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Temperature-induced variations of elastic moduli in solid media are generally characterized by a strong

nonlinear dependence on temperature associated with complex deformations under thermal treatments.

Conventional thermoelasticity with third-order elastic constants for the one-order temperature depen-

dence has been extensively studied for crystals, but encountering problems of divergent and limited

velocity variations for rocks as a polycrystal mixture, especially at high temperatures. The extension of

the theory beyond high-order elastic constants to solid media is addressed in this article to describe the

nonlinear temperature dependence of both elastic constants and wave velocities. The total strain is

divided into the background component associated with temperature variations and the infinitesimal

component induced by propagating waves. A third-order temperature dependence of velocity variations

is formulated by taking into account fourth-order elastic constants. Applications to solid rocks (sand-

stone, granite, and olivine) demonstrate an accurate description of temperature-induced variations, espe-

cially for high temperatures. Unlike crystals, the synthetic averaging elastic constants for a solid rock

(as a polycrystal mixture) change less than 10% with temperatures. The thermal sensitivity of P-wave

velocities is much more than that of S-wave velocities over the vast majority of temperatures examined.
VC 2019 Acoustical Society of America. https://doi.org/10.1121/1.5124485
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I. INTRODUCTION

For most crystals, the temperature dependence of elastic

constants is generally linear and weak at low temperatures,

but become significant with increasing temperatures. The

typical temperature behavior of elastic constants has been

extensively studied for crystals, but with few publications

for rocks as a polycrystal mixture. Actually, the study of

temperature-induced velocity variations in a thermoelastic

solid has a significant influence on several disciplines such

as geothermal studies (Kristinsd�ottir et al., 2010), seismic

exploration (e.g., Savage, 1966; Armstrong, 1984), and

earthquake seismology (Boschi, 1973). At present, we still

lack related advances for theoretical prediction in this field.

In this article, more quantitative assessments will be con-

ducted on the temperature dependence of elastic constants

and elastic moduli in solid media, with an attempt to provide

insight into the temperature-induced variations of elastic

wave velocities in realistic media.

By means of ultrasonic measurements (McSkimin,

1953; McSkimin and Andreatch, 1962), the temperature

dependence of elastic constants has been extensively investi-

gated by taking into account the second-, third-, fourth-, and

higher-order elastic constants for various crystals and mono-

crystal minerals (e.g., Hiki and Granato, 1966; Loje and

Schuele, 1970; McSkimin and Andreatch, 1972; Garber and

Granato, 1975a,b; Shrivastava, 1980). The relations obtained

for the temperature dependence of elastic constants, how-

ever, are too complicated, especially at high temperatures.

Sorokin et al. (1999) propose a simpler theory based on the

small-amplitude bulk acoustic wave (BAW) propagating in

crystals to explain the linear temperature dependence of

second-order elastic constants. The first-order temperature

dependence of elastic constants can be obtained by taking

into account the third-order elastic constants, which, how-

ever, basically remain in the category of linear dependences.

The method has been extended for a broad temperature band

to quantify the nonlinear temperature dependence of elastic

constants in cubic crystals (Telichko and Sorokin, 2015) by
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taking into account the fourth-order elastic constants, as well

as the nonlinearity in the thermal-expansion temperature

dependence. Nevertheless, these approaches concentrate on

elastic constants for crystals. The extension to solid rocks,

with temperature-induced velocity variations involved, is

necessary to improve the theoretical prediction of experi-

mental data in rocks.

In thermoacoustics, Biot (1956) proposes the theory of

thermoelasticity on the basis of the thermodynamic of irrevers-

ible process. Deresiewicz (1957) investigates the propagation

of waves in an isotropic thermoelastic solid by plane-wave

analyses. Many subsequent studies have contributed to the

temperature dependence of elastic constants and the thermo-

elastic response of an elastic medium with variable material

properties (e.g., Ezzat et al., 2004; Youssef, 2005; Aouadi,

2006; Othman and Kumar, 2009; Zenkour and Abbas, 2013).

Some investigations (e.g., Dodson and Inman, 2013, 2014) on

the thermal sensitivity of Lamb waves for aluminum give

insight to how temperature affects Lamb wave speeds in dif-

ferent frequency ranges but with few examining temperature-

associated velocity variations of elastic waves for solid rocks.

