traditional methods. The unstructured grid
and adaptive FE method (Ren and Tang 2010, 2014)
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are introduced into the modelling of 3-D DC resistivity,
which leads to greater accuracy and the ability tomodel
complex formation and topography. Wang, Wu, and
Spitzer (2013) proposed an unstructured FE method to
DC resistivity modelling in arbitrary anisotropic media
and achieved good accuracy.

Normally, the speed of 3-D forward modelling is rel-
atively slow, and inversion research based on the 3-
D anisotropy forward problem is rare, because there
are too many parameters that need to be inverted,
which makes the inversion difficult to converge. There-
fore, research on the modelling technique of 2.5-D
anisotropic media has become a bridge to explore the
anisotropic inversion.

In previous studies, much of the DC work on resis-
tivity forward and inversion for 2.5-D anisotropic media
has been based on the total potential approach (Green-
halgh, Wiese, and Marescot 2010; Wiese et al. 2015;
Zhou, Greenhalgh, and Greenhalgh 2009), which may
lead to relatively large errors due to inadequate rep-
resentation of the source on a discrete grid (Zhao and
Yedlin 1996); using the singularity removal technique
would largely increase the accuracy of the numerical
results (Li and Spitzer 2002; Lowry, Allen, and Shive
1989; Penz et al. 2013; Ren and Tang 2014; Wu et al.
2003; Zhao and Yedlin 1996). However, for the 2.5-D
problem, there is an obstacle in that Fourier transform
of primary potential with a dip angle in anisotropic
half-space is difficult to calculate. In this paper, we sim-
plify the 2.5-D anisotropic modelling with singularity
removalby setting theEuler angles to zero in calculating
the Fourier transform. Our results show that the accu-
racy is sufficiently high when this simplification is used.

Through simulations, we found that varying lon-
gitudinal resistivity had more effect on the recorded
resistivity response than varying the transverse resis-
tivity when data were collected using the pole–pole,
dipole–dipole and Wenner arrays. Li and Uren (1997c)
and Li and Spitzer (2005) have analysed the influence of
anisotropic parameters from the perspective of poten-
tial. In this paper, we calculate the current densities that
are generated by three commonly used arrays and anal-
yse their ability to explore longitudinal resistivity and
transverse resistivity.

2.5-D forwardmodelling

Basic equations

In anisotropic media, the resistivity tensor can be writ-
ten as ρ = Dρ0D

T (Yin 2000) where ρ0 = diag(ρx , ρy ,
ρz), ρx , ρy and ρz represent the resistivity of the three
principal axes, and

D =

⎛
⎜⎜⎜⎜⎝

cos γ cosβ − sin γ cosβ sinβ

sin γ cosα

+ cos γ sinβ sinα

cos γ cosα

− sin γ sinβ sinα
− cosβ sinα

sin γ sinα

− cos γ sinβ cosα

cos γ sinα

+ sin γ sinβ cosα
cosβ cosα

⎞
⎟⎟⎟⎟⎠

Figure 1. Coordinate system and 2-D anisotropic media.

is a rotation matrix where α, β and γ are three Euler
angles. If the resistivity attribute in the x-direction is
constant, and if ρ0 = diag(ρx , ρy , ρz) = diag(ρy , ρy , ρz),
then the rotation matrix D simplifies to

D =
⎡
⎣1 0 0
0 cosα sinα

0 − sinα cosα

⎤
⎦. The coordinate system and

Euler angle α are shown in Figure 1.
The potential that is generated by the point current

source satisfies the 2-D differential equation, as shown
in Equation (1):

∇ • (τ∇U) − k2σyU = −Iδ(A) (1)

where ∇ is the 2-D Hamiltonian operator, k is the
wavenumber (Dey and Morrison 1979), A indicates the
current point source, σy = 1/ρy is the conductivity and
τ is the conductive tensor shown in Equation (2).

