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GPa and temperatures of 300–1 073 K and obtained d(ln	݇)/dܲ at different temperatures using the relational ex-
pression (Hofmeister, 2007). 		߲(ln ݇) ߲ܲ⁄ ≈ 1 ்ܭ + ߲(lnܦ) ߲ܲ⁄⁄                (2) 
 
1  EXPERIMENTAL METHODS 
1.1  Sample Preparation 

The spinel lherzolite sample used in the experiment was 
collected from Damaping of Zhangjiakou, Hebei Province, 
which occurs as a xenolith in Cenozoic basalt. The inclusion 
studies indicated that it originated from approximately 42–60 
km deep in the crust-mantle transition zone in which the tem-
perature varies of 870–1 000 °C and the pressure is 1.4–2.0 
GPa (Feng et al., 1982). The density of the samples was meas-
ured under ambient condition, according to Archimedes’ prin-
ciple, and the value is 3.26 g·cm-3. The porosity was measured 
using the Micro-ultra PYC 1200e true density analyzer, which 
was 1.6% for this sample. 

Microscopic observations indicated that the sample was 
mainly composed of olivine and pyroxene, with a granular 
mosaic structure and an average particle size of 0.3 mm (Zhang 
et al. 2017). The sample contained 55% olivine (volumetric 
fraction, hereinafter), 22% orthopyroxene, 20% clinopyroxene, 
3% spinel, and a little serpentine. The mineralogical composi-
tion was determined using thin sections and point-counting 
technique under a polarizing microscope. 

The chemical compositions of the rock and its main min-
erals are shown in Table 1.  

The samples were initially cut into three thick disks with a 
diameter of 10.00 mm. By thinning and polishing, the final sam-
ples have thickness of about 2.50 mm. They were dried at 323 K 
prior to the experiment, and then annealed at 473 K for 24 hours 
in an oven to remove the absorbed water from the sample. 

 
1.2  Thermal Diffusivity Measurements 

The thermal diffusivity of the samples was measured at 
high temperature and pressure on a YJ-3000t cubic press appa-
ratus at IGCAS, Guiyang. 

A schematic drawing of the sample assembly is shown in 
Fig. 1, which is similar to that of Osako et al. (2004). The sample 
consists of three identical disks stacked together. An impulse 
heater and a thermocouple were arranged between each two in-
terfaces of disks, respectively (Kubičár et al., 2005). The diame-
ter of the impulse heater was 10.00 mm folded from 0.127-mm- 
diameter NiCr wires. The temperature was measured using a 
NiCr-NiSi thermocouple with diameter of 0.127 mm (tempera-
ture deviation: ±5 K). The magnesium oxide in contact with the 
sample has a relatively high thermal conductivity, which ensures 
that the excessive heat inside the sample can be rapidly released 
after each measurement session to achieve its own thermal equi-
librium. The sample and heater were insulated with an alumina 
sample tube. In addition, a thermocouple wire and a heating  

 
Table 1  Chemical compositions of the rock and its main constituent minerals (wt.%) 

Oxides SiO2 TiO2 Al2O3 FeO* MnO CaO Na2O K2O P2O5 CO2 MgO Cr2O3 Total 

Rock 46.00 0.05 2.43 7.36 0.15 2.56 0.24 0.01 0.02 4.10 36.43 - 99.35 

OI 42.24 0.02 0.28 8.64 0.19 - - - - - 48.71 0.07 100.15

Cpx 53.35 0.81 5.16 4.36 0.09 21.6 1.74 - - - 13.18 0.58 100.87

Opx 54.88 - 3.58 10.99 0.06 0.51 0.04 0.04 - - 29.69 0.22 100.01

Cr - - 23.46 24.55 - 0.04 - - - - 9.95 40.06 98.06 

Note: Ol. Olivine; Cpx. clinopyxene; Opx. orthopyroxene; Cr. chrome spinel; FeO*. whole iron; -. no detection. Analytical method 

for rock was X-ray fluorescence analysis, for minerals was electron microprobe analysis. 