In general, the total elastic deformation for wave propaga-

tion in thermoelastic media consists of two different parts,

temperature-associated and wave-associated deformations. In

this study, we decompose the total strain into two components,

the temperature-induced background component and the infini-

tesimal part induced by wave propagation. We formulate a

third-order temperature dependence of velocity variations to

explain the nonlinear temperature effect on elastic waves in

solid rocks. The nonlinear thermoelasticity method is validated

by ultrasonic experimental results with three different rocks.

We demonstrate that the linear theoretical prediction of experi-

mental data becomes significantly worse for the regime of non-

linear elastic deformations at high temperatures, whereas the

nonlinear thermoelasticity method agrees with measurements

more accurately, especially for larger nonlinear elastic strains

by higher temperature variations. This study is also expected

to improve the theoretical knowledge of preheated solid media

such as sandstone, granite, and olivine rocks.

The article is organized as follows. After briefly introduc-

ing the basic principle of thermoelasticity, we formulate the

strain-stress constitutive for wave propagation in thermoelastic

media by strain decomposition. Next, we develop the nonlinear

third-order temperature dependence of elastic wave velocities

after a simple introduction of the traditional linear thermoelas-

ticity approach. Comparisons between theoretical predictions

and ultrasonic measurements with three kinds of rocks demon-

strate that the proposed method gives a more accurate descrip-

tion of temperature-induced velocity variations than the

traditional linear thermoelasticity approach, especially at high

temperatures that cause larger nonlinear elastic strains. Finally,

we give a discussion on elastic constants, thermal stresses, and

volume thermal-expansion coefficients.

II. METHODOLOGY

A. Energy function for the strain-stress constitutive

Based on the Clausius inequality, the stress tensor rij

can be expressed as

rij ¼
@W
@cij

; (1)

where cij is the strain tensor. W ¼ Wðcij; h
�Þ is the Helmholtz

free energy per unit volume, and the dimensionless parame-

ter h� is defined as h� ¼ h=T0 with the temperature variation

h ¼ T � T0 (T0 and T are the reference and absolute temper-

atures, respectively). To obtain the strain-stress constitutive

equation for an isotropic material, the Helmholtz free energy

can be expanded in a power series with respect to h� and cij,

as in the following form (e.g., Dillon, 1962; Oden, 1972):

W cij; h
�� �
¼ a0 þ a1I1 þ a2I2 þ a3I3 þ a4h

� þ a5I2
1

þ a6h
�2 þ a7I1h

� þ a8I3
1 þ a9I1I2 þ � � � ;

(2)

where a0; a1;…; a9 are the material constants, and I1; I2; I3 are

the invariants of strain tensors, which are written as follows:

I1 ¼ cij;

I2 ¼
1

2
ciicjj � cijcjið Þ;

I3 ¼ det cij:

8>>><
>>>:

(3)

It should be noted that the effect of products of the

dimensionless temperature increment h� over the fourth

order as well as those of the strain tensor cij over the third

order could be neglected for Eq. (2) (Gatewood, 1957), the

strain energy function W ¼ Wðcij; h
�Þ can be simplified in

the following form:

W cij; h
�� �
¼ a1 þ a2h

� þ a3h
�2 þ a4h

�3 þ a5h
�4 þ a6I1

þa7I1h
� þ a8I1h

�2 þ a9I1h
�3 þ a10I2

1

þa11I2
1h
� þ a12I2

1h
�2 þ a13I3

1 þ a14I3
1h
�

þa15I2 þ a16I2h
� þ a17I2h

�2 þ a18I1I2

þa19I1I2h
� þ a20I3 þ a21I3h

�: (4)

The stress-strain constitutive is given by the following rela-

tion (e.g., Wang, 1988; Kostek et al., 1993):

rij ¼
@W
@cij

¼ @W
@I1

@I1

@cij

þ @W
@I2

@I2

@cij

þ @W
@I3

@I3

@cij

: (5)

Substituting Eq. (4) into Eq. (5), we have

rij ¼ dij a6 þ a7h
� þ a8h

�2 þ a9h
�3� �

þ 2 a10 þ a11h
� þ a12h

�2� ��
þ a15 þ a16h

� þ a17h
�2� �i

ckkdij

� a15 þ a16h
� þ a17h

�2� �
cij; (6)

where dij is the Kronecker delta, and a6 is zero in the natural state,

which is regarded as the initial normal stress (Hu et al., 2018).

