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We developed an algorithm to simulate magnetotelluric responses for three-dimensional general electrical
anisotropic structures with finite element (FE) method. From the Maxwell's equations, the curl-curl equation
in terms of the electric vector potential and the magnetic scalar potential is obtained by decomposing the mag-
netic field into the incident field and the resultant field. For this method, the only unknown variable in the air is
the magnetic scalar potential. Galerkin weighted residual method is adopted to generate the variational equa-
tions. Thenwemade a comparisonwith the edge-based FE method which is in terms of electric fields to validate
the accuracy of this method. Later, two types of anisotropic models are studied and the results are analyzed in
detail. Finally, based on these analyses, two main meaningful conclusions are obtained.
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1. Introduction

Magnetotelluric (MT) modeling in electrical anisotropic media has
been a hot topic for a long time (O'Brien and Morrison, 1967; Dekker
and Hastie, 1980; Yin, 2003; Li and Pek, 2008; Jones, 2012; Hu et al.,
2013; Ben, 2016; Xiao et al., 2018). The preferred orientation within
crystals and the inability to resolve ordered inhomogeneity caused the
electric anisotropy in microscopic scale and macroscopic scale, respec-
tively (Kong et al., 2018). The electrical anisotropy in the earth cannot
be ignored, otherwise it would probably bring misinterpretation even
errors for MT data interpretation (Linde and Pedersen, 2004; Häuserer
and Junge, 2011). Therefore it is necessary and significant to study the
MT responses in electrical anisotropic media.

The electrical anisotropy usually is defined by three principal con-
ductivities and three Euler's angles, and two defining methods are
available (Yin, 2000; Pek and Santos, 2002). For MT modeling in one-
dimensional (1D) and two-dimensional (2D) anisotropic media, many
studies have been done (Reddy and Rankin, 1971; Yin, 2000; Li, 2002;
Li and Pek, 2008; Xue and Ji, 2018). For 1D anisotropic earth models, it
has analytical solutions (Pek and Verner, 1997); however, there is in-
herent non-uniqueness in 1D inversion as some anisotropic parameters
cannot be uniquely resolved for some certain layered anisotropic
models (Yin, 2003). In 2D electrical anisotropic media, the electric
field and the magnetic field must be solved simultaneously as they
are inseparable (Li, 2002). The finite-element (FE) method, the
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finite-difference (FD) method, and the integral equation (IE) method
are the three commonly used methods to simulate electromagnetic
(EM) responses (Everett, 2012; Cai et al., 2014). For three-dimensional
(3D) electric anisotropic structures, based on the staggered-grid FD
method which automatically satisfies the energy conservation law,
Weidelt et al. (1999) implemented a FD algorithm to simulate MT
responses in 3D anisotropic media; based on the nodal FE method, Li
(2000) developed an algorithm using the nodal FE method, however
this method has two main disadvantages, namely it neither can meet
the divergence condition nor is able to simulate the mutation of the
electric field at electric discontinuous interfaces; therefore, Xiao et al.
(2018) implemented the edge-based FE method which avoided these
disadvantages of the node-based FE method, however it is hexahedral
element adopted to discretize the study domain which is not suitable
for topography and irregular anomalies; Liu et al. (2018) developed
the adaptive FE method for 3D MT modeling in anisotropic media,
which is convenient to irregular anomalies and topography; however,
to the author's knowledge there is no published papers which use the
IE method to simulate MT responses in 3D anisotropic media. Besides,
there is a paper available forMT inversion though it is for 3D axial aniso-
tropic media (Cao et al., 2018).

Most EM forward modeling methods are in terms of the electric
fields or the magnetic fields (Tan et al., 2003; Ren et al., 2013; Li et al.,
2016; Wang et al., 2016; Kong et al., 2018). Besides, there are some
other methods which are in terms of EM potentials. In addition, most
of these methods are A − ϕ methods, where A is the magnetic vector
potential and ϕ is the electrical scalar potential (Haber et al., 2000;
Badea et al., 2001; Puzyrev et al., 2013; Cai, 2015; Chen et al., 2017).
Besides A − ϕ method, T − Ω method which was originally presented
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by Bíró (1999) also can be used to simulateMT responseswhere T is the
electric vector potential and Ω is the magnetic scalar potential
(Mitsuhata and Uchida, 2004). Comparing to A − ϕ method, this
method has two advantages. On the one hand, the magnetic scalar
potential is the only unknown variable in the air zone; on the other
hand, conductivity in the air usually is set to be a small but nonzero
value for MT modeling, however, the conductivity is set to be zero in
the air for T − Ω method. Therefore, the two benefits enable this
method need less memory and the curl-curl equations are less
ill-conditioned in the air (Mitsuhata and Uchida, 2004).

