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Abstract The current study focuses on the under-

standing of contamination status, distribution, source

apportionment and health perspectives of arsenic (As),

uranium (U) and other co-occurring trace metals in the

groundwater samples collected along the major rivers

in Sindh and Punjab provinces, Pakistan. ICP-MS

analysis revealed that the concentrations of As in the

groundwater in Sindh and Punjab ranged from 0.2 to

81.1 lg/L (n = 38) and 1.1 to 501.1 lg/L (n = 110),

respectively. Importantly, this study is the first

evidence of U contamination in the groundwater

samples in Pakistan, which revealed the concentra-

tions of U at from 0.8 to 59.0 and 0.1 to 556.0 lg/L
respectively, in Sindh and Punjab. Moreover, the

concentrations of Sr andMn exceeded theWHO limits

in the current study area. Anthropogenic activities

such as urbanization, direct dispose of industrial,

agricultural waste into waterways and extensive use of

pesticides and fertilizers might be the main sources of

elevated levels of total dissolved solids and electrical

conductivity, which increased the mobilization of As,

U and Sr in the groundwater samples. Human health

risk assessment parameters such as average daily dose,

hazard quotient (HQ) and cancer risk indicated severe
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risks of As and U in the study area. The HQ values of

As and U in Punjab were observed at 69.6 and 7.7,

respectively, implying the severity of the health risks

associated with consumption of contaminated ground-

water for drinking purposes. In a nutshell, proactive

control and rehabilitation measures are recommended

to eradicate trace metals associated groundwater

contamination in the targeted areas to avoid future

worst scenarios.

Keywords Arsenic � Uranium � Groundwater �
Health risk � Cancer risk � Pakistan

Introduction

As-contaminated groundwater is a serious threat for

public health and a major environmental cause of

cancer mediated mortality, worldwide (Pham et al.

2017). It has been estimated that more than 200 mil-

lion people are consuming As-contaminated ground-

water globally (Naujokas et al. 2013). In Southeast

Asia, groundwater is the main source of drinking water

and mostly preferred due to its stable state of good

microbial quality (Chanpiwat et al. 2011; Ali et al.

2018a). Though in few cases, the natural water

contains chemical elements that can have deleterious

effects on human health (Liu et al. 2003). According to

the UNICEF (UNICEF 2008), approximately 60 mil-

lion residents in Southeast Asian countries are

consuming As-contaminated groundwater for drink-

ing and cooking purposes on daily basis. Unfortu-

nately, around 700,000 individuals in this region are

extremely affected with As-related illnesses such as

black foot disease, arsenicosis, cardiovascular dis-

eases and different types of cancer (Frisbie et al. 2002;

Rahman et al. 2009).

The general mechanisms of As mobilization in

groundwater is categorized as: reducing or oxidizing

environmental conditions, weathering of sulfide-bear-

ing minerals and geothermal activities (Nickson et al.

2000; Schreiber et al. 2000; Smedley and Kinniburgh

2002; Welch and Stollenwerk 2003). The common

hydrological features in Southeast Asian countries

(India, China, Bangladesh and Pakistan) are mainly

included sedimentary and low-lying flat topographies,

slow moving groundwater, fast Holocene sedimenta-

tion sustained by large rivers and existence of excess

degradable organic matter (Ali et al. 2018b; Shakoor

et al. 2018). The aquifers within Holocene deposits are

mainly susceptible to As enhancement because these

sediments hold abundance of mobilized As within the

grains and are in contact with the groundwater flushing

(Postma et al. 2012). The concentration of As also

increased in areas with low hydrological gradients,

resulting in slow groundwater flows, as well as arid

environmental conditions that lead to evaporative

concentration (Gao et al. 2007). The As concentrations

in natural water exceeding the WHO drinking water

reference concentration have been reported in differ-

ent countries such as India, Pakistan, Bangladesh,

China, Nepal, Vietnam, Mongolia, Myanmar, Cam-

bodia, Indonesia, Morocco and Thailand (Berg et al.

2001; Frisbie et al. 2002; Chakraborti et al. 2003;

Buschmann et al. 2007; Winkel et al. 2008; Luu et al.

