红枫水库水-气界面二氧化碳分压及 扩散通量的时空变化

刘涛泽¹,王宝利²,朱四喜¹,王晓丹¹,杨 d^1 ,梁重山³

(1.贵州民族大学 生态环境工程学院 喀斯特湿地生态研究中心,贵阳 550025;2. 天津大学 表层地球
系统科学研究院 天津市环渤海地球关键带科学与可持续发展重点实验室,天津 300072;
3.中国科学院地球化学研究所 环境地球化学国家重点实验室,贵阳 550081;)

摘 要: 红枫水库是我国西南喀斯特地区典型的人工湖泊,具有特殊的水文地质特征。准确估算其 CO₂ 排放通量,对了解该 水库碳循环具有重要意义。因此,于 2017 年 7 月至 2018 年 4 月采用走航式监测对库区(南湖和北湖)水气界面二氧化碳分压 (pCO_2)和水质参数的时空变化进行了调查。结果表明,红枫水库 pCO_2 的分布具有明显的时空差异。库区秋、冬季表层水体 pCO_2 均超过大气 pCO_2 ,表现为 CO₂ 的净排放;春、夏季则相反,表现为 CO₂ 的净吸收。从空间分布上来看,春、秋季北湖 pCO_2 要明显高于南湖,特别是秋季更为明显。另外,基于高频的走航监测数据,计算得到红枫水库全年 CO₂ 的排放均值约为 6.13 mmol/($m^2 \cdot d$)。

关键词: 红枫水库;二氧化碳分压;通量;时空变化

中图分类号: X142 文献标识码: A 文章编号: 1672-9250(2019)06-0851-06 doi: 10.14050/j.cnki.1672-9250.2019.47.145

全球碳循环的研究对可持续发展至关重要。 CO₂ 是最重要的温室气体,对全球变暖的贡献达到 64%。从工业化时代以来,大气中 CO₂ 排放量增加 了 35%^[1-3]。内陆水体(河流、湖泊和水库等)都被 认为是 CO₂ 的重要来源,每年的排放量达到 2 100 Tg。但内陆水体与大气之间 CO₂ 交换通量的研究 还不够系统和精确,大量 CO₂ 排放量的计算还是根 据碱度和 pH 来计算^[4-5]。因此,加强对不同区域内 陆水体 CO₂ 交换通量的现场监测和估算,对深刻理 解全球碳循环及其生物地球化学过程具有重大 意义。

中国是水库大国,水电长期被认为是清洁能 源而得到大规模的建设。但近年来大量研究表 明,水库温室气体并不是传统认为的零排放。当 水库建成后,大量植被淹没和流域输入的有机质 沉积导致的微生物降解过程会产生 CO₂、CH₄ 等温 室气体,并通过水-气界面释放到大气中^[6-7],其排 放强度与水库的地理位置、气候条件、淹没的土壤 与植被类型等因素有关^[8-9],占全球温室气体排 放增温潜力的 1%~28%^[10-11]。由于缺乏高频次 的观测,水库 CO₂ 排放时空变异的基础数据较少, 导致估算的偏差较大。因此,水库的温室气体排 放量估算以及对全球环境变化的影响日益受到 关注。

红枫水库位于贵州中部,是西南地区一座典型 的人工深水湖泊之一,不仅具有发电和灌溉功能, 同时也是贵阳市及周边地区最重要的饮用水源,对 贵阳经济和社会发展具有极其重要的战略地位。 本文在红枫水库选取代表性水域,通过走航式观测 的方法,对库区进行不同季节的高频次监测,获得 了大量表层水体水质参数和二氧化碳分压(pCO₂) 数据,并探讨库区内 CO₂ 释放的现状和影响机制, 以期为喀斯特地区水库碳汇的准确评价提供科学 依据。

1 研究区与方法

1.1 研究区概况

红枫水库(106°19′E~106°28′E,26°26′N~26°

收稿日期: 2019-08-19; 改回日期: 2019-09-15

基金项目:国家自然科学基金项目(U1612441、41571130042、41563013);贵州省科学技术基金项目(黔科合J字[2010]2234号)。

第一作者简介:刘涛泽(1981-),男,博士,副研究员,主要研究方向环境地球化学。E-mail: liutaoze@ foxmail.com.