2. MT modeling in 3D anisotropic media

The study domain is divided into two zones, namely the air zone
and the earth zone as shown in Fig. 1. The conductivity ~σ is zero in
the air and Sc is the earth's surface. The magnetic permeability of
vacuum is used for the whole domain.

2.1. Differential equations

Comparing with conduction currents, displacement currents are
negligible for MT method whose frequency ranges from 10−3 Hz
to 104 Hz. For the time-dependence of e−iwt, therefore the diffusive
Maxwell's equations are as follows,

∇� E ¼ iωμ0H ð1Þ

∇�H ¼ J ¼ ~σE ð2Þ

∇ �H ¼ 0 ð3Þ

∇ � ~σE ¼ 0 ð4Þ

where E is the electric field andH is the magnetic field;ω is the angular
frequency; μ0 is themagnetic permeability in the air; J is the electric cur-
rent density; ~σ is the conductivity tensor which can be defined by two
methods, namely Yin (2000) and Pek and Santos (2002), respectively.
The latter is adopted in this work where ~σ is determined by six aniso-
tropic parameters: three axial conductivities (σx,σy and σz) and three
Euler's angles (αS,αD and αL) (see Pek and Santos (2002) for detail).

The magnetic field H can be separated into the incident field H0

and the resultant magnetic field Hc (Mitsuhata and Uchida, 2004),

H ¼ H0 þHc ð5Þ

where Hc is produced by the electric current in the earth.
Therefore Eq. (2) can be separated into two equations,

∇�H0 ¼ 0 ð6Þ

∇�Hc ¼ J ¼ ~σE ð7Þ
Fig. 1. Study domain: the zone Va is the air zone and Vc is the earth.
As ∇ ⋅ J=0 is satisfied for MTmethod which has no electric current
sources, therefore J can be represented by curling a vector,

J ¼ ∇� T ð8Þ

where T is the electric vector potential.
Considering Eq. (7) and Eq. (8) together, then we can obtain Eq. (9)

as follow,

Hc ¼ T−∇Ω ð9Þ

where Ω is the magnetic scalar potential.
After substituting Eq. (8) and Eq. (9) into Eq. (1), then the curl-curl

equation can be obtained,

∇� 1
σ̂
∇� T

� �
−iωμ0 T−∇Ωð Þ ¼ iωμ0H0 in Vc ð10Þ

As the conductivity in the air is zero, therefore Eq. (10) is only satis-
fied in the earth (Vc).

From Eq. (3) and Eq. (9), Eq. (11) can be obtained. As T=0 in the air
zone, Eq. (11) is satisfied in the whole study domain.

∇ � T−∇Ωð Þ ¼ 0 in V ð11Þ

However, Eq. (9) and Eq. (11) are not independent of each other. For
a flat earth surface, therefore Eq. (12) is adopted to obtain the unique
solution combining with.

Eq. (9) (see Mitsuhata and Uchida (2004) for detail),

∇2Ω rð Þ ¼ Tz rð Þδ r∈Scð Þ in V ð12Þ

where δ is theDirac delta function, and Tz denotes the z-component of T.
Eq. (9) and Eq. (12) are used to obtain the unique solution.

2.2. Dirichlet boundary conditions

Ω and Tz both are produced by 2D or 3D conductivity anomalies
(Mitushata and Uchida, 2004). Dirichlet conditions are adopted here.
Assuming anomalies are far enough from the boundaries of V, therefore
Ω = 0 and Tz = 0 are satisfied at the boundaries. For Tx and Ty, we can
obtain Eq. (13) and Eq. (14) from Eq. (5) and Eq. (9),

Tx ¼ Hx−H0x ð13Þ

Ty ¼ Hy−H0y ð14Þ

Two orthogonal sources are adopted here.

3. Finite element method

The Galerkin FEmethod is adopted to generate the variational equa-
tion (Xu, 1994), and nodal and edge elements are used to discrete the
study domain.

3.1. Nodal and edge elements

As shown in Fig. 2, T is assigned at the twelve edges andΩ is assigned
at the eight nodes. Then.

Te ¼
X12
i¼1

Ni
eT

i
e ð15Þ

Ωe ¼
X8
j¼1

Mj
eΩ

j
e ð16Þ



Fig. 2. Sampling points for T and Ω in the brick element and the local coordinate system
(Mitsuhata and Uchida, 2004).