τ =
[
τ11 τ12

τ21 τ22

]

=

⎡
⎢⎣σycos2α + σzsin2α

1
2
(σy − σz) sin 2α

1
2
(σy − σz) sin 2α σysin2α + σzcos2α

⎤
⎥⎦ (2)

According to Xu (1994) and Zhou, Greenhalgh, and
Greenhalgh (2009), the weak form of the integral
equation for the total potential boundary value prob-
lem is written as Equation (3):
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

F(U) = ∫
	
[
1
2
∇U · (τ∇U) + 1

2
k2σyU2 − Iδ(A)U]d	

+ ∫

∞ kσyβU2d


δF(U) = 0

β = K1(k
√
y2 + λz2)

K0(k
√
y2 + λz2)

y cos θ + z sin θ√
y2 + λz2

(3)
Where 	 denotes the model area, and 
∞ denotes the
model boundary except for the surface boundary, K0
and K1 are the modified Bessel function of zero order
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and first order, respectively (Dey andMorrison 1979; Xu
1994), θ is the angle between the outward unit normal
and the boundary (Zhao and Yedlin 1996).

To improve the accuracy of simulation, Lowry, Allen,
and Shive (1989) employed a method for removing the
source singularity by splitting the potential into the pri-
mary potential u0 and secondary potential u, while u0
is caused by the current source in a uniform half-space
and u is caused by the anomalous conductivity, and the
total potential can be stated as:

v = u0 + u (4)

Also, the conductivity can be stated as:

σ = σ0 + σ ′ (5)

The primary potential u0 can be calculated because it
has the analytic solution (Zhao and Yedlin 1996), so
most of the error is in u; generally u is much smaller
thanu0. So, ifwe calculate the secondarypotentialu, the
result would be more accurate.

Similarly, for the 2-D problem, the weak form of the
integral equation with singularity removal is written as:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

F(U) = ∫
	

[
1
2
∇U · (τ∇U) + 1

2
k2σyU2

+∇U · (τ′∇U0) + k2σ ′
yUU0

]
d	

+ ∫

∞

1
2
kσyβU2d
 + ∫


∞ kσ ′
yβUU0d


δF(U) = 0

(6)

where σy = σy0 + σ ′
y , τ = τ0 + τ′, and σy0 and τ0 are

the conductivity and conductivity tensors of back-
ground, respectively. σ ′

y and τ′ are the anomalous con-
ductivity and anomalous conductivity tensors,
respectively.

Comparing Equation (3) and Equation (6), the two
expressions are very similar although the current term
(Iδ(A)) is not included in Equation (6), which eliminates
the singularity at the source and improves simulation
accuracy.

FE approach

The total area is subdivided into a number of elements
with constant resistivity. In Figure 2, the area high-
lighted by red lines denotes the computation area of
interest, and the dashed black lines denote the coarse
area. Generally, the distancebetweennodes in the com-
putation area is fixed (for example, d), so the grid is the
same. In the coarse area, the width of the node is cal-
culated by Ci · d, where Ci is the coefficient. The larger
the distance from the computation area to the node,
the greater the coefficient; values are highest at the
boundary far from the main computation area.

Each box in the quadrilateral mesh is then divided
into four triangles. The final grid is shown in Figure 3,
and one triangular element is shown in Figure 4.

Figure 2. Global region subdivision with coarse area.

Figure 3. Regional grid segmentation.

Figure 4. Triangle element.
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The potentials are approximated in each element by
linear representations, as shown in Equation (7).

u = Niui + Njuj + Nmum = NTu = uTN (7)

whereNT = (Ni,Nj,Nm) is the shape function, and uT =
(ui, uj, um) is the potential at the three triangle vertices.

The integrals in Equation (6) are discretised in the
region and expressed as a linear combination of all
elements, as shown in Equation (8):

F(U) =
∑
	

∫
e

[
1
2
(∇U) · (τ∇U)

]
d	

+
∑
	

∫
e

[
1
2
k2σyU

2
]
d	 +

∑
	

∫
e

1
2
[kσyβU2]d


+
∑
	

∫
e
[(∇U) · (τ′∇U0)]d	

+
∑
	

∫
e
[k2σ ′

yUU0]d	

+
∑
	

∫
e
[kσ ′

yβUU0]d
 (8)

The integrals in Equation (8) are denoted in turn as inte-
grals 1, 2, 3, 4, 5 and 6. It is apparent that integral 1 is
similar to integral 4, and the same is true for integrals 2
and 5, as well as integrals 3 and 6.