⁽C)1994-2020 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

35'N) 是云贵高原乌江支流猫跳河上的一座人工水 库,建库历史较长(1960 年开始蓄水),由于长期以 来工业废水、生活污水的排放等人为活动导致湖泊 水质富营养化严重,湖泊化趋势明显^[12]。该流域面 积1596 km²,水面面积57.2 km²,最大水深45 m, 平均水深10.5 m,分为南湖和北湖,入湖主要河流 有4条,即羊昌河、麻线河、麦包河及桃花园河。红 枫水库流域坐落于喀斯特峡谷地区,岩溶地貌发 育,碳酸盐岩分布广泛。

1.2 样品采集和分析方法

本研究进行了四个季节的现场走航调查,分别 在夏季(2017.7)、秋季(2017.10)、冬季(2018.1)和 春季(2018.4)。由于库区分为南湖和北湖,与不同 支流相连,中间仅有很窄的通道相连,具有明显的 区域性差异,因此,走航的线路包括南湖和北湖,航 行距离和位置如图1。利用自制走航系统(图2), 将潜水泵固定在支架上,放置到水下0.5 m 的深度, 然后固定在船的围杆上,在匀速航行中抽取表层水 体进行 pCO_2 和水质参数测定。采用连续观测系统 (HydroCTM/CO₂)分析 pCO_2 ,水质参数分析的测试 仪器为美国 YSI-EXO 在线检测系统;连续分析模式 走航测定表层水体的 pH、温度、溶解氧(DO)、叶绿 素(Chl)等参数。

Fig.1 Natural geography and cruise route of the Hongfeng reservoir

图 2 走航设备示意图

Fig.2 Sketch map of the shipboard equipment

1.3 CO, 扩散通量的计算

水气界面 CO₂ 交换通量 (F_{co_2}) 主要受水体 pCO₂ 与大气 pCO₂ 的分压差和气体交换系数的影 响,可由公式 (1) 计算^[13-14]。

 $F_{\rm CO_2} = ({\rm CO_2}_{\rm w} - {\rm CO_2}_{\rm g}) \times k = ({\rm pCO_2}_{\rm w} - {\rm pCO_2}_{\rm g}) \times K_{\rm H} \times k$ (1)

式中, F_{CO_2} 为水气界面扩散通量[mmol/(m²·d)],F>0 表示水体向大气中释放 CO₂;F<0 表示水体吸收 CO₂。pCO_{2w}为表层水体 CO₂ 分压;pCO_{2g}为水气平 衡时 CO₂ 分压(38.5 pa); $K_{\rm H}$ 为亨利系数,可由公式 (2)计算;k 为气体交换系数,主要受到风速、温度、 流速等多种因素的影响,因此,k 计算方式较多,本 文采用公式(3)来计算。

$$K_{\rm H} = 58.0931 + 90.5069 \times (100/T) + 22.294 \times \ln(T/100)$$
 (2)

式中,T表示开尔文温度(K)。

 $k = [2.07 + (0.215 \times v_{10}^{1.7})] \times (SC_{CO_2}/600)^x$ (3) 式中, v_{10} 表示水面上方 10 m 处的风速 (m/s); SC_{CO_2} 为 CO₂的施密特数,取决于温度; x 取决于 v_{10} , 若 $v_{10} < 3.7$ m/s 则 x = -2/3, 若 $v_{10} > 3.7$ m/s 则 $x = -1/2_{o}$

