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ABSTRACT
The effect of biochar (BC) addition on NOx gas emissions was investigated from a calcareous
soil. Application rates of zero (BC0), 1 (BC1), 2 (BC2), 5 (BC5), and 10 (BC10) percent weight/
weight were used. The NOx emission flux was measured in a dynamic flux chamber. The flux
was generally higher in BC0 than in the amended plots. The total NOx emission from BC1,
BC2, BC5, and BC10 fell by 50.3, 75.3, 80.4, and 79.6%, respectively, relative to BC0. The
emission flux from the BC5 showed a minimum average of 21.1 ± 13.5 μg N/(m2•h) for NO,
−0.81 ± 1.31 μg N/(m2•h) for NO2, and 20.6 ± 13.8 μg N/(m2•h) for NOx. By comparison, the
measured maximum average emission flux from the BC0 was 107.2 ± 30.98 μg N/(m2•h) for
NO, −2.31 ± 2.56 μg N/(m2•h) for NO2, and 105.3 ± 45.3 μg N/(m2•h) for NOx. The results
indicate that biochar amendment can potentially reduce NOx emissions.
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Introduction

The application of nitrogen fertilizer to soil is key to
promoting and sustaining agricultural production [1].
A significant portion of fertilizer N is lost by leaching
[2], gas emissions [3,4] and soil erosion [5]. Such losses
have a negative effect on farmers’ income as well as
on the immediate environment.

Gaseous N, in the form of NH3, NO, N2O and dinitro-
gen (N2) can be lost by volatilization, nitrification, and
denitrification. Nitrogen oxides (NOx) gas, comprising
NO and NO2, play a key role in the photochemical
synthesis of tropospheric ozone (O3) [6]. Since the
emission of NOx from soil is largely mediated by soil
microbes, the process is subject to such environmental
variables as soil pH, soil water content, temperature,
and the availability of inorganic nitrogen [7,8].

Recent studies indicate that the soil NOx flux can be
on a par with that from fossil fuel combustion [9–11].
This is especially the case in rural areas, where the
agricultural soils emission often dominates the total
flux [12–14]. Therefore, it is imperative to find a low-
cost and high-efficiency method for reducing soil N loss.

Biochar is produced by heating carbonaceous
organic matter under oxygen-limited conditions
[15,16]. Because of its great surface area, high micro-
porosity and other physiochemical properties
depending on the biomass feedstock and the pyro-
lysis conditions [17–20], biochar is very effective in
sorption nutrient elements in soil. Biochar

amendment to soil increases N retention [21],
enhances N use efficiency [22] and promotes agricul-
tural production [23,24], recovers excess N [25], and
reduces N leaching [26,27]. Furthermore, the addi-
tion of biochar input to the soil would be expected
to affect soil nitrification and denitrification process
controlling the release of soil nitrogen gas [28,29].

Biochar application to soil for carbon sequestration
as well as agricultural and environmental sustainabil-
ity has attracted much interest [30–33]. Little is
known, however, about the effects of biochar addition
on NOx emission [26]. Furthermore, the focus of
research has been directed on highly weathered
soils of the humid tropics, acidic forest soils [34,35],
mollisol [36], temperate soil [37] and agricultural soil
[38]. On the other hand, the emission of greenhouse
gases, such as CO2, CH4, N2O and NH3 under both
laboratory and field conditions is well documented
although the results have not always been consistent
[28,29,39–43]. However, the factors controlling trace
gas emissions from biochar-amended soils are not
well understood, especially with respect to calcareous
agricultural soils [44–46]. Therefore, understanding
the impact of biochar addition on the flux of trace
gases in agricultural soils is of great significance for
the application of biochar. To test the hypothesis that
biochar addition to calcite-rich soils can reduce NOx
emission, we have measured the fluxes of NOx from
a calcareous sandy loam in Southwest China. By
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varying the rate of biochar application, we would
obtain an insight into the factors controlling NOx
emissions, and deduce an optimum rate of
amendment.

Materials and methods

Field experiments site and biochar preparation

The field experiments were carried out on a calcareous
sandy loam (N 27°0ʹ40.20”, E 107°2ʹ46.95”, 1118°m)
located in the karst region of Kaiyang County,
Guiyang City, Guizhou Province, Southwest China
(Figure 1(a)). The upland site has a mean annual rainfall
of 926–1419 mm and a mean annual temperature of
10.6–15.3°C for the last 30 years. Some properties of
the soil are listed in Table 1.