Since∇ is a vector, it can bewritten as∇T = ( ∂
∂x ,

∂
∂y ).

Themain part of integral 1 in Equation (8) canbewritten
as Equation (9).

(∇U)T · (τ∇U) = (∇NTue)T · (τ∇NTue)

= uT(N∇T · τ · ∇NT)ue

= 1
4�2ue

T(ETτE)ue (9)

whereK1e = 1
4�ETτE, and�denotes the area of this tri-

angle, the subscript e represents the triangle element
itself. Integral 1 can be written as Equation (10):

∫
e

1
2
[∇U · (τ∇U)]d	 = 1

2
· 1
4�2

∫
e
ueTETτEued	

= 1
2
ueTK1eue (10)

Similarly, integral 4 can be written as Equation (11):

∫
e
[∇U · (τ′∇U)]d	 = ueTK′

1eu0e (11)

where K′
1e = 1

4�ETτ′E.
Integrals 2 and 5 are

∫
e

[ 1
2k

2σyU2
]
d	 = 1

2ue
TK2eue

and
∫
e [k

2σ ′
yU2]d	 = ueTK′

2eu0e, where K2e = σyk2Δ
12⎡

⎣2 1 1
1 2 1
1 1 2

⎤
⎦ and K′

2e = σ ′
yk2Δ
12

⎡
⎣2 1 1
1 2 1
1 1 2

⎤
⎦.

Integrals 3 and 6 are 1
2

∫
e kσyβU

2d
 = 1
2ue

TK3eue
and

∫
e kσ

′
yβUU0d
 = ueTK′

3eu0e, where K3e = l
6kσyβ[

2 1
1 2

]
and K′

3e = l
6kσ

′
yβ

[
2 1
1 2

]
.

After assembling theseelementalmatrices,weobtain
the system of linear equations (Xu 1994) for secondary
potential shown in Equation (12):

KU = −K′U0 (12)

Simplification of the Euler angle

In Equations (8) and (12), to obtain the system of equa-
tions, we need the transformed primary potential U0,
i.e. the primary potential after Fourier transform. The
analytical solution for the point source potential in
an anisotropic 3-D half space is given by Li and Uren
(1997a) and is shown in Equation (13).

u = I|ρ|1/2
2π

1√
B

(13)

where B = (r − r0)T · ρ · (r − r0). It is very difficult to
apply the Fourier transform to Equation (13) after
expanding B. As such, we assume that themedium near
thepoint source (thebackgroundmedium) is transverse
isotropic, and the Euler angle is simplified as α = β =
γ = 0o. The resistivity of the background medium is
then written as Equation (14):

ρ = diag(ρx , ρy , ρz) B = 1√
ρyx2 + ρyy2 + ρzz2

(14)

After applying the Fourier transform, the potential U0 is
written as Equation (15):

U0(k, y, z) = I|ρ|1/2
2π

√
σyK0(k

√
y2 + λz2) (15)

We then bring Equation (15) into Equation (12) for
each node, and obtain the linear equation; by solving
that linear equation, we obtain the transformed sec-
ondary potential U. After inverse Fourier transform we
get the secondary potential u shown in Equation (4),
and the primary potential u0 can be calculated from
Equation (13), the total potential can then be achieved
using Equation (4) (Xu, Duan, and Zhang 2000).

Algorithm validation

Figure 5 shows a two-layer vertical transverse isotropy
model, which we used to test the accuracy of our
algorithm.

The analytical solution (Xu 1994) and FE approach
results with and without singularity removal are com-
pared in Table 1. A unit current source (1A) is located
at “A” in Figure 5, and the location of the electrode
represents the distance between the electrode and the
current source.



EXPLORATION GEOPHYSICS 225

Figure 5. Two-layered earth with anisotropic covering.

Table 1. Compared analytical solutions for the finite element
(FE) approach and the FE approach with singularity removal.