173T. Xiao et al. / Journal of Applied Geophysics 160 (2019) 171–182
where N is the Whitney vector basis and M is the node basis (Jin,
2002).

3.2. Galerkin finite-element method

Eq. (10) and Eq. (12) are used to generate the stiffness matrix.

(1) Multiplying the both sides of Eq. (10) by δT, then integrate it in
Vc,

Z
vc

∇� 1
σ̂
∇� T

� �
−iωμ0 T−∇Ωð Þ−iωμ0H0

� �
� δTdv ¼ 0 ð17Þ

Considering the vector identity and divergence theorem, then the
first term of the left side of Eq. (15) is reverted to,

Z
vc
∇� 1

σ̂
∇� T

� �
� δTdv ¼

Z
v
∇� δT � ∇� T

σ̂
dvþ

Z
s

∇� T
σ̂

� �
� δT � ds

ð18Þ

Substituting Eq. (18) into Eq. (17),

Z
vc

∇� δT � ∇� T
σ̂

−iωμ0 T−∇Ωð Þ � δT−iωμ0H0 � δT
� �

dv

þ
Z

s

∇� T
σ̂

� �
� δT � ds ¼ 0

ð19Þ

Since counteraction, the second term regarding to the surface inte-
gral equals zero for inner boundaries. Besides, Dirichlet boundaries are
adopted for outer boundaries, therefore.

Z
vc
∇� δT � ∇� T

σ̂
dv−iωμ0

Z
vc

T−∇Ωð Þ � δTdv−iωμ0

Z
vc
H0 � δTdv ¼ 0

ð20Þ

(2) Multiplying the both sides of Eq. (12) byδΩ, then integrate it in
the whole study space,

−
Z

v
∇2ΩδΩdvþ

Z
v
Tz rð Þδ r∈Scð ÞδΩdv ¼ 0 ð21Þ

Considering Green's theorem, then the first term of the left of
Eq. (21) became,

−
Z

v
∇2ΩδΩdv ¼ −

Z
v
∇ � ∇ΩδΩð Þdvþ

Z
v
∇Ω � ∇δΩdv

¼
Z

v
∇Ω � ∇δΩdv−

Z
s

∂Ω
∂n

δΩds ¼
Z

v
∇Ω � ∇δΩdv

ð22Þ

For the second term of the left of Eq. (21),

Z
v
Tz rð Þδ r∈Scð ÞδΩdv ¼

Z
sc
TzδΩdsc ð23Þ

Therefore, Eq. (21) became Eq. (24) which is identical to Eq. (23) in
the paper of Bíró (1999),

Z
v
∇Ω � ∇δΩdvþ

Z
sc
TzδΩdsc ¼ 0 ð24Þ

For a given element, combining Eq. (20) and Eq. (24) we can get,

Ce De
Ee Fe þ Ge

� �
� Ωe

Te

� �
¼ 0

Pe

� �
ð25Þ

where Ce,De, Ee, Fe, Ge,Ωe, Te,and Pe are 8 × 8, 8 × 12, 12 × 8, 12 × 12, 12
× 12, 8 × 1, 12 × 1 and 12 × 1 matrixes, respectively. The details of
Eq. (25) are given in Appendix A.

By applying the boundary conditions after expanding Eq. (25) to the
whole space, finally Eq. (26) can be obtained as follow,

Ax ¼ b ð26Þ

The linear system of equations is asymmetric, andT andΩ can be ob-
tained after solving Eq. (26).

4. Apparent resistivities and phase

From Eq. (2) and Eq. (8), the electric field can be obtained as follows,
Ex ¼
∂Ty
∂x