The biochar was obtained by pyrolysis at 550°C of
crop stalks, mainly composed of rapeseed (Brassica
campestris L.) and maize (Zea mays L.) straw. The
biochar produced has a pH of 10.3 ± 0.2, and its C, N,
NH4

+ and NO3
− contents are 80% ± 3%, 1.2% ± 0.05%,

1.0 ± 0.02 mg°kg−1 and 8.6 ± 0.3 mg°kg−1, respec-
tively. The calcareous sandy loam has a pH of
8.23 ± 0.21, while its C, N, NO3

− and NH4
+ contents

are 4.3% ± 0.1, 0.2% ± 0.01, 5.26 ± 0.43 mg°kg−1 and
3.67 ± 0.17 mg°kg−1, respectively.

Experimental design

The area of each experimental plot was 2 × 4 m2. A total
of five treatments were used, each of which had three
replicates: (1), plot without biochar (control plot); (2),
plot amended with biochar at a rate of 1% (w/w); (3);
plot amended with biochar at a rate of 2% (w/w); (4),
plot amended with biochar at a rate of 5% (w/w); and
(5), plot amended with biochar at a rate of 10% (w/w).

The selected field plots have been planted with
maize (Zea mays L.), rapeseed (Brassica napus. L.),
and vegetables for more than 10 years, being culti-
vated and managed by local farmers using traditional
methods. Water is supplied by atmospheric precipita-
tion, while the cropping system is one of rotating
rapeseed and maize (rapeseed-maize).

The field experiment was done by mixing the top
10 cm soil with biochar at an application rate of 1, 2,
5, and 10% w/w in July 2010 prior to planting maize.
The NOx emission flux was monitored from
14 September, 2010 to 7 September, 2011. The field
gas sampling was performed once every 7 or 20 days
depending on the season. NOx flux was measured
from 11:00 a.m. to 6:00 p.m. The sampling time was
chosen because fluxes at the stated times approached
the average of five diurnal measurements (from 7:00
a.m. to 7:00 p.m.). Table 2 shows specific crops, ferti-
lizer types and amounts applied.

Determination of soil variables

Soil samples were taken from the top 10 cm of the
soil profile near the chamber using a cylinder ring
sampler (100 cm3). Soil bulk density for the 0−10cm
depth (n = 10) was determined using the core
method. Soil pH was obtained by mixing air-dried
soil with deionized water at a 1:5 (w/w) ratio, and
measuring with a pH meter. Soil water content was
calculated from the difference in weight between the
fresh and oven-dried (105°C) soil, divided by the
oven-dried soil weight. The contents of ammonium
(NH4

+) and nitrate (NO3
−) were obtained by extract-

ing the soil with 2 mol L−1 KCl, and measuring the
extracts by colorimetry [47]. The determination of
soil organic matter was based on the Walkley-Black
chromic acid wet oxidation method [48]. Total car-
bon (TC) and total nitrogen (TN) contents of the soil
were determined with an elemental analyzer
(PE2400-II, Perkin, American).

Measurements of NOx fluxes

NOx fluxes were measured using a dynamic flux
chamber (DFC) method similar to that used previously
by Wang et al [8] (Figure 1(b)). Net fluxes from the
soils were obtained by comparing the flux in the
sampling chamber with that in the reference cham-
ber. NOx fluxes (F), expressed as μg N/(m2· h), were
calculated using the following equation:

F ¼ ðC � C0Þ � Q=A (1)

where C (μg/m3) is the NOx concentration in the
outflow air of the chamber, C0 is the
NOx concentration in the inflow air (μg/m3),
which is drawn at the height 1.5 m above the
ground, Q is the flow rate of the inflow air (m3/
h), and A (m2) is the area covered by the chamber.
C was determined using the average concentration
measured during a 20-min period after the
NOx concentration had reached a dynamic equili-
brium in the chamber.

Statistical analysis

The statistical software package SPSS 19.0 (Chicago,
IL, USA) was used for descriptive statistics, One-way
ANOVA, linear regression, correlation analysis and
paired sample T-test of NOx fluxes in different treat-
ments. Descriptive statistics were used to describe
the basic features of the soil properties after bio-
char addition. One-way ANOVA was used to test the
difference between multiple means, and determine
whether the different rates of biochar application
have a significant influence on the release of
NOx gas. Linear regression and correlation analysis
were used to correlate different treatments with soil
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properties. Paired sample T-test was used to analyze
the difference between BC0 and BC1, BC2, BC5 and
BC10 in terms of NO and NOx emission fluxes. The
statistical software package SigmaPlot 12.5 (SAS,
Cary, NC) was used for creating statistical graphs.