 

 

Figure 1. Schematic drawing of the sample assembly for measuring the 

thermal diffusivity at high temperature and pressure. 1. Thermocouple; 2. 

sample; 3. MgO block; 4. MgO sleeve; 5. Pyrophyllite space; 6. Al2O3 

sample tube; 7. impulse heater; 8. heater; 9. pyrophyllite; 10. lead. 

wire were both enclosed in the alumina ceramic tube, which had 
an inner diameter of 0.2 mm. The pyrophyllite cylinder, which 
served as the plug, and the cubic pyrophyllite, which served as 
the pressure medium (side length =32.5 mm), were both heated 
to 1 073 K to prevent dehydration of the pyrophyllite at high 
temperature during the measurement (Xu et al., 2017). 

During the experiment, we manually increased the pres-
sure at a rate of 2.0 GPa/h to the desired pressure (error: ±0.1 
GPa); the temperature slowly increased automatically at a rate 
of 200 K/h until it reached the value required for measurement 
at constant pressure. A 100 K temperature interval was used for 
the continuously recorded data points. When the sample reached 
the target pressure and temperature conditions at which it be-
came stable, a heating pulse of length t0=100 ms was applied to 
the impulse heater through an integrated circuit and stabilized 
voltage supply controlled by an electronic switch. The samples 
on both sides of impulse heater were heated, and the heat was 
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transferred up- and downward. The heat transferred upward was 
detected by the thermocouple placed on top. The temperature 
signals processed by the potentiometer and DC amplifier were 
sent to the oscilloscope for display and collection. 

The heat exchanged between the sample and environment 
can be ignored if the thickness of sample is small enough com-
pared to its diameter and that the heat capacity and thickness of 
impulse heater were negligible, the heat transfer process above 
can be abstracted as a one-dimensional unsteady heat transfer 
of a semi-infinite object. The temperature response to the heat 
pulse at the thermocouple junction can be expressed as (Miao 
et al., 2014) ܶ(ℎ, (ݐ = ುఘ√గ௧ exp	(− మସ௧)                     (3) 

Here, ℎ denotes the distance between heater and ther-
mocouple, ݐ is the time from the onset of heating, ݍ is the 
heat flow across the section. 

By taking the derivative of the right side of Eq. (3) and set 
it equal to 0. One can derive the equation ܦ = ℎଶ ݐ2 × ݂⁄                               (4) 

where ݂ is the correction coefficient 

( ݂ = ቀ௧௧బ − 1ቁ ln ቂ ௧ ௧బ⁄(௧ ௧బ)ିଵ⁄ ቃ, in the limiting case of ݐ → 0, 

݂ has the value of 1). h is the sample thickness (mm), tm 
represents the time(s) required for the thermocouple to reach the 
highest temperature response, and t0 is the pulse time(s). Ac-
cording to the obtained curve, the time required for the thermo-
couple to reach the maximum temperature tm was derived as 
presented in Fig. 2. The sample thickness ℎ was introduced 
into Eq. (4) to derive the thermal diffusivity of the sample. 

Errors are caused mainly by the uncertainty of sample thick-
ness, and artificial error of judgment of the peak time. We estimate 
the total errors on the measurements to be less than 10%.  

 
2  RESULTS AND DISCUSSIONS 

In Fig. 3 the experimental results are presented and fitted 
 

 

Figure 2. An input pulse and temperature response recorded using the 

oscilloscope (pulse length t0=120 ms, tm=950 ms. Thehorizontal scale inter-

val time is 250 ms, the unit on the vertical is 10.0 mV for CH1 channel, 2.00 

V for CH2 channel). 

to the formula (Osako et al., 2004). ܦ = (ܽ + ܾ ܶ⁄ )(1 + ܿܲ)                        (5) 

The experimental results at high temperatures and high 
pressures were extrapolated to ambient temperature and pres-
sure according to Eq. (5), yielding a thermal diffusivity for 
lherzolite of 2.10 mm2s-1, which is between the results of Horai 
and Susaki (1989) and Gibert et al. (2003a). The data of Horai 
and Susaki (1989) were extrapolated from high pressure to 
ambient pressure, and the data of Gibert et al. (2003a) 
represented the average of the data in the X and Z directions. 
The results at ambient pressure were below those of Gibert et al. 
(2013a), probably because the Alpine lherzolite used by Gibert 
contains more olivine than the lherzolite from North China 
used in this experiment. At moderate temperatures, these results 
were slightly below those of Gibert et al. (2005) for dunite, 
which can also be attributed to dunite’s olivine content and 
high thermal diffusivity. At high temperatures, their experi-
ments demonstrated considerable thermal radiation, resulting in 
an upward trend in the curve. The data was fitted to equation 
(Hofmeister, 2006). ܦ = ܽ + ܾ ܶ⁄                                   (6) 

The fitting coefficients are provided in Table 2.  
Figure 4 shows the d(ln	݇)/dܲ for lherzolite as a func-

tion of temperature, which can be fitted as  ୢ(୪୬	)ୢ = 0.130	78 − 3.990	67ܶ. 