By introducing the Lame constants l and k and the ther-

moelastic coupling coefficient b, the temperature-dependent

constitutive equation is written as
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rij ¼ k2h
�2 þ k1h

� þ k0

� �
ckkdij

þ2 l2h
�2 þ l1h

� þ l0

� �
cij

� b2h
�2 þ b1h

� þ b0

� �
hdij; (7)

where b0 ¼ �ða7=T0Þ, k0 ¼ a15 þ 2a10, and l0 ¼ �ða15=2Þ
are the initial values at the reference temperature T0. The same

form of material properties, b1 ¼ �ða8=T0Þ, b2 ¼ �ða9=T0Þ,
k1 ¼ 2a11 þ a16, k2 ¼ 2a12 þ a17, l1 ¼ �ða16=2Þ, and l2

¼ �ða17=2Þ, are considered as the influencing factors due to

the temperature deviation.

The general formula of Eq. (7) can be rewritten as

follows:

rij ¼ k hð Þckkdij þ 2l hð Þcij � b hð Þhdij; (8)

where the temperature-dependent material constants can be

expressed as

k hð Þ ¼ k2h
�2 þ k1h

� þ k0 ¼ k;

l hð Þ ¼ l2h
�2 þ l1h

� þ l0 ¼ l;

b hð Þ ¼ b2h
�2 þ b1h

� þ b0 ¼ b:

8><
>: (9)

The strain-stress constitutive is given by the following

relation:

cij ¼�
k

2l 3kþ 2lð Þrkkdijþ
1

2l
dijþ

b
3kþ 2l

hdij: (10)

The coefficient of linear thermal expansion (LTE) is defined

as

fij ¼
@cij

@h
: (11)

Substituting Eq. (10) into Eq. (11), we have

fij ¼
b

3kþ 2l
dij ¼ fdij: (12)

The strain-stress constitutive can be rewritten as follows:

cij ¼ �
k

2l 3kþ 2lð Þrkkdij þ
1

2l
dij þ fhdij: (13)

B. Strain variations versus temperature

According to the strain-stress constitutive for isotropic

material, the total strain for wave propagation in thermoelas-

tic media can be divided into two parts,

eij ¼ e1
ij þ e2

ij: (14)

The superscripts “1” and “2” stand for the large background

strain associated with temperature variations and the infini-

tesimal strain induced by propagating waves, respectively.

The latter is characteristic of small amplitudes in a uniform

deformation (e.g., Thurston and Brugger, 1964; Sorokin

et al., 1999; Telichko and Sorokin, 2015; Fu and Fu, 2017).

Based on the assumption for temperature variations, e1
ij

can be written as

e1
ij ¼ adij; (15)

where a indicates a positive strain induced by temperature

variations. According to the research on thermoelasticity

(e.g., Sorokin et al., 1999; Telichko and Sorokin, 2015; Fu

and Fu, 2017), the static finite-strain assumption is applied

as a result of thermal expansion. Given a reasonable approxi-

mation, we have

a ¼ fh; (16)

where f is the coefficient of LTE, and h is the temperature

variation.

We consider a P-wave kernel, exp i½xpt� ð1þ aÞkpx1�
(Ba et al., 2013), where kp and xp are the wave number and

angular frequency of a P-wave, respectively, i is the imagi-

nary unit, and t is the propagating time. For a small strain e2
ij

induced by P-wave propagation, we have

e2
11 ¼ c exp i xpt� 1þ að Þkpx1

� �
;

e2
ij ¼ 0; i; j 6¼ 1;

(
(17)

where c is the maximum strain induced by P-wave propaga-

tion, with c� a.

For the expression associating e2
ij with S-wave propaga-

tion, we consider a plane S-wave along the x2-direction with

polarization in the x1-direction, we have

e2
12 ¼ b exp i xst� 1þ að Þksx2½ �;

e2
ij ¼ 0; i 6¼ 1; j 6¼ 2;

(
(18)

where ks and xs are the wave number and angular frequency

of an S-wave, respectively, and b is the maximum shear

strain induced by S-wave propagation, satisfying b� a.

III. THEORETICAL PREDICTIONS AND APPLICATIONS

A. Theoretical predictions

For isotropic media, the second- and third-order elastic

coefficients can be expressed by the Lame coefficients and

third-order elastic constants (�1; �2; �3; e.g., Toupin and

Bernstein, 1961; Thurston and Brugger, 1964)

c11 ¼ kþ 2l; c12 ¼ k; c44 ¼ l;

c123 ¼ �1; c144 ¼ �2; c456 ¼ �3;

c112 ¼ �1þ 2�2; c155 ¼ �2þ 2�3; c111 ¼ �1þ 6�2þ 8�3:

8><
>:

(19)