Results and discussion

Biochar effect on soil properties

In agreement with previous measurements [8], the
correlation between NOx fluxes and soil temperature
was significant (P < 0.05) for all five plots (Table 3).

a

Air pump

Flow control meter
Dynamic flow chamber

Balance tube

UPS

NOx analyzer

Air

Electric line

Air/gas line

Thermometer

Fan

Generator Laptop

b

Figure 1. Map of the location of the study (a) and field observation experimental design (b).
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This finding may be explained in terms of the effect of
biochar addition on nitrification, denitrification, and
NOx gas emissions [42,49,50]. These microbially-
controlled processes are influenced by many factors,
including soil water content, temperature, ammonium
and nitrate concentrations and pH [51]. Among them,
soil temperature is considered to be of major impor-
tance because of its effect on microbial activity and
gas diffusion rates [8,11]. With an increase in biochar
application rate, the soil pH is not significantly differ-
ent between BC0, BC1 and BC2 treatment. However,
there is a significant difference when biochar addition
ratio is high in BC5 and BC10 (Table 1). On the other
hand, soil bulk density decreases as the biochar appli-
cation rate increases. As a result, we would expect soil
compactness to decrease and soil aeration to increase.
Table 1 also shows that the total carbon and total
nitrogen contents of the soil increase with biochar
application rate.

As shown in Figure 2, soil water content changes
from 22.3% for the BC0 (control) plot in August to
54.7% for the BC10 plot in December. Although water
content can fluctuate greatly between seasons, the
addition of biochar leads to a significant (P < 0.01)
increase in water holding capacity (WHC). This obser-
vation is related to the high capacity of biochar for
retaining water in its microporous structure [40].

Furthermore, the presence of hydrophilic groups in,
and the extensive surface area of, biochar are condu-
cive to water uptake and retention [52]. Because of its
small particle size, biochar may further cause the
partial or total blockage of soil pores, decreasing
water infiltration while increasing WHC [53].

Figure 3 shows the fluctuation in atmospheric pre-
cipitation and temperature in soil (to 5cm depth), sur-
face, chamber, and atmosphere over the experimental
period. The variation in soil NO3

− and NH4
+ concentra-

tions for the different plots during the same period
shows a similar trend (Figure 4). These observations
indicate that temperature is the key factor since tem-
peratures in summer are higher than those measured in
other seasons. Biochar addition increased the average
soil NO3

−-N content by 43.7, 50.2, 71.9 and 186 in the
BC1, BC2, BC5, and BC10 plots, respectively. On the
other hand, soil NH4

+ concentrations first increased
and then decreased as the rate of biochar application
increased. The correlation between biochar addition
and NH4

+ concentration, however, was not significant
(P > 0.05). Furthermore, there was a significant increase
(P < 0.01) in soil water content with a rise in the rate of
biochar application (Figure 2).

There is also a good correspondence between
mineral N concentration and urea application (Figure 4
and Table 2). The highest NH4

+-N content (27.7 mg°kg−1

soil) in the control plot was measured in July 2011
following maize planting and urea application, presum-
ably as a result of urea hydrolysis. Earlier, Rochette et al
have reported that subsurface banding of urea can
greatly enhance ammonia (NH3) emission due to
a localized increase in soil NH4

+ concentration and pH
[54]. The maximum NO3

− concentration (116.5°μg g−1

soil) was measured for the BC10 plot in August 2011
indicating a lag with respect to soil ammonium nitro-
gen. This observation suggests biochar addition pro-
motes nitrification.

Table 1. Some soil properties before and after biochar
addition.
Soil characteristics BC0 BC1 BC2 BC5 BC10

Bulk density (g cm−3) 1.32a 1.24b 1.21c 1.10d 0.96e
pH 8.23a 8.27a 8.36a 8.49b 8.57b
NH+-N, mg kg−1 3.67a 3.72a 5.55b 4.49c 4.46c
NO3

–N, mg kg−1 5.26a 7.56b 7.90b 9.04c 15.06d
Soil organic matter (%) 3.14a 5.25b 7.33c 8.75d 14.50e
Total carbon (g kg−1) 49.6a 55.3b 61.9c 90.4d 108.0e
Total nitrogen (g kg−1) 2.67a 2.48a 2.57a 3.83b 4.00b

Means in the same row with different letters were significantly different
(P < 0.05, ANOVA, LSD) with treatments as the fixed variable (n = 3).