Electrode
location x
(m)

Analytical
solutions

(V)

FE
approach

(V)
Relative
error (%)

FE with
singularity
removal (V)

Relative
error (%)

1 0.3399 0.3510 3.2737 0.3378 0.6120
2 0.2538 0.2600 2.4406 0.2536 0.0827
3 0.2189 0.2204 0.7066 0.2193 0.2010
4 0.1968 0.1977 0.4289 0.1973 0.2388
5 0.1805 0.1802 0.2028 0.1810 0.2603
6 0.1676 0.1668 0.4738 0.1681 0.3043
7 0.1569 0.1560 0.5653 0.1573 0.2549
8 0.1478 0.1469 0.5956 0.1483 0.3179
9 0.1400 0.1391 0.6227 0.1405 0.3643
10 0.1331 0.1322 0.6636 0.1335 0.2930

Figure 6. 2-D model with an anomalous body.

From Table 1, it is clear that FE with singularity
removal achieved a very good accuracy and the rela-
tive error to the analytical solution is < 1%, whereas
that of the overall error of FE approach is larger than
FEwithout singularity removal, especially near thepoint
source, reaching 3.2%.

Influence of longitudinal and transverse
resistivity on apparent resistivity

Forwardmodelling and analysis

To compare the effects of variations in longitudinal
resistivity (ρL) and transverse resistivity (ρT ) on apparent
resistivity, we tested our algorithm on a simple model
in which we vary both ρL and ρT . The anomalous body
(Figure 6) is a square with a side length of 3 m buried
at a depth of 3 m, and a background resistivity of ρ0 =
100 	 · m. Three different resistivities are assigned to
the anomalous body, and thus three models are tested.

Model 1: the anomalous body is isotropic, and ρ1 =
10 	 · m; this model is abbreviated as MOD1.

Model 2: the anomalous body is anisotropic, the lon-
gitudinal resistivity is 10 	 · m, and the transverse resis-
tivity is the same as the background resistivity. ρL =
10 	 · m and ρT = 100 	 · m; this model is abbrevi-
ated as MOD2.

Model 3: the anomalous body is anisotropic, the
transverse resistivity is 10 	 · m, and the longitudinal
resistivity is the sameas thebackground resistivity.ρL =
100 	 · m and ρT = 10 	 · m; this model is abbrevi-
ated as MOD3.

There are 41 electrodes spaced uniformly (every 1m)
in the y-direction.

First, we test our algorithm on Wenner array data;
testing all three models using four different AB spac-
ings, 3, 7, 11 and 21 m. The results are summarised in
Figure 7.

From Figure 7 it is apparent that the impact for the
conductor is fairly small for a small AB spacing (3 m)
because these short ABs sample only shallow subsur-
face information. When AB is large, the impact of the
conductor shows in the apparent resistivity curves.

Additionally, we noticed from Figure 7 that the
apparent resistivities of MOD3 change little when the
AB spacing changes and the apparent resistivities are
close to 100 	 · m, which is the background resistivity.
For MOD1 and MOD2, the apparent resistivity with a
large AB (7, 11 and 21 m) shows low resistivities around
the location of the anomalous body, and the curves
of two models are similar for different AB distances.
It can be concluded from the comparison that the
Wenner array is sensitive to the longitudinal resistivity
anomaly and is insensitive to the transverse resistivity
anomaly.

Next, we tested our algorithm using other arrays: the
pole–pole array and dipole–dipole array are simulated
for three models, and the apparent resistivity pseudo-
sections are shown in Figures 8 and 9, respectively.

The simulation results of the pole–pole array are sim-
ilar to those of the Wenner array, where the transverse
resistivity of the anomalous body has less influence on
the simulation results and the anomalous amplitude
caused by the anomalous body in the pole–pole array is
less than that of theWenner array. FromFigure 8,we can
see that the results of MOD1 and MOD2 are similar; the
minimum apparent resistivity of MOD1 is 80 	 · m and
that of MOD2 is 90 	 · m. However, it is found from the
simulation results that when ρT is not consistent with
background resistivity within the anomalous body, the
apparent resistivity pseudo-section by the pole–pole
array can reflect the location of the anomalous body
more accurately in the y-direction.

From Figure 9, it is clear that the dipole–dipole
array is better than the pole–pole array and Wenner
array in detecting variation in the transverse resistiv-
ity because it shows a relatively large amplitude in the
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Figure 7. Apparent curves for three models for AB spacings: Wenner array.

apparent resistivity to transverse resistivity (Figure 9,
3). In addition, the transverse resistivity of the anoma-
lous body also has a large influence on the apparent
resistivity and is similar to the results of the isotropic
model.