2009; Pokhrel et al. 2009; Rahman et al. 2009; Moyé

et al. 2017; Pham et al. 2017; Podgorski et al. 2017;

Rasool et al. 2017). Due to the extensive water

availability and high soil fertility, the Indus River

plain in Pakistan witnessed a wide agronomic pro-

duction that lead to the huge increase in population

greater than 100 million individuals (Podgorski et al.

2017). Importantly, the unconfined aquifers in Pak-

istan originate along the Indus plain and are primarily

consisted of 300 m of quaternary sedimentary deposits

and porous soil with least organic content (Greenman

et al. 1967). In the Indus plain, there is a strong

association between the river water, wide irrigation

system and low-lying aquifers (Farooqi et al. 2009).

However, the morphology and the presence of old flat-

lying Holocene fluvial deposits across the Indus River

make it quite similar to those well-known As-affected

regions of the Ganges River in Bangladesh as well as

in India (Ravenscroft et al. 2009), the Red River in

Vietnam (Berg et al. 2001) and the Mekong River in

Vietnam and Cambodia (Chanpiwat et al. 2011).

Uranium (U) is ubiquitous in the atmosphere and is

a non-essential element for humans, as it has no well-

known metabolic function. The long-term exposure to

U radionuclides in terms of groundwater consumption

causes serious human health effects (Bajwa et al.

2017). The toxicity of U depends on various factors

such as exposure route, exposure time and removal

pathway (Brugge and Oldmixon 2005). The frequent

intake of U, even in small quantities, may cause

damage to kidneys, lungs, liver and cardiovascular

system, and it also exhibits carcinogenic behavior as
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radon decay byproduct (Buschmann et al. 2008;

Chanpiwat et al. 2011). The varying concentrations

of U and associated sources have been reported in

groundwater of different countries worldwide such as

Brazil, USA, Norway, Kuwait, Jorden, Turkey,

Argentina, Iran, Germany, Sweden, Afghanistan,

India and China (Table S1) (Geraldo et al. 1979;

Cothern and Lappenbusch 1983; Banks et al. 1995;

Bou-Rabee 1995; Gedeon et al. 1995; Kumru 1995;

Bomben et al. 1996; Alirezazadeh and Garshasbi

2003; UNICEF 2008; Seldén et al. 2009; Kato et al.

2016; Bajwa et al. 2017; Wu et al. 2018). At present,

no specific national standard is defined for U levels in

drinking water in Pakistan.

The trace elements’ mediated pollution in ground-

water is one of the serious concerns all over the world,

due to their perseverance, accumulation and environ-

mental toxicity (Rasool et al. 2016a). However, the

most common effects of oral exposure to excess Sr are

reduced cartilage calcification and osteomalacia/de-

creased bone mineralization, especially in adults

(Höllriegl and München 2011). Minute quantities of

Mn are essential to human health. Mn also serves as a

catalyst and cofactor in different enzymatic processes

that involved in the synthesis of fatty acids and

cholesterol. A high intake of Mn causes specific

human health effects such as neural disorders, lungs

and reproductive system failure and psychiatric and

also movement disorders (Chanpiwat et al. 2011). In

oxygen-depleted groundwater, soluble Mn is present

in the form of Mn2?, which shows moderate solubility

(de Joode et al. 2016; Thuyet et al. 2016). The

anthropogenic sources of trace elements include direct

disposal of industrial waste in waterways (Muhammad

et al. 2011) and widespread use of pesticides and

fertilizers (Abbas et al. 2014). The natural water

quality in most of the rivers, lakes and groundwater of

the country is considered not to be safe for human

drinking (Azizullah et al. 2011). While considerable

studies have been conducted about As contamination,

the distribution of trace elements and health effects are

still not well defined along the major rivers. The main

objective of the present study is to investigate the

contamination status, distribution, associated human

health risks of As, U and other trace element in the

groundwater along the riverine ecosystem of two main

provinces of Pakistan, namely Sindh and Punjab.

Materials and methods

Geological setting

More than 75% of the entire population of Pakistan

reside in the two main provinces of Pakistan, that is,

Sindh and Punjab. The study area is categorized by the

flat-low-lying Indus plain (Fig. 1). The climate of the

study area is semiarid to arid except for the temperate

northwest, and this area is mainly composed of about

300 m of quaternary sedimentary deposits and porous

soils with low organic content (Mushtaq et al. 2018).