As expected, d(ln	݇)/dܲ at ambient temperature ob-
tained in this experiment was 12.1%, which is similar to the 
11.9% obtained by Horai and Susaki (1989) and the 12.0% 
obtained by Gibert et al. (2003b). d(ln	݇)/dܲ gradually de-
creased with temperature, which is consistent with the experi-
mental results of other studies. For example, Fujisawa et al.’s 
(1968) work on sterite yielded pressure coefficients of 17% 
GPa-1 at 700 K and 8% GPa-1 at 1 100 K. Beck et al.’s (1978) 
work on dunite yielded d(ln	݇)/dܲ of 12.2% GPa-1 at 364 K 
and 7.1% GPa-1 at 515 K. For thermal conductivity of olivine 
aggregate, Katsura (1995) got d(ln	݇)/dܲ of 5.6% at 400 K,  
 

 

Figure 3. Thermal diffusivities of lherzolite at high pressures and high 

temperatures and comparison with previous works. 
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Table 2  Fitting coefficients for the thermal diffusivity to Eq. (6) 

Pressure (GPa) a b R2 

0 0.469 61 4.603 25×102 0.999 89 

1.0 0.493 45 5.199 24×102 0.990 68 

2.0 0.488 44 6.050 85×102 0.995 27 

3.0 0.597 98 6.107 06×102 0.993 95 

4.0 0.538 74 7.188 24×102 0.987 39 

 

 

Figure 4. d(ln	݇)/dܲ for lherzolite as a function of temperature (according 

to Eq. (2), ்ܭ at high temperature was from Anderson et al. (1992)) 

 
5.2% at 500 K and 4.8% at 600 K. We attributed the high value 
of d(ln	݇)/dܲ for lherzolite to that of enstatite, this also can 
be confirmed from Fig. 4, in which lherzolite always shows 
high value of d(ln	݇)/dܲ than that of dunite and forsterite 
aggregate (Xu et al., 2004). d(ln	݇)/dܲ of lherzolite obtained in this experiment was 
approximately 10% at 1 073 K, which is higher than the pre-
viously determined value of 4% in the same conditions. There-
fore, at high pressure, the thermal conductivity of the mantle 
lithosphere is greater, and the temperature gradient of the man-
tle lithosphere is smaller than previously thought. In calculating 
the lithosphere thickness, the quantity of heat generated by the 
upper mantle is small enough to be considered negligible; 
therefore, the heat conduction in the upper mantle lithosphere 
can be simplified to a one-dimensional steady-state planar heat 
conduction problem (Xu et al. 2017). According to the Fouri-
er’s thermal conduction equation: ݍ = ݇∆ܶ ⁄ݖ∆ , in which q is 
surface heat flow, ∆ܶ is a constant, the thermal conductivity k 
is proportional to the lithosphere thickness, ∆ݖ (Zhou et al. 
2015b). Therefore, the results calculated using d	(ln	݇)/dܲ 
for the lithospheric mantle of 4% rather than 10%, may unde-
restimate the thickness of the upper mantle lithosphere by 6% 
in a first approximation. 

 
3  CONCLUSIONS 

This study utilized a pulse method to measure the thermal 

diffusivity of lherzolite at pressures of 1.0–4.0 GPa and tem-
peratures of 300–1 073 K on a cubic press apparatus. We ob-
tained a thermal diffusivity for lherzolite of approximately 2.10 
mm2s-1 at ambient condition, which is consistent with the expe-
rimental results of other studies. We found that the experimen-
tal d(ln	݇)/dܲ of lherzolite decreased with temperature de-
cline, reaching approximately 10% at high temperature, which 
is higher than the previous experimental data, which indicates 
that the temperature gradient of the upper mantle lithosphere is 
smaller than previous thought. Therefore, in calculating the 
lithosphere thickness using the thermal conductivity of the 
lherzolite, the previous calculation used d(ln	݇)/dܲ of 4% 
may cause an underestimation of the upper mantle lithosphere 
thickness by approximately 6% in a first approximation. 
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