−
∂Tx
∂y

� �
σxyσyz−σxzσyy
� �þ ∂Tx

∂z
−

∂Tz
∂x

� �
σxzσ zy−σ xyσ zz
� �þ ∂Tz

∂y
−

∂Ty
∂z

� �
σyyσ zz−σyzσ zy
� �

σxxσyyσ zz−σ xxσyzσ zy−σ xyσyxσ zz þ σ xyσyzσ zx þ σxzσyxσ zy−σ xzσyyσ zx
ð27Þ

Ey ¼
∂Ty
∂x

−
∂Tx
∂y

� �
σ xzσyx−σxxσyz
� �þ ∂Tx

∂z
−

∂Tz
∂x

� �
σxxσ zz−σ xzσ zxð Þ þ ∂Tz

∂y
−

∂Ty
∂z

� �
σyzσ zx−σyxσ zz
� �

σxxσyyσ zz−σ xxσyzσ zy−σxyσyxσ zz þ σ xyσyzσ zx þ σxzσyxσ zy−σ xzσyyσ zx
ð28Þ

Ez ¼
∂Ty
∂x

−
∂Tx
∂y

� �
σxxσyx−σxyσyx
� �þ ∂Tx

∂z
−

∂Tz
∂x

� �
σxyσ zx−σ xxσ zy
� �þ ∂Tz

∂y
−

∂Ty
∂z

� �
σyxσ zy−σyyσ zx
� �

σ xxσyyσ zz−σxxσyzσ zy−σ xyσyxσ zz þ σxyσyzσ zx þ σ xzσyxσ zy−σxzσyyσ zx
ð29Þ



Fig. 3. 3D anisotropic model.
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From Eq. (5) and Eq. (9), the magnetic fields can be obtained as
follows,

Hx ¼ H0x þ Tx−
∂Ω
∂x

ð30Þ

Hy ¼ H0y þ Ty−
∂Ω
∂y

ð31Þ

Hz ¼ H0z þ Tz−
∂Ω
∂z

ð32Þ

Then we can obtain the impedance tensor, the apparent resistivities
and phases (Li, 2002).

5. Numerical experiments

We first validated the accuracy and showed the merits of this algo-
rithm for a generalized anisotropic 3D model. Then we studied two
types of anisotropic models and analyzed the results in detail. The
apparent resistivities showed in this paper are for the flat surface (Sc)
along the air earth interface.

5.1. Test Model

In this section, the T−Ωmethod's results are firstly compared with
the results of the edge-based FE method (Xiao et al., 2018) for three
different frequencies from high to low (100 Hz, 1 Hz and 0.001 Hz),
Fig. 4. The apparent reistivities
respectively. Then,we showed the convergence of three frequencies. Fi-
nally, the divergence of the electric current is also shown to demon-
strate that the T − Ω method does maintain divergence free
conditions. The results show that the T − Ω method works well even
for low frequencies and it does maintain divergence free conditions.
5.1.1. Validating the accuracy
An arbitrary anisotropic 3D model is designed to validate the accu-

racy of this method. As shown in Fig. 3, a 3D generalized anisotropic
anomaly is embedded in an isotropic half-space of 0.01 S/m. The three
axial conductivities of this anomaly are 1/300 s/m, 0.01 s/m and
0.005 s/m, respectively; the three Euler's angles (i.e., αS, αD, and αL)
are 10o, 45o, and 20o, respectively; the dimensions of this anomaly are
800 m × 800 m × 1000 m; its top depth is 250 m. In particularly, the
edge-based FE method's results here are obtained by the direct solver
Mumps (Han et al., 2018); the T−Ω algorithm's solutions are obtained
by the quasi-minimum residual (QMR) method with the symmetric
successive over-relaxation (SSOR) (Koldan et al., 2014; Liu et al.,
2016). Two modes' (xy-mode and yx-mode) apparent resistivities on
the ground surface (Sc) are compared here.

The three frequencies' results are showed in Fig. 4, Fig. 5 and Fig. 6,
respectively. The first column corresponds to the apparent resistivities
of T − Ω algorithm; the second column corresponds to the apparent
resistivites of the edge-based FE method (Xiao et al., 2018); the third
column corresponds to the relative errors; the first row and the second
row correspond to xy-mode and yx-mode, respectively. It showed a
very close level for the two methods' results as the relative errors are
of two methods at 100 Hz.



Fig. 5. The apparent reistivities of two methods at 1 Hz.

Fig. 6. The apparent reistivities of two methods at 0.001 Hz.

Fig. 7. Convergence plot of QMR solver with SSOR pre-conditioner for the data of different frequencies.
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all less than 2.5% for three frequencies. It shows that even for a very low
frequency 0.001 Hz the T − Ω method still works well.

5.1.2. Convergence of the solution
Based on theMatlab platform, though the linear system of equations

is asymmetric, the SSOR pre-conditioner still works stably here. As
shown in Fig. 7, either xy-mode or yx-mode in each condition obtained
a good convergence. Especially, for a very low frequency (0.001 Hz) the
xy- and yx-mode also have a good convergence (less than 10−8). The
calculation was performed on a computer with Intel ® Core™ i7-4790
3.60GHz processors. The number of cells is 25, 688, and the computa-
tional time for 3000 iterations is about 330 s.