Unconsolidated sedimentary deposits of quaternary

age are responsible for development of most aquifer

systems along the major rivers of Sindh and Punjab

(Podgorski et al. 2017). Though, unconfined aquifer is

composed of sedimentary complex and alluvial sands

with an average thickness of about 400 m (Ali et al.

2018b). The deposits are primarily consisted of fine to

average sand, silt and clay with diverse extents of

muscovite, quartz, biotite, chlorite and heavy minerals

(Mushtaq et al. 2018). Due both to the heterogenic

nature and the presence of sedimentary deposits, these

aquifers are well known as homogeneous with very

high transmissivity (Greenman et al. 1967). The key

sources of groundwater recharge in the area include

rainfall, the Indus River Ravi, the Chenab River, the

Jhelum River, and the Sutlej River and widespread

irrigation waterways (Eqani et al. 2016; Mushtaq et al.

2018).

Sample collection and preparation

In November 2017, a total of 148 groundwater

samples were randomly collected from the pre-exist-

ing wells (with varying depths 27.1–61.1 m) that were

located along riverine ecosystem in two main

provinces of Sindh (n =38) and Punjab (n =110),

Pakistan (Fig. 1). The collected samples were stored

in 50-mL plastic (propylene) bottles at 4 �C by

following the standard sampling protocols and meth-

ods defined by (APHA 2005). The samples collected

for trace elemental analysis were filtered by using a

0.45-lm membrane (Whatman, USA), before preser-

vation, and the samples were acidified with nitric acid

(HNO3) to lower the pH to\ 2. All the samples were

tightly capped, stored at dry ice conditions tempera-

ture up to 4 �C and transported to the ‘‘State Key

Laboratory of Environmental Geochemistry, Chinese
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Fig. 1 Location maps showing the sampling points with As\ 10, As 10–50, and As[ 50 lg/L (a), U\ 15 and U[ 15 lg/L (b)
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Academy of Sciences, Guiyang, China.’’ To maintain

and assure the quality and integrity of the samples,

critical quality control measurements were also taken

from the collected samples to analysis (detail pre-

sented in Sect. 1 of the Supplementary Information).

The replicates of samples were also collected to reduce

the cross-contamination during sampling, and all

instruments were correctly calibrated before analysis.

pH, EC, TDS, color and trace element analysis

All the samples collected from different locations of

the study area were clear and colorless. The pH and EC

were measured in field using pH/EC meter (HANNA

instruments, Canada), and electrodes were properly

calibrated before sample analysis. Most of the samples

had pH level in the range typical for drinking water

about 6.5–8.5, as recommended by WHO. The TDS

were also measured indirectly by using EC values and

conversion factor defined by Moharir et al. (2002) in

the following equation:

TDS mg=Lð Þ ¼ EC lS=cmð Þ � 0:64 ð1Þ

The dissolved trace elements including cadmium

(Cd), cobalt (Co), chromium (Cr), copper (Cu), iron

(Fe), gallium (Ga), manganese (Mn), nickel (Ni),

plumbum (Pb), rubidium (Rb), selenium (Se), stron-

tium (Sr), thallium (Tl), vanadium (V), zinc (Zn),

barium (Ba) and uranium (U) were measured in the

groundwater samples by using inductively coupled

plasma mass spectrometry (ICP-MS) (Agilent 77009,

California, USA). During the trace element analysis,

blank and two standard reference material

(SRM1640a) purchased from National Institute of

Standards and Technology (NIST, USA) for water

samples were also analyzed after each 10th sample.

The measurement of uncertainties for all constraints

was measured and controlled by using a regular

laboratory replica of samples and confirming the

precision/calibration of the instrument over regular

runs with standard solutions. The recoveries of

analytes of interest were in the range of

98.2–105.5%, and recovery of the SRM 1640a was

ranged between 89.5 and 112.9%.

Health risk assessment

The human health risk assessment was based on the

human exposure pathway: the groundwater to human

via direct consumption of drinking water. The human

health effects of As and U ingestion through drinking

water are divided into two types: cancer-causing and

non-cancer-causing effects. In the present study, the

methodology adopted in permeant resident adults’

receptor for assessment of cancer risk and chemical

toxicity of As and U in groundwater samples is

described below.

The chemical toxicity or non-carcinogenic health

risks of trace elements were calculated in terms of the

average daily dose (ADD) of the element via con-

sumption of drinking water. The observed contact

point level in (lg/L) of a specified contaminant, which

is the ADD of a chemical substance ingested per/kg of

body weight/day, is specified in the following equation

(Rasool et al. 2016b; Bajwa et al. 2017; Barzegar et al.