According to the form of the Green–Christoffel tensor

for the propagation of small-amplitude elastic waves in a

crystal (Sorokin et al., 1999), the linear temperature depen-

dence of second-order elastic constants can be formulated

under the action of a finite static strain. The application

of the linear BAW approach to elastic wave propagation

in consideration of thermal expansion tensors leads to the

1558 J. Acoust. Soc. Am. 146 (3), September 2019 Yang et al.



following linear thermoelasticity method in terms of the

third-order elastic constants:

qV2
p ¼ kþ 2lþ w1a;

qV2
s ¼ lþ w2a;

(
(20)

where

w1 ¼ 2kþ 4lþ 4�1 þ 10�2 þ 8�3;

w2 ¼ 2lþ 3�1 þ 2�3:

(
(21)

The BAW propagation theory has been extended to

describe the nonlinear temperature dependence of elastic

constants (Telichko and Sorokin, 2015) by incorporating the

fourth-order elastic constants, as well as the nonlinearity of

the thermal-expansion temperature dependence. Likewise,

the application of the nonlinear BAW approach to elastic

wave propagation results in the following nonlinear thermo-

elasticity method to describe the third-order temperature

dependence of elastic waves velocities:

qV2
p ¼ kþ 2lþ cp

1aþ cp
2a

2 þ cp
3a

3;

qV2
s ¼ lþ cs

1aþ cs
2a

2 þ cs
3a

3;

(
(22)

where (cp
1, cp

2, cp
3) and (cs

1, cs
2, cs

3) are the synthetic fourth-

order elastic constants for P- and S- waves, respectively.

Both the third-order elastic constants (k; l; �1; �2; �3) in

Eq. (19) and the fourth-order elastic constants (cp
1; c

p
2; c

p
3;

cs
1; c

s
2; c

s
3) in Eq. (22) can be calculated using the best fit of

ultrasonic measurements with least-squares methods. In con-

clusion, the linear thermoelasticity method is applicable to

the deformation with elastic strains at low temperatures.

With increasing temperatures and followed by thermal

expansion, the resultant nonlinear elastic strains invoke to

apply the nonlinear thermoelasticity method.

B. Application to sandstone samples

We use experimental data of the Dholpur sandstone

(Sirdesai et al., 2018) to compare the linear and nonlinear ther-

moelasticity methods. The result of X-ray powder diffraction

(XRD) indicates that the Dholpur sandstone is monomineralic

in nature, with feldspar and quartz being the primary minerals.

Furthermore, the grains of feldspar and quartz are held

together by siliceous cement that involves trace amounts of

pyroxene and mica. The experimental temperature increases

incrementally from the room temperature to 1000 �C, with a

slow and constant heating rate of 5 �C/min in order to avoid

undesirable extensive damage due to the formation of thermal

stresses. The elastic wave velocities are determined by calcu-

lating the time required for an acoustic pulse to travel through

the axial length of the sample, with two piezoelectric trans-

ducers and a waveform generator. In addition, the cylindrical

sample is cut to achieve a length-to-diameter ratio of 2:1 for

mechanical tests inconsistent with the ISRM (International

Society for Rock Mechanics) suggested approach (Fairhurst

and Hudson, 1999).

The result shows that the temperature has little effect on

the bulk density of sandstone, varying from 2:22 g=cm3 at

the room temperature to 2:12 g=cm3 at 1000 �C. The coeffi-

cient of volume thermal expansion (VTE) increases to

3:35E-05ð�C�1Þ from 25 �C to 1000 �C. The elastic constants

of sandstone, obtained by a best fit of experimental measure-

ments, including bulk density, the coefficient of VTE, and

wave velocities, are listed in Table I. The P- and S- wave

velocities, generally as functions of temperature (e.g., Yavuz

et al., 2010; Yang et al., 2017), can be expressed for the

Dholpur sandstone as

Vp ¼ 2533:66131þ 0:03305T � 0:00241T2;

Vs ¼ 1755:24766� 0:27623T � 0:00134T2:

(
(23)

Figure 1(a) shows the elastic wave velocities as functions

of temperature for the sandstone experimental data. We see

that the elastic wave velocities are kept basically constant and

then increase slightly with temperatures up to 300 �C, and

decrease rapidly beyond 300 �C, implying that 300 �C may be

the critical temperature of damage for sandstone in the range

of 300 �C–1000 �C. Figure 1(b) illustrates the thermal sensitiv-

ity of elastic wave velocities, calculated by the slope of a least-

squares line fitted to velocity variations over the entire range

of temperatures examined. We see that the P-wave velocity is

more sensitive to temperature changes than the S-wave veloc-

ity beyond approximately 200 �C.