5.1.3. Divergence of electric current
In order to demonstrate that the T − Ω formulation does maintain

divergence free conditions, the divergence of the electric current is



Fig. 8. The current's divergence of 100 iterations of 1 Hz at depth of 750 m: A and B denote the two modes of MT; Re and Imag represent the real part and the imaginary part of the
divergence, respectively.
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calculated (see Appendix B for details). We calculated the divergence
for different iterations (e.g. 2, 5, 40, 100, 200, 400, 1000 and 2000 itera-
tions), we found that the divergence values are really very small (less
than10−20). The data presented in Fig. 8 show the divergence of 100 it-
erations of 1 Hz at depth of 750m. The divergence values are very small
(less than 10−21) and can be seen as zero. Therefore, the T−Ωmethod
does maintain divergence free conditions.
5.2. Anisotropic anomaly in isotropic layered media

In three-layered isotropic media, there is an anisotropic anomaly. As
shown in Fig. 9: the conductivities of the three layers are 0.01 s/m,
0.02 s/m, and 0.005 s/m, respectively; the thicknesses of the first
layer and the second layer are 550 m, 900 m, respectively; the dimen-
sions of the 3D anomaly are 800 m, 800 m and 2000 m (x-, y-, and
z-direction), respectively; the three axial conductivities of the anomaly
are 0.01 s/m, 0.02 s/m, and 0.005 s/m, respectively. We studied these
conditions that one of the three Euler's angles changes and the other
two angles equal zero. Besides, we obtain another three isotropic
models (Iso 1, Iso 2, and Iso 3) by setting the conductivity of the aniso-
tropic anomaly to be 0.01 s/m, 0.02 s/m, and 0.005 s/m, respectively. The
frequency used here is 1 Hz.
Fig. 9.An anisotropic anomaly in isotropic three-layeredmedia: (a) section view; (b) plan
view.
5.2.1. Angle αS changes
The apparent resistivities of the anisotropic anomalywith a different

angleαS and the three isotropicmodels are shown in Fig. 10. Three sym-
bols are used here: the white square represents the size and shape of
that 3D anomaly; the angles between the red solid lines and the y-
direction are 0o, 30o, 60o, and 90o from thefirst column to the fourth col-
umn, respectively; the angles between the blue solid lines and the x-
direction are 0o, 30o, 60o, and 90o from thefirst column to the fourth col-
umn, respectively.

In Fig. 10, the first to the fourth column represents the apparent re-
sistivities of xx-mode, xy-mode, yx-mode and yy-mode, respectively;
the first to the fourth column represents the angle αS equals 0o, 30o,
60o, and 90o, respectively; the fifth to the seventh column represents
Iso 1 model, Iso 2 model, and Iso 3 model, respectively. As shown in
this figure: (1) the distribution of the apparent resistivities can indicate
the size and location of the 3D anisotropic anomaly; (2) as angle αS

changes, the red solid lines are able to indicate the distribution of the
lower apparent resisvitities; (3) as angle αS changes, the blue solid
lines can indicate the distribution of the higher apparent resistivities;
(4) when angle αS equal 00, the xy-mode and yy-mode apparent
resistivitis are similar to the xy-mode and yy-mode apparent resistivi-
ties of Iso 1 model, respectively; (5) when angle αS equal 00, the yx-
mode and xx-mode apparent resistivitis are similar to the yx-mode
and xx-mode apparent resistivities of Iso 2 model, respectively;
(6) when angle αS equal 90o, the xy-mode and yy-mode apparent resis-
tivities are similar to the xy-mode and yy-mode apparent resistivities of
Iso 2model, respectively; (7)when angleαS equal 90o, the yx-mode and
xx-mode apparent resistivities are similar to the yx-mode and xx-mode
apparent resistivities of Iso 1 model, respectively.

In addition, we made some quantitative analyses for the ‘similar’
mentioned above. As shown in Fig. 11: (1) the first row corresponds
to the comparison between ρxy when angle αS is 0o and ρxy of Iso 1
model, and the relative error is less than 2%; (2) the second row corre-
sponds to the comparison between ρyxwhen angle αS is 0o and ρyx of Iso
2model, and the relative error is less than 0.5%; (3) the third row corre-
sponds to the comparison between ρxywhen angle αS is 90o and ρxy of
Iso 2model, and the relative error is less than 2%; (4) the fourth row cor-
responds to the comparison between ρyxwhen angle αS is 90o and ρyx of
Iso 1 model, and the relative error is less than 2%. The relative errors all
are less than 2%.