From the above simulation, we found that the lon-
gitudinal resistivity of the test cube has more influence
on the measured apparent resistivities than the trans-
verse resistivity. It is interesting that the sensitivity of
each of the tested arrays to variation in longitudinal
and transverse resistivity is different. Varying transverse
resistivity has almost no effect on the apparent resis-
tivity with the Wenner array, whereas the pole–pole
array and dipole–dipole array can partially detect the

transverse resistivity anomaly and even the position of
the transverse resistivity anomaly.

Current density analysis

The origin of the three types of arrays that have differ-
ent sensitivity to longitudinal and transverse apparent
resistivitymay influenceρL andρT when current density
is different. This leads to different potentials measured
in the surface, and the apparent resistivities are then
different. In the following sections, we test this using
current flow simulation and analysis.

In this section, we analysed the different sensitivities
to the longitudinal resistivity and transverse resistivity
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Figure 8. Apparent resistivity pseudo-sections for three mod-
els using the pole–pole array.

of the pole–pole array, Wenner array and dipole–dipole
array from the perspective of current density.

The calculation of current density

Ohm’s law can be expressed as Equation (16).

j = σE (16)

In which,

j = (jx , jy , yz)T (17)

E = (Ex , Ey , Ez)T (18)

For isotropic media, the conductor σ = σ is a scalar,
so current density j and the electric field E are always
parallel, whereas the earth is anisotropic, which means
σ = ρ−1 is a matrix and current density and electric
field are in general no longer parallel (Li and Spitzer
2005). For the 2-D case, we choose the y–z plane as
the research plane, the x-direction is the construction
direction; the simplified conductor tensor is shown in

Figure 9. Apparent resistivity pseudo-sections for three mod-
els using the dipole–dipole array.

Equation (19):

σ =
⎛
⎝σxx 0 0

0 σyy σyz

0 σyz σzz

⎞
⎠ (19)

Bring Equations (17), (18) and (19) to Equation (16),
we can get the expression of current density in the y-
and z-directions and written as Equation (20):

jy(y, z) = σyyEy + σyzEz

jz(y, z) = σyzEy + σzzEz (20)

The relationship between stationary electric field E
and electric potential v is shown in Equation (21):

E = −∇v (21)

In the y–z plane, we have Equation (22).

Ey = −∂v

∂y

Ez = −∂v

∂z
(22)
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Figure 10. Use four rectangular nodes to calculate the electric
field.

In which ∂v
∂y and ∂v

∂z are the derivatives of the space
potential in y- and z-directions. Figure 10 shows a rect-
anglewhich is an element in themain computation area
(Figure 2).

The electric field in the centre of the rectangle can be
calculated with Equation (23).

Ey = Ey1 + Ey2
2

Ez = Ez1 + Ez2
2

(23)

The partial derivatives shown in Equation (22) can be
calculated using Equation (24) within the rectangle.

Ey1 = −∂v

∂y 1
= −v2 − v1

2a
, Ey2 = −∂v

∂y 2
= −v3 − v4

2a

Ez1 = −∂v

∂z 1
= −v4 − v1

2b
, Ez2 = −∂v

∂z 2
= −v3 − v2

2b
(24)

Finally, we have Equation (25).

Ey = −v2 − v1 + v3 − v4

2a

Ez = −v4 − v1 + v3 − v2

2b
(25)

In which v1, v2, v3, v4 is the potential at the corner of
the element, and is also the solution of our FEM.We can
then get current density from Equations (20) and (25).

Current point source

Based on the results of the previous section, Figure 11
shows the current density and direction for a homoge-
neous half-space (ρ0 = 100 	 · m). In this example, 41
electrodes were deployed on the surface with uniform
spacingof 1m.Aunit current source (1A, used for all the
examples shown here) was placed at the fifth electrode.

The arrows in the figure represent thedirectionof the
current. To highlight the range of the current density,
the logarithm to the base 10 is taken as the amplitude of

Figure 11. Uniform half-space current density distribution
caused by a current point source.

Figure 12. Current density distribution for MOD1 caused by a
current point source.

Figure 13. Difference between the half-space current density
and MOD1 current density, using current point source.

the current density in the figure. Label “A” in the figure
represents the current point source.