2 结果与分析

2.1 库区表层水质参数走航监测

走航观测红枫水库表层水体基本理化参数见 图 3。水库表层水温呈现出明显的季节变化,夏季

和秋季水温均在 20 ℃ 以上, 夏季水温最高达到 (C)1994-2020 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net 25.8 ℃;冬季和春季的水温均低于 20 ℃,其中冬季 水温降到 13.5 ℃。但库区水温在空间上的差异并 不大,变化幅度均在±2 ℃以内。

红枫水库表层水体 pH 均高于 7.5,呈弱碱性。 该水库地处碳酸盐岩覆盖的喀斯特流域,属中度侵 蚀区,流域的碳酸盐汇入湖泊中,对水库水体 pH 影 响较大。通过不同季节的走航监测发现,夏季 pH 最高,在 8.81~8.95 之间;秋季最低,在 7.55~8.11 之间。夏季气温高,表层水体水生植物生长茂盛, 光合作用强烈,吸收 CO₂ 从而使得 pH 偏高。另外, 南湖和北湖在春季和秋季变化幅度较大,特别秋 季,南湖 pH 均值为 7.69,而北湖 pH 均值达到 8.03;春季也呈现相同的变化,这可能与湖泊外源输 入的物质有关,南湖处于封闭状态,受到的人为干 扰小于北湖。王立英等^[15]在 2017 年对红枫水库的 研究结果也表明,水库表层水体夏季 pH 较高,而 秋、冬季相对较低。水体较高的 pH 主要受到湖泊 外源性物质输入和浮游植物光合作用的影响。

DO 是水体中光合与呼吸作用的重要指标。秋季表层水体 DO 含量最低,在 2.83~6.01 mg/L 之间,且沿走航变化幅度较大,且北湖 DO 平均含量明显低于南湖。其它季节的 DO 含量在 9.44~12.69 mg/L 之间,夏季 DO 含量最高为 10.8~12.69 mg/L,而北湖 DO 平均含量高于南湖。

Chl 浓度主要受温度和营养盐浓度变化的影响,反映了水体中浮游植物的生长状况^[16]。根据 图 1 可知, Chl 浓度具有明显的季节变化,最高值 出现在夏季,浓度为 10.48~23.78 µg/L,其它季 节 Chl 浓度基本都在 10 µg/L 以下,其中全年最低 值出现在冬季,浓度为 1.75~5.59 µg/L。总体而 言,红枫水库表层水体 Chl 浓度季节变化表现为夏 季>秋季>春季>冬季。通过走航监测可知,红枫水 库北湖的表层水体 Chl 浓度要明显高于南湖;从变 化幅度来看,夏季和秋季的变化最大,其平均值相 差近一倍。

2.2 库区表层 pCO₂的走航监测结果

库区表层水体 pCO₂ 时空分布如图 4,季节变 化较为明显,夏季最低,均值为 14 pa,秋季最高, 均值为 164.1 pa。从空间分布上来看,秋季南湖 和北湖存在巨大差异。南湖的 pCO₂ 大部分在 101.3 pa 以下,而走航到北湖的过程中 pCO₂ 一直 处于升高的趋势,到达北湖湖中心位置时,达到最 高值 299.4 pa 后开始下降。整个走航过程的变化 幅度非常大,差距达到 3 倍以上,而其它月份的变 化则相对较小。通过与全球大气 pCO₂ 的平均浓 度(39 pa)进行对比可知^[17],红枫水库秋、冬季

(C)1994-2020 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

 pCO_2 均值超过 50.7 pa,表现为大气 CO₂ 源;而 春、夏季 pCO_2 均值低于 32.4 pa,低于大气 pCO_2 平均浓度,尤其是夏季 pCO_2 走航全程均低于 15.2 pa,且南湖和北湖的变化幅度也非常小,因此,春、 夏季红枫水库为 CO_2 的汇。