We use the change rate Ke to characterize the errors in

velocity variations as follows:

Ke ¼
����V0 � VM

V0

����� 100%; (24)

where the subscript M denotes the wave velocity predicted

by the linear or nonlinear thermoelasticity methods, and the

subscript “0” corresponds to the experimental data.

Figures 2(a) and 2(b) compare predicted and experimen-

tal elastic wave velocities with increasing temperatures,

which can be divided into three different stages. From 0 �C
to 275 �C, both the theoretical predictions agree with the

experimental results, with the maximum average error being

4.84%. From 275 �C to 775 �C, both the theoretical predic-

tions basically match the experimental results with the maxi-

mum average errors of P- and S-wave velocities being

17.6% and 14.4%, respectively. The maximum average

errors occur at around 675 �C and 725 �C for P- and S-

waves, respectively. Beyond 775 �C, the nonlinear prediction

TABLE I. Properties of the sandstone samples.

Linear thermoelasticity theory Nonlinear thermoelasticity theory

k 1.30 GPa cp
1 �2:10� 105 GPa

l 6.50 GPa cp
2 5:22� 103 GPa

w1 7:12� 102 GPa cp
3 8:06� 102 GPa

w2 3:35� 102 GPa cs
1 1:22� 104 GPa

cs
2 8:61� 103 GPa

cs
3 4:59� 102 GPa
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is more accurate than the linear method in describing the

temperature-associated velocity variations with 32.6% maxi-

mum average error, where the linear method presents a theoreti-

cal limit against the experimental results. As a whole, the

nonlinear predictions agree well with the experimental measure-

ments, with some minor departures at different temperatures

possibly because of the existence of micropores and micro-

cracks in the sandstone before and after thermal treatments.

C. Application to granite samples

We apply two thermoelasticity methods to the temperature-

associated experimental data of granite (Huang, 2014). The

coupling materials used for P- and S-wave velocities

are Vaseline (Unilever, London, UK) and aluminum foil,

respectively. The sample with a uniform texture is norma-

tively cut into /50� 100 mm cylinders, a length-to-diame-

ter ratio of 2:1 similar to mechanical tests, with an average

bulk density of 2:73 g=cm3 at room temperature. The main

components are feldspar, amphibole, and quartz inferred

from the X-ray diffraction. The thermal treatment is con-

ducted from 20 �C to 300 �C, demonstrating a significant

effect on the coefficient of VTE, from 1:73E-05ð�C�1Þ at

60 �C to 6:65E-05ð�C�1Þ at 300 �C. The elastic wave veloci-

ties are determined by ultrasonic resonance frequencies of

plane-parallel thick plates. The P- and S- wave velocities

can be expressed for the granite as a quadratic trend with

temperature

FIG. 1. Comparisons of temperature-associated velocity variations with the sandstone experimental data (a) and change in velocities with temperatures (b).

FIG. 2. Comparisons of temperature-associated velocity variations predicted by the linear and nonlinear thermoelasticity methods with the sandstone experi-

mental data for P-wave velocities (a) and S-wave velocities (b), respectively.

1560 J. Acoust. Soc. Am. 146 (3), September 2019 Yang et al.



Vp ¼ 4485:78560� 1:29128T � 0:01940T2;

Vs ¼ 2963:36179� 0:61085T � 0:01141T2:

(
(25)

Figure 3(a) presents the elastic wave velocities as func-

tions of temperature for the granite experimental data. We

see that the elastic wave velocities decrease sharply with

increasing temperatures. This is attributed to different miner-

als with different expansion coefficients and uncoordinated

deformations to produce different thermal stresses in the het-

erogeneous granite. In general, the thermal stress affects

elastic properties significantly, as well as elastic wave veloc-

ities. Figure 3(b) shows different changes of P- and S-wave

velocities with temperatures. The P-wave velocity demon-

strates greater temperature sensitivity than the S-wave veloc-

ity over the range of temperatures examined. The elastic

constants of granite, obtained by a best fit of experimental

measurements, are listed in Table II.

Figures 4(a) and 4(b) compare predicted and experimental

elastic wave velocities with temperature variations, which can

be divided into two different stages: 0 �C–90 �C and

90 �C–240 �C. We see that both the linear and nonlinear meth-

ods produce similar predictions for temperature-induced varia-

tions of experimental S-wave velocities over the range of

temperatures examined, with 2.92% maximum average error

probably because of the insignificant effect of low temperatures

on S-wave velocities of granite. However, the nonlinear

prediction of experimental P-wave velocities is much better

than the linear method especially beyond 90 �C, with 3.30%

and 40.3% maximum average errors, respectively.