Table 2. Specific field crops, types and fertilization events according to the local cultivation habits.
Crops Date Fertilizer types Fertilizer amount (kg) Farming & growing events

Rapeseed 2010–11-18 Urea
Calcium superphosphate
Compound fertilizer
Potash fertilizer

1.0
5.5
5.5
0.5

Planting rapeseed

2011–02-05 Urea 3.0
2011–02-24 Urea 2.0

Maize 2011–06-15 Coal fly ash and slag
Compound fertilizer

2.0
15.0

Planting maize

2011–08-10 Urea 3.25

Table 3. Spearman correlation coefficients between soil NOx gas fluxes and soil temperature (in 5 cm depth),
soil water content, NO3

− and NH4
+.

Treatment Temperature (ºC) Soil water content (%) NO3
−(mg kg−1) NH4

+
（mg kg−1）

BC0 0.626* −0.336 0.666* 0.358
BC1 0.610* −0.427 0.511 0.374
BC2 0.459* 0.114 0.591* 0.336
BC5 0.569* −0.291 0.595 0.375
BC10 0.593* −0.164 0.479* 0.054

* P < 0.05 (two-tailed). All measurements from the monitoring period are included (n = 20 in each treatment).
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The capacity of biochar for sorbing soil mineral nitro-
gen while reducing nitrogen dissolution and migration,
in dependence of feedstock and pyrolysis conditions,
has been the subject of many investigations [23,55–60].
Besides improving soil aeration, biochar application
reduces anaerobic microbial activity and inhibits deni-
trification [61]. By increasing soil pH, biochar addition
also enhances the activity of NO-reducing enzymes as
well as N2 formation and ammonia volatilization [62].

Effects of biochar and n fertilizer on
NOx emissions

The variation in NO, NO2, and NOx emission fluxes
from different plots were illustrated in Figure 5,
while the range and average value of these emissions
are tabulated in Table 4. The minimum average emis-
sion of NO (21.1 ± 13.5°μg N/(m2•h)), NO2

(−0.81 ± 1.31°μg N/(m2•h)), and NOx (20.6 ± 13.8°μg
N/(m2•h)) was measured in the BC5 plot. The maxi-
mum average emission of NO (107.2 ± 30.98°μg N/
(m2•h)), NO2 (−2.31 ± 2.56°μg N/(m2•h)), and NOx
(105.3 ± 45.3°μg N/(m2•h)) was measured in the BC0
(control) plot following N fertilization. Addition of
biochar decreased NOx emissions compared to the
BC0 plot (Table 4). Biochar addition depressed
NOx emissions by 50.3% to 80.4%, depending on
annual application rate. One-way ANOVA analysis
(LSD) indicates a significant difference (P < 0.05) in
NO and NOx emission fluxes between BC0 and the
treated plots except for BC1.

The interactions between biochar, N fertilizer, green-
house gas emissions, and soil type have been reported by
several investigators [39,63,64]. Application of N fertilizer

causes an initial sharp increase in NO3
− and NH4

+ as well
as NOx emissions [63]. Higher nitrogen oxide gas emis-
sions have been reported with urea- and ammonium-
based fertilizers than with nitrate-based counterparts
under unsaturated soil conditions [65]. To elucidate the
influence of NO3

− and NH4
+ on NOx emissions, the corre-

lations between NOx fluxes and NO3
− and NH4

+ were
assessed for all plots. In the present investigation the
correlation between NOx fluxes and soil NO3

−was signifi-
cant (P < 0.05) but no significant difference was observed
between NOx fluxes and NH4

+ (Table 3). Although
NOx emission flux peaked during the fertilization in
February 2011, there was no change in soil mineral nitro-
gen content. This finding may be ascribed to
NOx emission or NH3 volatilization [66,67]. Because the
soil is alkaline soil (pH > 8.0), most of the fertilizer N may
not enter into the soil after application and probably
emission to the atmosphere as a gaseous loss in a short
period. At pH levels of 8.0 or above, volatilization of
ammonia gas can cause large losses of nitrogen. Several
studies have reported the short-lived peaks in NOx flux
following fertilization [63,68]. In an early study, Fenn and
Kissel found that ammonia was rapidly volatilized from
NH4-N salts applied to the surface of a calcareous soil [69].
An increase in pH at the soil surface following biochar
addition would also induce NH3 volatilization. Such
a process is consistent with the finding that significant
NOx emission occurred after fertilizer application
although there was no change in soil mineral nitrogen.