3 讨论

3.1 pCO₂ 与水质参数相关性

河流筑坝使原有水动力条件发生改变,同时也 对库区水体的理化性质产生了显著影响,pH、DO、 温度和风速等都是影响 CO₂ 通量的重要环境因 子^[9, 18-19]。通过 pCO₂ 与相关环境因子的相关性 (图5)分析发现,研究区域表层水体中 pCO₂ 与各环 境因子相关性表现出较大的差异,pCO₂ 与温度的相 关性最低,与 pH 的相关性最高。水库中藻类的过 度繁殖,大量消耗 CO₂。在这种情况下,水体 pH 由 于碳酸平衡的移动将上升。通过下面的方程(4)可 以得到,当水体中 pH 降低时会明显促进 pCO₂ 增 加。因此,该水库中 pH 是控制水体中 pCO₂ 的关键 因子。

 $CO_2 + H_2O \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO_3^- \leftrightarrow 2H^+ + CO_3^{2-}(4)$

Chl 和 DO 是表征水库中水生生物量的基本参数,与 pCO₂ 的相关性存在着明显的季节差异。在水温较高的夏天水藻大量繁殖,光合能力增强,从而吸收水体中溶解的 CO₂,导致水体中 Chl 浓度和 DO 水平增加;相反,冬季水温低,水生生物生长缓慢,光合作用变弱,水体中有机质的降解作用增强,水体中 DO 被消耗,pCO₂则增加。由图 6 可知,各参数相关性在冬季是最高的,Chl 和 DO 与 pCO₂ 的 R^2 分别为 0.611 1 和 0.901 9,冬季水库内水流稳定,受到的扰动强度低,水库自身的生物作用对 pCO₂影响较大;夏季随着水温升高,浮游植物生物量增加,但同时降雨量增加引起陆源有机物质输入的增加,再加上水库的透光度降低,从而影响了 Chl 和 DO 与 pCO₂ 的相关性。

3.2 表层水体 CO₂的释放通量

水气界面 CO_2 交换通量的计算主要受以下两 个因素的影响: 一是水体与大气 pCO_2 的分压差; 二 是气体交换系数, 而气体交换系数又受流速、风速、 温度等因素影响^[14,20]。红枫水库库区环境监测资 料和实测值得到其年平均风速一般为 $0.6 \sim 2.7$ m/s。根据 1.3 部分给出的公式计算得到, 红枫水 库全年 CO_2 排放通量均值约为 6.13 mmol/(m²·d)。

(C)1994-2020 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

但存在明显的季节性差异,秋季均值最高为 22.73 mmol/(m²·d),冬季为 3.59 mmol/(m²·d),两个季 节均表现为净排放;夏季的排放量最低,均值为 -4.23 mmol/(m²·d),春季均值为-1.31 mmol/(m²·d), 主要表现为 CO₂ 的汇。另外,根据走航观测计算的 沿程通量可知(如图 6),秋季南湖和北湖呈现出明 显的差异性,其中湖心位置分别为 8.45 和 38.04 mmol/(m²·d),差距达到 4.5 倍。春季北湖靠近上 游进水的区域 CO₂ 排放通量明显增加,这可能是受 到上游来水的影响,其它季节库区的变化幅度均 较小。

通过对比前人的研究和其它水库的 CO₂ 排放 通量可知(表 1), 红枫水库全年排放均值为 6.13 mmol/(m²·d)。相比前人研究结果, 通过走航得到 的 CO₂排放通量的值更低^[21],这主要是因为在排放 通量最大的秋季, 库区不同位置的 CO₂ 排放通量呈 现出巨大的差异, 通过少数点位的调查不能代表整 个库区的变化。此外, 西南喀斯特地区的水库 CO₂ 排放通量不仅远低于热带地区水库, 也低于一些温 带地区水库^[21-25]。其特殊的水文地质条件对区域 内水体的水质参数影响较大, 特别是对 pH 影响较 大, 整个库区不同季节和区域均偏碱性。而表层水 体 CO₂ 的释放通量与水体 pH 存在明显的相关性, 从而导致喀斯特地区水库和湖泊的 CO₂ 排放通量 均较低。