Fig. 10. The apparent resistivities of the anisotropic anomaly with a different angle αS and the three isotropic models (Iso 1, Iso2, and Iso 3).

Fig. 11. The comparison of apparent resistivities (xy-mode and yx-mode) between axial anisotropy (αS equals 0o or 90o) and isotropy (Iso 1 and Iso 2).
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Fig. 12. The apparent resistivities of the anisotropic anomaly with a different angle αD and the three isotropic models (Iso 1, Iso2, and Iso 3).

Fig. 14. Three isotropic anomalies in three-layered anisotropic media: (a) section view;
(b) plan view.
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5.2.2. Angle αD changes
The apparent resistivities of the anisotropic anomalywith a different

angle αS and the three isotropic models are shown in Fig. 12. The first to
the fourth column represents the apparent resistivities of xx-mode, xy-
mode, yx-mode and yy-mode, respectively; the first to the fourth col-
umn represents the angle αD equals 0o, 30o, 60o, and 90o, respectively;
the fifth to the seventh column represents Iso 1 model, Iso 2 model,
and Iso 3 model, respectively.

As shown in Fig. 12: (1) the distributions of ρxy and ρyx are able to in-
dicate the shape and location of the 3D anisotropic anomaly; (2) ρxy al-
most keeps unchanged as αD changes, and is similar to ρxy of Iso 1
model; (3) ρyy keeps unchanged when αD changes; (4) when angle αD

equals 90o, the xy-mode and yy-mode apparent resistivities are similar
to the xy-mode and yy-mode apparent resistivities of Iso 1 model, re-
spectively; (5) when angle αD equals 90o, the yx-mode and xx-mode
Fig. 13. The comparison of apparent resistivities (xy-mode and yx-mode) between axial anisotropy (αD equals 0o or 90o) and isotropy (Iso 1 and Iso 3).



Fig. 15. The apparent resistivities of Anis 1 model.

Fig. 16. The apparent resistivities of Anis 2 model.
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apparent resistivities are similar to the yx-mode and xx-mode apparent
resistivities of Iso 3 model, respectively.

In addition,we alsomade somequantitative analyses for the ‘similar’
mentioned above. As shown in Fig. 13: (1) the first row corresponds to
the comparison between ρxywhen angleαD is 90o and ρxyof Iso 1model,
and the relative error is less than 2.5%; (2) the second row corresponds
to the comparison between ρyx when angle αD is 90o and ρyx of Iso 3
mdoel, and the relative error is less than 4%.

From the analyses in section 5.2.1 and section 5.2.2, we can conclude
that the apparent resistivities ρxy and ρyy are mainly influenced by the
conductivity in the x-direction, and the apparent resistivities ρyx and
ρxx are mainly influenced by the conductivity in the y-direction.

5.3. Isotropic anomalies in anisotropic layered media

In three-layered axial anisotropic media, there are three isotropic
anomalies. As shown in Fig. 14:

(1) the conductivities of the first layer are 0.005 s/m, 0.02 s/m, and
0.002 s/m, respectively; the conductivities of the second layer
are 0.02 s/m, 0.002 s/m, and 0.005 s/m, respectively; the conduc-
tivities of the third layer are 0.002 s/m, 0/005 s/m, and 0.02 s/m,
respectively; the thicknesses of the first layer and the second
layer are 2750 m, and 4500 m, respectively.

(2) the dimensions of the first 3D anomaly (the green one) are
4000 m, 4000 m, and 1500 m in x-, y- and z-direction, respec-
tively; the dimensions of the second 3D anomaly (the black
one) are 4000 m, 4000 m, and 4500 m, respectively; the
dimensions of the third 3D anomaly (the purple one) are
4000 m, 4000 m, and 4000 m, respectively; the top depths of
the three 3D anomalies are 1250 m, 2750 m, and 7250 m,
respectively. We emphasize that the first 3D anomaly, the sec-
ond 3D anomaly, and the third 3D anomaly are embedded
in the first layer, the second layer and the third layer,
respectively.

Twomodels are obtained by setting the three isotropic anomalies to
different conductivity values. The frequency used here is 0.001 Hz.
In addition, the analytical solutions ρxx, ρxy, ρyx, and ρyy of the
three-layered media without any anomalies are 0 Ω ⋅ m, 390.31 Ω ⋅ m,
190.39Ω ⋅ m, and 0 Ω ⋅ m, respectively.