D. Application to two olivine samples

Theoretical predictions are applied to temperature-

associated experimental data of olivine rocks (Isaak, 1992).

The single-crystal specimens OLA and RAM are from China

and Egypt, respectively. The sample OLA consists of about

92% forsterite and 8% fayalite, whereas the sample RAM

has slightly more Fe, being approximately 90% forsterite

and 10% fayalite. The bulk density of specimen is measured

to be from 3:330 g=cm3 at 300 K to 3:204 g=cm3 at 1400 K

for OLA, and from 3:353g=cm3 at 300 K to 3:213 g=cm3 at

1500 K for RAM, respectively. The coefficient of VTE

increases from 2:63E-05ðK�1Þ at 300 K to 4:00E-05ðK�1Þ at

1400 K for OLA, and from 2:63E-05ðK�1Þ at 300 K to

4:07E-05ðK�1Þ at 1500 K for RAM, respectively, implying

an important influence of temperature on the VTE. The speci-

mens are heated by an electric Rigaku DTA furnace (Rigaku,

Tokyo, Japan) with a 1-MHz ultrasonic resonant frequency.

Similarly, the P- and S- wave velocities of olivines can be

expressed as a quadratic trend with temperature,

Vp ¼ 8437:15988� 0:53117T þ 1:36223T2;

Vs ¼ 4875:15844� 0:35777T � 9:80721T2;

(
(26)

for OLA, and

Vp ¼ 8357:34155� 0:51429T � 2:28771T2;

Vs ¼ 4834:34562� 0:35434T � 1:03896T2;

(
(27)

for RAM.

Figures 5(a) and 6(a) denote the trend of P- and S-wave

velocities over a wide range of temperatures for OLA and

FIG. 3. Comparisons of the temperature-associated velocity variations with the granite experimental data (a) and change in velocities with temperatures (b).

TABLE II. Properties of the granite samples.

Linear thermoelasticity theory Nonlinear thermoelasticity theory

k 5.01 GPa cp
1 �1:89� 107 GPa

l 22.51 GPa cp
2 �4:50� 105 GPa

w1 1:10� 103 GPa cp
3 �3:29� 102 GPa

w2 8:52� 102 GPa cs
1 1:66� 106 GPa

cs
2 3:43� 104 GPa

cs
3 1:02� 103 GPa
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RAM, respectively. We see that the elastic wave velocities

decrease linearly with increasing temperatures, possibly

attributed to the uniform mineral composition of olivines.

From the different changes of P- and S-wave velocities with

temperatures, as shown in Figs. 5(b) and 6(b), we see that

the P-wave velocity presents more temperature sensitive

than the S-wave velocity over the entire thermal treatments.

By applying Eqs. (20) and (22) to the experimental data with

thermal-induced velocity variations, the best-fitting elastic

constants are listed in Tables III and IV for OLA and RAM,

respectively.

As shown in Figs. 7(a), 7(b), 8(a), and 8(b) for the

comparison of predicted and experimental elastic wave

velocities with temperature, we see that both the linear and

nonlinear predictions of experimental measurements, which

can also be divided into two stages, are perfect for elastic

wave velocity variations from 0 �C to 500 �C/800 �C for

OLA and RAM with 0.19% maximum average error,

respectively. Beyond 500 �C/800 �C for OLA and RAM,

respectively, however, the nonlinear thermoelasticity

method becomes more accurate than the linear method, with

the former less than 0.20% maximum average error and the

latter up to 1.52% maximum average error. In conclusion,

the nonlinear thermoelastic prediction, as expected, shows

more accurate than the linear prediction, especially at high

temperatures.

FIG. 4. Comparisons of the temperature-associated velocity variations predicted by the linear and nonlinear thermoelasticity methods with the granite experi-

mental data for P-wave velocities (a) and S-wave velocities (b), respectively.

FIG. 5. Comparison of the temperature-associated velocity variations with the olivine (OLA) experimental data (a) and change in velocities with temperatures (b).
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IV. DISCUSSIONS

As is well known, the knowledge of the temperature depen-

dence of elastic constants of solid media over a wide range of

temperatures is important in characterizing temperature-

associated electrical, mechanical, optical, and thermodynamic

properties. In this study, we assume that the solid media (sand-

stone, granite, and olivine) are isotropic. We present a simple

theory to describe the temperature dependence of solid-state

wave velocities and elastic constants. We also consider the

temperature-associated thermal stress and coefficient of VTE.