Table 1	Exchange flux of CO ₂ between water a	nd
	air in the different reservoirs	

水库名称	位置	气候类型	$\frac{F_{\rm CO_2}}{[\rm mmol/(m^2 \cdot d)]}$	参考 文献		
红枫水库	中国	亚热带	6.13 (-4.2~22.7)	本研究		
红枫水库	中国	亚热带	$15(-9 \sim 70)$	[21]		
百花水库	中国	亚热带	24(-8~77)	[21]		
洪家渡水库	中国	亚热带	6.1	[22]		
Balbina	巴西	热带	76±46	[23]		
Petit Saut	法属圭亚那	热带	133	[24]		
Lokkaf	芬兰	温带	24	[25]		

4 结论

红枫水库是 CO₂ 的排放源,但排放强度低于世 界上其它大多数热带和温带水库。通过不同季节 走航式高密度的监测得到,红枫水库水气界面 pCO₂ 时空变化大,库区不同季节 CO₂ 排放通量具有明显 的源、汇转换。秋、冬季是 CO₂ 为排放源,春、夏吸 收大气 CO₂,表现为"汇";空间分布上的差异主要 表现在秋季和春季,特别是秋季南湖和北湖相差达 到 4.5 倍。因此,走航式观测能够更加准确对库区 CO₂排放通量进行估算;另外,通过对水气界面 pCO₂ 与环境因子的相关性分析可知,红枫水库 pCO₂ 时空变化主要受到碳酸盐岩作用和库区水生 生物作用的共同控制。

参考文献

- [1] Smith K R, Desai M A, Rogers J V, et al. Joint CO₂ and CH₄ accountability for global warming[J]. Proceedings of the National Academy of Sciences, 2013, 110(31): E2865-E2874.
- [2] Wuebbles D J, Hayhoe K. Atmospheric methane and global change[J]. Earth-Science Reviews, 2002, 57(3-4): 177-210.
- [3] Allan R, Forstner U, Salomons W. Greenhouse gas emissions fluxes and process: Hydroelectric reservoirs and natural environments [R]. New York: Springer, 2005.
- [4] Raymond P A, Hartmann J, Lauerwald R, et al. Global carbon dioxide emissions from inland waters[J]. Nature, 2013, 503(7476): 355.
- [5] Bastviken D, Tranvik L J, Downing J A, et al. Freshwater methane emissions offset the continental carbon sink [J]. Science, 2011, 331(6013): 50-50.
- [6] Jonsson A, Karlsson J, Jansson M. Sources of carbon dioxide supersaturation in clearwater lake measured by the addition of SF6 [J]. Limnology and Oceanography, 1998, 43(4): 647–656.
- [7] Teodoru C R, Prairie Y T, Del Giorgio P A. Spatial heterogeneity of surface CO₂ fluxes in a newly created Eastmain-1 reservoir in northern Quebec, Canada[J]. Ecosystems, 2011, 14(1): 28-46.
- [8] Barros N, Cole J J, Tranvik L J, et al. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude [J]. Nature Geoscience, 2011, 4(9): 593.
- [9] Zhao Y, Wu B F, Zeng Y. Spatial and temporal patterns of greenhouse gas emissions from Three Gorges Reservoir of China[J]. Biogeosciences, 2013, 10(2): 1219–1230.
- [10] 赵炎,曾源,吴炳方,等.水库水气界面温室气体通量监测方法综述[J].水科学进展,2011,22(1):135-146.
- [11] World Commission on Dams. Dams and development: A new framework for decision-making-The report of the world commission on dams [M].
 - (C)1994-2020 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