Anis 1 model: the conductivities of the three isotropic anomalies
(green, black and purple) are set to be 0.005 s/m, 0.02 s/m, and
0.002 s/m, respectively. The apparent resistivities of this model are
shown in Fig. 15: (1) ρxy keeps almost unchanged and is the same as
ρxy (390.31Ω ⋅m) of the three-layeredmedia; (2) ρyy can be considered
as zerowhich is the same asρyy (0Ω ⋅m) of the three-layeredmedia. For
theoretical analysis, this is because the conductivities of these three
anomalies are the same as the principal conductivities σx of the first
layer, the second layer and the third layer, respectively.

Anis 2 model: the conductivities of these three isotropic anomalies
are set to be 0.02 s/m, 0.002 s/m, and 0.005 s/m, respectively. The appar-
ent resistivities of this model are shown in Fig. 16: (1) ρyx remains
almost unchanged and is the same as ρyx (390.31 Ω ⋅ m) of the three-
layered media; (2) ρxx can be considered as zero which is the same as
ρxx (190.39 Ω ⋅ m) of the three-layered media. For theoretical analysis,
this is because the conductivities of these three anomalies are the
same as the principal conductivities σy of the first layer, the second
layer and the third layer, respectively.

From the analyses above, for a 3D isotropic anomalies embedded in
an axial anisotropic layered-media we can conclude that: (1) if the
anomaly's conductivity is the same as the principal conductivity σx of
the layered-media, then this anomaly almost have no influence on the
apparent resistivities ρxy and ρyy; (2) if the anomaly's conductivity is
the same as the principal conductivity σy of the layered-media, then
this anomaly almost have no influence on the apparent resistivities ρyx
and ρxx.

6. Conclusions

For 3D MT modeling in arbitrary anisotropic media, we successfully
developed an algorithmusing the T-Ω FEmethod. Then its accuracywas
validated by comparing its solutions with the results of the edge-based
FE method for a 3D generalized anisotropic model. Later, two types of
models are studied and the results are analyzed in detail. Finally, consid-
ering the analyses together we can conclude two main conclusions:
(1) if the anomaly's one principal conductivity (σx, or σy, or σz) is in
the x-direction, then its other anisotropic parameters almost have no in-
fluence on the apparent resistivities of ρxy and ρxx; (2) if the anomaly's
one principal conductivity is in the y-direction, then its other aniso-
tropic parameters almost have no influence on the apparent resistivities
of ρyx and ρxx.
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Appendix A. Appendix

In this section, the details and specific values of these matrixes in
Eq. (25) are given, i.e.Ce, De, Ee, Fe, Ge, Ωe, Te,and Pe. Especially, Ce, De,
Ee, Fe, Ge, Ωe, Te,and Pe are 8 × 8, 8 × 12, 12 × 8, 12 × 12, 12 × 12, 8
× 1, 12 × 1 and 12 × 1 matrixes, respectively; a, b and c are the length,
width and height of the rectangular cell, respectively

(1) For 1
σ̂ , it can be writen as,

1
σ̂

¼ σ̂−1 ¼
σxx

inv σ xy
inv σxz

inv
σyx

inv σyy
inv σyz

inv
σ zx

inv σ zy
inv σ zz

inv

0
B@

1
CA ðA1Þ

(2) For Fe,

Fe ¼
Z

Ve
c

∇� Ni
e

� 	
� ∇� N j

e

σ̂

 !
dv

¼
Z

vc

X4
i¼1

X4
j¼1

0
∂Ni
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∂z
−
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−
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e

∂x
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e
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−

∂N8þi
e

∂x
0

0
BBBBBBB@

1
CCCCCCCA

σ xx
inv σxy

inv σ xz
inv

σyx
inv σyy

inv σyz
inv

σ zx
inv σ zy

inv σ zz
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0
B@

1
CA

0 −
∂N4þ j

e

∂z
∂N8þ j

e

∂y
∂Nj

e
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0 −
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e
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−
∂N j

e

∂y
∂N4þ j

e

∂x
0

0
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1
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8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
d

¼
Fxxe Fxye Fxze
Fyxe Fyye Fyze
Fzxe Fzye Fzze

0
@

1
A

ðA2Þ

where

Fxxe ¼ σyy
inv

ab
6c

2 1 −2 −1
1 2 −1 −2
−2 −1 2 1
−1 −2 1 2

0
BB@

1
CCAþ σ zy

inv
a
4

−1 −1 1 1
1 1 −1 −1
−1 −1 1 1
1 1 −1 −1

0
BB@

1
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a
4

−1 1 −1 1
−1 1 −1 1
1 −1 1 −1
1 −1 1 −1

0
BB@

1
CCAþ σ zz
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1
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Fyxe ¼ σxy
inv
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0
BB@
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0
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1
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ðA4Þ