It is apparent in Figure 11 that the current flows
mainly along horizontal paths at a certain distance from
point A in the y-direction, and the amplitude of the cur-
rent density drops by r3 after a certain distance from
source point.

For MOD1, the current density distribution under-
ground is shown in Figure 12 (the location of the 3 × 3
m test cube is highlighted in red in Figure 12).

It is clear in Figure 12 that the current density around
the red rectangle is affected by the low-resistivity
anomalous body, and the current converges to the rect-
angle on the side near the current source A. Obviously,
this agrees with Ohm’s law.

If the current density in Figure 11 (half-space cur-
rent density distribution) is subtracted from the current
density in Figure 12, the difference between the two is
obtained as shown in Figure 13.

It is clear in Figure 13 that the difference in the cur-
rent density distribution between the two models is
largest in the vicinity of the anomalous body (red rect-
angle), and the maximum anomalous amplitude is also
located in the red rectangle.

For MOD2, the current flows mainly along the y-
direction in the red rectangle frame inFigure14because
within the rectangle ρL = 10 	 · m (a relatively low
resistivity) leads the current to flow horizontally. Simi-
larly, for MOD3 (Figure 15), the transverse resistivity of
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Figure 14. Current density distribution for MOD2 caused by a
current point source.

Figure 15. Current density distribution for MOD3 caused by a
current point source.

Figure 16. Difference between half-space current density and
MOD2 current density, using current point source.

Figure 17. Difference between half-space current density and
MOD3 current density, using current point source.

the anomalous body is relatively low (ρT = 10 	 · m),
so the current has a tendency to flow in the z-direction.

We subtracted the current density of MOD2 and
MOD3, respectively, from the current density of half-
space to produce twodifferent current densities, shown
in Figures 16 and 17.

From the distribution of the current density differ-
ence shown in Figures 16 and 17, it is clear that the
variations in current density are concentrated mainly
in the rectangle region where the anomalous body is
located. The resistivity distribution difference between
the half-space and MOD2 is the longitudinal resistivity
within the rectangle region, which results in an anoma-
lous current that flows mainly in the y-direction. The
difference between the half-space and MOD3 shows a
similar result. Both ρL and ρT could induce the current
abnormity with a point source, and therefore, we can
measure the apparent resistivity anomaly. Because the
anomalous amplitude shown in Figure 17 is relatively
weak compared with that in Figure 16, the measured
anomalous apparent resistivity is lower.

Figure 18. Current distribution of half-space caused by the
Wenner array.

Figure 19. Current distribution of threemodels using theWen-
ner array.

Wenner array

When we supply a 1 A current into the ground at elec-
trode 5, and a −1 A current at electrode 35, the current
density distribution of the half-space is that shown in
Figure 18.

The measured domain is between the two sources
for the Wenner array. It is apparent that the current
flowsmainly in the y-direction in Figure 18, so we could
infer that the Wenner array has little ability to detect
variation in the z-direction.

Similarly, we calculate the current densities of three
models, as shown in Figure 19.

It is apparent in Figure 19 that the current distribu-
tions for MOD1 and MOD2 are similar, and the current
distribution for MOD3 is similar to that of the half-space
shown in Figure 18. Similarly, we subtracted the cur-
rent densities of MOD1, MOD2 andMOD3 from the cur-
rent density of the half-space to produce three different
current densities as shown in Figure 20.

It is clear that the anomalous currents caused by
MOD1 and MOD2 are similar and flow mainly in the
y-direction, therefore the apparent resistivity pseudo-
sections ofMOD1andMOD2are similar. The anomalous
current caused by MOD3 within the rectangle region
is mainly in the z-direction, and the amplitude of the
anomalous current is one order of magnitude smaller



230 T. SONG ET AL.

Figure 20. Difference between half-space mode current den-
sity and three different models of current density using the
Wenner array.

Figure 21. Current distribution of half-space caused by the
dipole source.

than that of MOD1 and MOD2, so we barely observed
the response in the apparent resistivity for MOD3 using
the Wenner array.

From the simulation above, we can see that theWen-
ner array is not sensitive to transverse resistivitybecause
its current density flows mainly in the y-direction, and
the apparent resistivity anomalies are causedmainly by
longitudinal resistivity.