- [13] 汪福顺,王宝利,吴学谦,等.中国南方河道型水库 CO₂释放研究[J]. 矿物岩石地球化学通报, 2017, 36(1): 40-47.
- [14] Wanninkhof R. Relationship between wind speed and gas exchange over the ocean [J]. Journal of Geophysical Research: Oceans, 1992, 97 (C5): 7373-7382.
- [15] 王立英,张润宇,陈敬安,贵州高原红枫湖水体理化特征与碳氮硅的时空分布研究[J].地球与环境,2017,45(4);383-389.
- [16] 黄国佳,李秋华,陈椽,等. 贵州高原红枫湖水库浮游植物功能分组及其时空分布特征[J].生态学报,2015,35(17):5573-5584.
- [17] Evans W, Hales B, Strutton P G. pCO₂ distributions and air-water CO₂ fluxes in the Columbia River estuary [J]. Estuarine, Coastal and Shelf Science, 2013, 117: 260-272.
- [18] Shi W, Chen Q, Yi Q, et al. Carbon emission from cascade reservoirs: Spatial heterogeneity and mechanisms [J]. Environmental Science & Technology, 2017, 51(21): 12175-12181.
- [19] Crosswell J R, Wetz M S, Hales B, et al. Air-water CO₂ fluxes in the microtidal Neuse River Estuary, North Carolina [J]. Journal of Geophysical Research: Oceans, 2012, 117(C8)
- [20] Evans W, Hales B, Strutton P G. pCO₂ distributions and air-water CO₂ fluxes in the Columbia River estuary [J]. Estuarine, Coastal and Shelf Science, 2013, 117: 260–272.
- [21] Wang F S, Wang B L, Liu C Q, et al. Carbon dioxide emission from surface water in cascade reservoirs-river system on the Maotiao River, southwest of China [J]. Atmospheric Environment, 45(23): 3827-3834
- [22] 喻元秀, 刘丛强, 汪福顺,等. 洪家渡水库溶解二氧化碳分压的时空分布特征及其扩散通量[J]. 生态学杂志, 2008, 27(7): 1193 -1199.
- [23] Guérin F, Abril G, Richard S, et al. Methane and carbon dioxide emissions from tropical reservoirs: Significance of downstream rivers[J]. Geophysical Research Letters, 2006, 33(21).
- [24] Abril G, Guérin F, Richard S, et al. Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana) [J]. Global Biogeochemical Cycles, 2005, 19(4): 1-16
- [25] Huttunen J T, Alm J, Liikanen A, et al. Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions[J]. Chemosphere, 2003, 52(3): 609-621.

Spatiotemporal Variation of CO₂ Partial Pressure and Exchange Flux at the Air-water Interface of the Hongfeng Reservoir

LIU Taoze¹, WANG Baoli², LIANG Chongshan³, WANG Xiaodan¹, YANG Cheng¹

(1.Institute of Karst Wetland Ecology, College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; 2. Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Institute of Surface Earth System Science, Tianjin University, Tianjin 300072, China; 3. State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China)

Abstract: The Hongfeng reservoir is a typical artificial lake with special hydrogeological characteristics in the karst area of southwest China. To understand the carbon cycle of this reservoir, the accurate estimation of its CO_2 emission flux is great significant. Therefore, the temporal and spatial variation of p CO_2 and quality parameters in surface waters from different zones, the south lake and the north lake of the reservoir were investigated by the shipboard monitoring from July 2017 to April 2018. The results showed that the spatiotemporal distribution of p CO_2 in the Hongfeng reservoir varied obviously. The p CO_2 near the water surface exceeded the atmospheric p CO_2 during autumn and winter, suggesting that the reservoir is the emission source of CO_2 , but it was just opposite in spring and summer. According to the spatial distribution, p CO_2 of the north lake water was significantly higher than that of the south lake in spring and autumn, especially in autumn. Based on the dense data set of the shipboard monitoring, the annual average CO_2 emission of the Hongfeng reservoir (m² · d).

Key words: Hongfeng reservoir; CO2 partial pressure; flux; spatiotemporal variation

(C)1994-2020 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net