A. Temperature dependence of elastic constants with
different rocks

Sorokin et al. (2002) demonstrate that C44 for three dif-

ferent types of quartz crystals decreases with increasing tem-

peratures. The temperature dependence of C11, C12, and C44

for NaCl, KCl, and MoðSi;AlÞ2, with the hexagonal C40

structure, yttrium aluminum garnet, and two grossular garnet

specimen single crystals, decreases with increasing tempera-

tures (e.g., Alton, 1967; Sharko and Botaki, 1970; Isaak

et al., 1992; Tanaka et al., 1998). In this study, we investigate

the temperature behavior of second-order elastic constants

for three rocks (sandstone, granite, and olivine). It should be

noted that the temperature dependence of second-order elastic

constants for rocks are characteristic of a synthetic response of

temperatures over different minerals as an average value. The

rock sample is not a single mineral (or crystal), but a polycrys-

tal mixture. In this case, the temperature dependence of third-

order elastic constants for rocks becomes very complicated and

will be addressed in the near future.

From Tables I–IV, we see that the temperature-associated

elastic constants show significant changes between sandstone,

granite, and olivine. As is well known, different kinds of crys-

tals have different temperature-induced variations in elastic

constants, sometimes with the deviation up to 2 orders of mag-

nitude (e.g., Diederich and Trivisonno, 1966; Gutman and

Trivisonno, 1967; Slotwinski and Trivisonno, 1969; Meeks and

Arnold, 1970). However, this temperature-dependent pattern of

crystals may not be valid for a rock (a polycrystal mixture).

We choose some temperature points to calculate the synthetic

average values of Lame constants (k; l) for sandstone, granite,

and olivine. The results are listed in Table V, compared with

Tables I–IV from the room temperature to the specified maxi-

mum temperature. We see that the temperature-associated syn-

thetic average values of Lame constants for these polycrystal

mixtures generally decrease with increasing temperatures, but

with very small variations less than 10%. That is, these syn-

thetic Lame constants listed in Tables I–IV are not largely

temperature dependent. In addition, for different rocks with

TABLE III. Properties of the olivine samples (OLA).

Linear thermoelasticity theory Nonlinear thermoelasticity theory

k 77.73 GPa cp
1 �5:82� 104 GPa

l 77.96 GPa cp
2 7:81� 103 GPa

w1 �8:22� 102 GPa cp
3 �9:20� 102 GPa

w2 �3:27� 102 GPa cs
1 �3:83� 104 GPa

cs
2 3:78� 103 GPa

cs
3 �3:78� 102 GPa

TABLE IV. Properties of the olivine samples (RAM).

Linear thermoelasticity theory Nonlinear thermoelasticity theory

k 77.19 GPa cp
1 �6:35� 104 GPa

l 77.82 GPa cp
2 7:45� 103 GPa

w1 �7:74� 102 GPa cp
3 �9:32� 102 GPa

w2 �3:05� 102 GPa cs
1 �2:94� 104 GPa

cs
2 3:37� 103 GPa

cs
3 �3:75� 102 GPa

FIG. 6. Comparisons of the temperature-associated velocity variations with the olivine (RAM) experimental data (a) and change in velocities with tempera-

tures (b).
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different mineral formations, as different aggregations of vari-

ous crystals, the temperature-associated elastic constants have

big changes between each other. However, for OLA (with

about 92% forsterite and 8% fayalite) and RAM (with approxi-

mately 90% forsterite and 10% fayalite), their temperature

behaviors of elastic constants are quite similar, mainly caused

by mineral contents with minor changes between them.

B. Thermal stress and coefficient of VTE

Thermal stress, one could say, is the stress added to a

system, initially at a uniform normal temperature, if the

body experiences a temperature change in the course of

which it may, due to the thermal movement of its parts, be

subjected to additional constraints if that stress disappears

when the distribution again becomes uniform and normal

(Benham et al., 1964). Temperature gradients, thermal

shocks, and thermal contractions can lead to thermal stress.