2018).

ADD ¼ C � IR� ED� EF

BW� AT� 365
ð2Þ

where C is the concentration of the target pollutant in

the environmental comportment (mg/L or mg/kg), IR

is the intake rate/unit time (3 mg/day or 3 L/day), ED

in the exposure duration (65 years), EF is the exposure

frequency (365 days/year), BW is the average body

weight of the permeant resident adults receptor, i.e.,

72 kg, and AT is average time/years, which is equal to

average life expectancy 65 years and is multiplied by

365 to change the factors from years to days. The toxic

risk is the non-carcinogenic harm sustained due to

exposure (Islam et al. 2018), and the extent of harm is

indicated in terms of the hazard quotient (HQ)

(USEPA 1986);

HQ ¼ ADD

RfD
ð3Þ

where RfD is reference dose in daily intake that allows

an exposed individual to tolerate this level of contact

over an extended time without suffering any adverse

effects (Saddique et al. 2018). The oral reference doses

of As and U are 0.3 lg/kg and 3.0 lg/kg, respectively
(Bajwa et al. 2017; Tabassum et al. 2018). The safe

level of the HQ is\ 1.0 for U and As (Rasool et al.

2016c; Bajwa et al. 2017). The cancer risk or

carcinogenic risk (CR) in permeant resident adults

was calculated by using the following equation:

CR ¼ ADD� CSF ð4Þ
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where CSF is the cancer slope factor for As and U, 1.5

and 1.19 mg/kg/day, respectively (Bajwa et al. 2017;

Tabassum et al. 2018).

Geological maps and multivariate analysis

The geological maps of the study area were developed

using ArcGIS 10.3 (ESRI, USA), and the kriging

interpolation method was applied to estimate the

distribution of trace elements in the study area. The

kriging interpolation technique is a standard practice

that is mostly used for estimation of contaminants’

regional distribution in the study area and is often used

in hydrological studies (Gaus et al. 2003). The

multivariate statistical analysis was performed using

XLSTAT (Addinsoft, USA) and SPSS 20 software

(IBM, USA). The principal component analysis (PCA)

for source apportionment of the physiochemical

parameters was extracted by using the multivariate

statistical package software (MVSP). The PCA is

primarily carried out by the diagonalization of an

association matrix; thus, the problems that arise from

the several numerical ranges of the original variables

in the dataset are avoided, and all variables in the

dataset are automatically scaled with the variance unit

and similarly contributed (Jackson 2005).

Results and discussion

Physicochemical parameters

The physicochemical parameters (well depth, pH, EC,

TDS) of the groundwater samples are shown in

(Table 1). The groundwater samples were collected

from different depths ranging from 27.1 to 61.1 m and

30.1 to 61.1 m in Sindh and Punjab, respectively. The

samples from Sindh and Punjab had neutral to alkaline

pH values ranging from 7.3 to 8.7 and 7.1 to 9.0,

respectively (average = 7.9, SD = 0.4); 13.0% of the

samples from Sindh and 4.5% of the samples from

Punjab were exceeding the WHO pH standard. The

EC and TDS values in Sindh varied from 657.0

to 3582.0 lS/cm and 440.0 to 2400.0 mg/L, respec-

tively (average = 1492.0 lS/cm, SD = 707.0 lS/cm,

average = 999.0 mg/L, SD = 474.0 mg/L), and in

Punjab, these values ranged from 313.0 to 13,284.0

lS/cm and 210.0 to 8900.0 mg/L, respectively
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(average = 1217.0 lS/cm, SD = 1369.0 lS/cm, aver-

age = 815.0 mg/L, SD = 917.0 mg/L). A total of

37.0% and 15.4% of the samples from Sindh and

Punjab had concentrations exceeding the WHO

guideline values of 1500 lS/cm and 1000 mg/L,

respectively. The EC is an indicator of the salt content

in the drinking water in the form of major ions

(Laluraj and Gopinath 2006). These conductive ions

naturally come from dissolved salts and inorganic

materials such as alkalis, chlorides, sulfides and

carbonate compounds (Arumugam and Elangovan

2009; INC 2016). The ions enter to the aquifer due to

waste leakage or dissolution of rocks (Marghade et al.