The process of nitrogen transformation in the soil
can be expressed in terms of the hydrolysis of urea
(step 1; Equation (2)) followed by ammonification
(step 2; Equation (3)) and nitrification (step3;
Equations (4) and (5)):

Date
2010-8-1  2010-9-1  2010-10-1  2010-11-1  2010-12-1  2011-1-1  2011-2-1  
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%(tnetnoc
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Figure 2. Soil water contents at varying biochar application rates. Paired sample T-test statistical analysis of different treatments
revealed that there was a significant difference in each category (P < 0.01).
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CO NH2ð Þ2 þ 3H2O ! 2NH3 þ CO2 þ 2H2O
! 2NH4

þ þ CO2 þ 2OH (2)

2NH3 þ H2O ! NH4
þ þ OH (3)

2NH4
þ þ 3O2 ! 2NO2

� þ 4Hþ

þ 2H2O Nitrite bacteriað Þ (4)

2NO2
� þ O2 ! 2NO3

� Nitrobacterð Þ (5)

The appearance of two NOx emission peaks in
March and September 2011 is apparently related to
two fertilization events during this period (Table 2).
This observation accords with previous findings
[63,69–71] that nitrogen fertilizer (urea) addition pro-
motes rapid but short-lived emissions of NOx [72]. The
NOx flux emission was high for the control plot and
low for the BC5 plot, indicating that biochar can

immobilize soil mineral nitrogen [42] and suppress
N2O emissions [73].

The following mechanisms have been proposed to
account for the decrease of NOx emissions: (1), the
addition of biochar adsorbs NH4

+ and NO3
− which

leads to a reduction of the soil inorganic-N pool [74];
(2), The electron-accepting sites on the surface of bio-
char can increase the redox potential of the soil while
reducing the NO source capacity of the soil, and (3), The
microorganisms immobilize the available soil N while
inhibiting denitrification, thereby reducing the NO
source capacity of the soil., and (4), sorption of soil NO,
N2O, and CH4 by biochar

Correlation between biochar application rate and
NOx emissions

Different application rates of biochar could result in dif-
ferent aerobic and/or anaerobic conditions. Increased soil
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Figure 3. Fluctuation of temperature and rainfall during the observation period.
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aeration from biochar addition could reduce denitrifica-
tion. Dry aerobic conditions are conducive to nitrification,
while anaerobic conditions promote denitrification [75].
However, there is a noted shortage of data about the
dose-response of biochar application to soil lacks sys-
tematic assessment [45,76,77]. Within a certain range of
application rates, a change in soil properties can mitigate
NOx emissions by increasing nitrogen immobilization.
Spokas et al have reported that the addition of 2–10%
w/w biochar to soil at field capacity can suppress net N2

O production but the data were not a statistically signifi-
cant [19]. In the present instance, the addition of 2, 5, and
10% w/w biochar led to a significant reduction (P < 0.05)
inNOxemission rates. In this regard, theBC5plot gave the
optimum (P < 0.05) cost-effective result from economic
point of view.

For calcareous soils, a lower or higher application
rate is therefore not recommendable. Application
rates higher than 5% w/w would increase soil pH and
NH3 gas emission, while a lower rate would not pro-
vide enough biochar to immobilize soil mineral nitro-
gen. This suggestion accords with the observation
that the curves relating application rates to average
NOx emission fluxes show a declining trend (Table 4).
In addition, the priming effect of fertilizer application
without biochar would be more pronounced than in
the presence of biochar [78,79]. That the application
of 5% w/w biochar to agricultural calcareous soils
could significantly reduce NOx emission fluxes is in
keeping with the results of studies regarding the
biological response of, and N2O emissions from,
sandy soils treated with biochar [61,80].
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Figure 4. Variations of soil NO3
− (a) and NH4

+ (b) at different plots during the whole measurement period. Symbols may cover
error bars. Paired sample T-test statistical analysis revealed that there was a significant difference between BC0 and any other
treatment in NO3

− (P < 0.01), but there was no significant difference between BC0 and other treatment in NH4
+.
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Figure 5. Variations in NO (a), NO2 (b) and NOx (c) fluxes at different plots during the whole measurement period. Symbols may
cover error bars. Paired sample T-test statistical analysis indicated that there was a significant difference between BC0 and BC1,
BC2, BC5 and BC10 in NO and NOx emission fluxes (P < 0.05).
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Conclusions

The present investigation indicates that biochar addi-
tion to subtropical calcareous soils can reduce
NOx emissions, and increase soil pH, nitrate N, and
water holding capacity but decrease soil bulk density.
Fertilization is the main factors affecting the
NOx emissions, overwhelming the effects of tempera-
ture and biochar application rates. Consider the appli-
cation of biochar from economic point of view,
applying of 5% w/w biochar is optimum for the cal-
careous agricultural soil in Southwest China. Because
of its alkaline reaction, the soil can lose some of the
applied fertilizer N through gaseous NH3 emission.
Biochar addition can potentially mitigate N losses
within agroecosystems. Future studies should focus
on the relationship between microbial activity and
NOx gas emission in a range of soils.
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