However, there is a thermal stress important to rocks. A het-

erogeneous rock generally consists of different minerals

with different expansion coefficients at the same tempera-

ture. Uncoordinated deformations among mineral particles

lead to relative displacements between them even by small

temperature changes. The resultant thermal stress induces

nonlinear elastic deformations with a volumetric thermal

strain, with the appearance of nonlinear elastic residual

strains in thermally treated rocks (e.g., Shushakova et al.,
2013; Torelli et al., 2017; Yang et al., 2019). The thermal

expansion-associated thermal stress can further cause cracks

or plastic deformations depending on heating differences,

material types, and constraints. The static finite strains,

appearing as a result of nonlinearity of the thermal expansion

temperature dependence, can be described by the coefficient

of VTE.

The coefficient of VTE are defined as

f1 ¼
1

V0

DV

h
; (28)

where DV refers to the volume change to the initial volume

at some elevated temperatures, and V0 is the volume at an

ambient reference temperature. Comparing Eq. (11) with Eq.

(28), we have

f1 ¼ 3fþ 3f2h2 þ 3f3h3: (29)

By ignoring high-order terms, the relationship between LTE

and VTE can be simplified as follows:

f1 ¼ 3f: (30)

The positive strain induced by temperature variations can be

rewritten as follows:

a ¼ f1h: (31)

As shown in Fig. 9 for the experimental data of VTE ver-

sus temperature, we see that the temperature-associated nonlin-

earity of VTE increases with increasing temperatures, which

can be empirically fitted by a quadratic temperature function,

f1 ¼ Aþ BT þ CT2; (32)

TABLE V. Temperature dependence of elastic constants.

Elastic constants k l

Sandstone (400 �C) 1.45 GPa 6.86 GPa

Sandstone (900 �C) 1.36 GPa 6.58 GPa

OLA (600 K) 77.92 GPa 78.12 GPa

OLA (1100 K) 77.85 GPa 78.03 GPa

RAM (600 K) 77.30 GPa 78.04 GPa

RAM (1100 K) 77.22 GPa 77.87 GPa

Granite (200 �C) 5.36 GPa 23.01 GPa

FIG. 7. Comparisons of the temperature-associated velocity variations predicted by the linear and nonlinear thermoelasticity methods with the olivine (OLA)

experimental data for P-wave velocities (a) and S-wave velocities (b), respectively.
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where T is the ambient reference temperature, and A, B, and

C are experimental coefficients. The correlation coefficients

by fitting with Eq. (32) are up to 0.949, 1.000, 0.981, and

0.979 for sandstone, granite, OLA, and RAM, respectively,

indicating that the VTE could be represented by a quadratic

equation (e.g., Morse and Lawson, 1967; Ma et al., 2017).

Equation (32) may not be as good a representation for

high temperatures, partially attributed to the difficulty in bring-

ing the system to thermal equilibrium at high thermal tempera-

tures. However, one would expect the thermal volume

expansion coefficient to increase with temperature variations

because of the exponential temperature dependence of defect

formations (Morse and Lawson, 1967).

V. CONCLUSIONS

The temperature response of elastic wave velocities in

rocks is extensively investigated because of the potential appli-

cation to detect the temperature distribution underground. The

linear thermoelasticity approach developed from the BAW

propagation theory can describe the temperature-associated

velocity variations of elastic waves for low temperatures. The

FIG. 8. Comparisons of the temperature-associated velocity variations predicted by the linear and nonlinear thermoelasticity methods with the olivine (RAM)

experimental data for P-wave velocities (a) and S-wave velocities (b), respectively.

FIG. 9. Comparisons of the temperature-associated nonlinearity of VTE coefficients for sandstone (a), granite (b), OLA (c), and RAM (d).
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resulting large errors to experimental data at higher tempera-

tures have to resort to some nonlinear approaches.

We formulate a third-order temperature dependence of

velocity variations by taking into account the fourth-order

elastic constants. The resultant nonlinear thermoelasticity

approach can describe the temperature-associated velocity

variations of elastic waves at high temperatures. The main

conclusions can be summarized as follows:

(1) Applications to solid rocks (sandstone, granite, and oliv-

ine) demonstrate that the nonlinear thermoelastic predic-

tions against ultrasonic measurements are more accurate

than the linear thermoelasticity approach, especially for

high temperatures.

(2) For most crystals, the temperature-dependence of elastic

constants is weak at low temperatures, but becomes sig-

nificant at high temperatures. Unlike crystals, the syn-

thetic averaging elastic constants for a solid rock (as a

polycrystal mixture) change less than 10% with

temperatures.

(3) The thermal sensitivity gives us insight into the change

in P- and S-wave velocity with temperature, where the

P-wave speed variation has a greater temperature sensi-

tivity than the S-wave velocity.
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