Dipole–dipole array

For a dipole source, electrodes 5 and 7 are supplied
with currents of 1 A and−1 A, respectively, and the cur-
rent density distribution for the half-space is shown in
Figure 21.

The current flows mainly in the y-direction directly
below the dipole source (electrodes 5–7) and in
the z-direction around electrodes 10–15. This finding
explains the ability of the dipole–dipole array to explore
longitudinal resistivity.

Similarly, the current density distribution for three
models are shown in Figure 22.

From Figure 22, we can see that the current distribu-
tion is distorted in the vicinity of the anomalous body,
and the anomalous current distributions are shown in
Figure 23.

Figure 22. Current distribution of three models by dipole
source.

Figure 23. Difference between half-space mode current den-
sity and three different models of current density using the
dipole source.

The anomalous current caused by MOD2 flows
mainly in the y-direction, and the one caused by MOD3
flowsmainly in the z-direction, whereas the one caused
by MOD1 is flows in the y–z-direction. It is similar to
the pole source, the amplitude of anomalous current for
MOD3 is relatively weak compared with that of MOD1
andMOD2, so themeasured anomalous apparent resis-
tivity is lower.

For MOD2, when the dipole source moves above the
anomalous body, the ρL of the body affects the current
flow, mainly in the y-direction, so we can measure the
anomalous potential on the surface of the ground. The
measuring point is located in the blue region shown in
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Figure 24. Dipole–dipole array.

Figure 24 in this situation, which is away from the loca-
tion of the anomalous body. When the dipole source
is away from the anomalous body (for example, near
electrodes 15–17), the current flows mainly in the z-
direction, where ρT is equal to the background resistiv-
ity. As such, the current is less affected. Therefore, the
measured apparent resistivity is less affected too, and
the measured point is located in the red rectangle in
Figure 24. From the analysis above, we explained the
apparent resistivity pseudo-section in Figure 9 (2) from
the perspective of current flow.

Similarly, for MOD3, it is apparent that the apparent
resistivity in the red region of Figure 24 is affected by
anomalous resistivity (ρT ), whereas the apparent resis-
tivity in the blue region is close to the background
resistivity (ρL).

Conclusions

In this paper, we present an FE algorithm for 2.5-D DC
resistivitymodelling in anisotropicmedia with singular-
ity removal andpresent a simple analytical example that
verifies the accuracy of our algorithm. Through simula-
tion of the response using the pole–pole, dipole–dipole
and Wenner arrays, we found that each array has a dif-
ferent sensitivity to variations in transverse and longi-
tudinal resistivity, and the following conclusions were
made:

(1) In general, for each array of theDC resistivity sound-
ing, the influence of the longitudinal resistivity is
greater than that of the transverse resistivity.

(2) TheWenner array is not sensitive to variation in the
transverse resistivity.

(3) The pole–pole array is better than theWenner array
for detecting transverse resistivity anomalies.

(4) The amplitude of the apparent resistivity by the
pole–pole array to anomalies is relatively small, but
it always reflects the position of the anomalous
body, either with longitudinal anomalies or trans-
verse anomalies.

(5) The dipole–dipole array produces a larger appar-
ent resistivity of anomalies in both the longitudinal
and transverse resistivity anomalies. Longitudinal
resistivity anomalies appear on both sides of the
anomalous body, and transverse anomalies appear
in the vicinity of the anomalous body.

By calculating the current density, we analysed the dif-
ferent exploration capabilities of each array for lon-
gitudinal and transverse resistivity from the perspec-
tive of current density, with the distribution charac-
teristics of the current density underground. When
the distance between two point sources of the Wen-
ner array is large, the current in the target area flows
mainly in the y-direction, so it has good resolution with
regard to the longitudinal resistivity anomaly. However,
dipole–dipole sources have different distribution char-
acteristics of current flow in the subsurface variety from
the position, so the dipole–dipole array has improved
ability to detect variation inboth longitudinal and trans-
verse resistivity anomalies.

In the field, if we “know” the electrical anisotropy
of the target geological body in the study area, we
can adopt suitable arrays through forwardmodelling to
improve exploration results.
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