Fzxe ¼ σxy
inv

a
4

1 1 −1 −1
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−1 −1 1 1
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0
BB@

1
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b
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0
BB@

1
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c
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0
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1
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ðA5Þ

Fxye ¼ σyx
inv
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4c
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0
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0
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b
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0
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Fyye ¼ σxx
inv
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6c

2 −2 1 −1
−2 2 −1 1
1 −1 2 −2
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0
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Fzye ¼ σxx
inv

a
6

−2 2 −1 1
−1 1 −2 2
2 −2 1 −1
1 −1 2 −2

0
BB@

1
CCAþ σyx

inv
b
4

1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1

0
BB@

1
CCA

þσxz
inv

c
4

1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1

0
BB@

1
CCAþ σyz

inv
bc
4a

−1 −1 1 1
1 1 −1 −1
−1 −1 1 1
1 1 −1 −1

0
BB@
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Fxze ¼ σyx
inv

a
4

1 1 −1 −1
1 1 −1 −1
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0
BB@

1
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ac
4b

−1 −1 1 1
1 1 −1 −1
−1 −1 1 1
1 1 −1 −1

0
BB@

1
CCA
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b
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(3) For Ge,

Ge ¼ −iωμ0

Z
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c
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edv
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Z
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where

Gxx
e ¼ Gyy

e ¼ Gzz
e

¼ abc
36

4 2 2 1
2 4 1 2
2 1 4 2
1 2 2 4

2
664

3
775 ðA13Þ
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0 0 0 0
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(4) For Ee,
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(6) For Ce,
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(7) For De,
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Appendix B. Appendix

In this section, we show how to calculate the electric current's
divergence. As shown in Fig. B1, T is assigned at twelve edges

Fig. B1. Electric vector potential T at twelve edges of a brick element: 1: Tx(i, j,k); 2:
Tx(i, j + 1,k); 3: Tx(i, j,k + 1); 4: Tx(i, j + 1,k + 1); 5: Ty(i, j,k); 6: Ty(i + 1,j,k); 7: Ty(i, j,k
+ 1); 8: Ty(i + 1, j,k + 1); 9: Tz(i, j,k); 10: Tz(i + 1, j,k); 11: Tz(i, j + 1,k); 12:
Tz(i+ 1, j + 1,k).
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From Eq. 8, Eq. B1 can be obtained,

∇ � J ¼ ∇ � ∇� T ¼ ∂
∂x

∂Tz

∂y
−

∂Ty

∂z

� �
þ ∂
∂y

∂Tx

∂z
−

∂Tz

∂x

� �

þ ∂
∂z

∂Ty

∂x
−

∂Tx

∂y

� �
ðB1Þ

Therefore, the divergence of the electric current in a cell can be cal-
culated by Eq. (B2),.

∇ � Je ¼ Tz iþ 1; jþ 1; kð Þ−Tz iþ 1; j; kð Þð Þ=b− Ty iþ 1; j; kþ 1ð Þ−Ty iþ 1; j; kð Þ� �
=c

� ��
−

Tz i; jþ 1; kð Þ−Tz i; j; kð Þð Þ=b− Ty i; j; kþ 1ð Þ−Ty i; j; kð Þ� �
=c

� �Þ=aþ
Tx i; jþ 1; kþ 1ð Þ−Tx i; jþ 1; kð Þð Þ=c− Tz iþ 1; jþ 1; kð Þ−Tz i; jþ 1; kð Þð Þ=að Þð −
Tx i; j; kþ 1ð Þ−Tx i; j; kð Þð Þ=c− Tz iþ 1; j; kð Þ−Tz i; j; kð Þð Þ=að ÞÞ=bþ
Ty iþ 1; j; kþ 1ð Þ−Ty i; j; kþ 1ð Þ� �

=a− Tx i; jþ 1; kþ 1ð Þ−Tx i; j; kþ 1ð Þð Þ=b� ��
−

Ty iþ 1; j; kð Þ−Ty i; j; kð Þ� �
=a− Tx i; jþ 1; kð Þ−Tx i; j; kð Þð Þ=b� �Þ=c

ðB2Þ

where a, b and c denote the length, width and height of the rectangular
cell, respectively.
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