2012). The EC value of the groundwater similarly

depends upon recharge from river/waterway, rainfall

or irrigation returns. In the present study, the regions

with high EC might be polluted due to the direct

disposal of industrial and other wastewater into rivers,

and irrigation returns (Azizullah et al. 2011; Hanif

et al. 2016), whereas the areas with low EC may be

recharged by waterways or any fresh canals that pass

adjacent. The similar type of findings was also

reported in Sindh and Punjab in previous studies

(Nickson et al. 2005; Brahman et al. 2013; Abbas et al.

2014; Rasool et al. 2016a; Podgorski et al. 2017). The

elevated level of EC in different areas may be due to

high levels of TDS, and there may be specific cations

and anions in these areas. Likewise, the elevated

levels of EC in groundwater samples were attributed

to the occurrence of high concentration of dissolved

solids in the previous studies (Ahdullah et al. 1999;

Farooqi et al. 2009; Rasool et al. 2016a). The TDS

values from the current study were consistent to those

reported in different studies carried out previously in

Sindh and Punjab regions, whereas the values of TDS

in some regions were found above the acceptable lim-

its of WHO (Kazi et al. 2009; Abbas et al. 2014). The

elevated concentration of TDS in the samples may be

attributed to the dissolution or mineralization of

organic and inorganic contents in aquifers (Mohsin

et al. 2013).

Arsenic and uranium distribution in groundwater

The total As concentration measured in groundwater

samples is summarized in (Table 2). Overall, the As

concentration ranged from 0.2 to 501.1 lg/L (aver-

age = 20.4 lg/L, SD = 47.0 lg/L) and approximately

42.0% of all 148 samples had As level higher than T
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WHO standard 10 lg/L. In Sindh, the As concentra-

tion ranged from 0.2 to 81.1 lg/L (average = 12.1 lg/
L, SD = 18.1 lg/L) and approximately 39.5% and

5.6% of all 38 samples had As concentrations

exceeding the WHO guidelines and Pakistan National

Environmental Quality Standards (Pak-NEQS) for As

in drinking water, i.e., 10 and 50 lg/L, respectively. In
Punjab, the total As concentrations ranged from 1.1 to

501.1 lg/L (average = 23.1 lg/L, SD = 53.0 lg/L)
and approximately 43.1% and 12.7% of the 110

samples had the As concentrations exceeding the

WHO-defined guideline and Pak-NEQS, respectively.

The maximum As concentration of 501.1 lg/L was

recorded in the Lahore region of Punjab. Arsenic is

present in the form of compounds in groundwater and

is usually absorbed onto the clay colloids bound with

organic matter and forms the water-soluble complexes

(Giacomino et al. 2010; Ali et al. 2018b). The previous

evidence suggested that the geological distribution of

As within alluvium sediments and various anthro-

pogenic activities are responsible As mobilization is

mediated through organic matter dissolution (Pal and

Mukherjee 2009). The presence of As-loaded aquifers

is mainly due to marine sedimentary rocks, weathering

of volcanic rocks, inorganic mineral deposits, mining

wastes, agricultural runoff and irrigation practices

(Hunt and Howard 1994; Mondal et al. 2010b). The

spatial distribution of As contamination in Sindh and

Punjab (Fig. 2a) revealed an increasing trend in As

concentration from south to east toward the Indus

Plain and the region between the Ravi River and the

Chenab River. Lahore and Kasur districts were

severely contaminated as the maximum As concen-

tration measured was at 501.1 lg/L. However, an

analysis of the sampling points with As[ 10 lg/L
revealed that reducing conditions are not prevailing in

the present study area. Further, the fact that the total

dissolved Fe concentrations were below the detection

limit confirms that the oxidizing conditions prevailed

in the current study area. The percentage of the area

with values of As[ 10 lg/L expressed a strong

correlation with the elevated pH values that is

Fig. 2 Kriging estimated maps of trace elements As (a), U (b), Sr (c), Mn (d) and Li (e)
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naturally observed high throughout the Indus Plain

region. These results implied the pH-mediated des-

orption of As, consistent with findings previously

reported by Farooqi et al. (2009), Rasool et al. (2015),

Khalid et al. (2018) and Mushtaq et al. (2018). The pH

values throughout the study areas in Punjab and Sindh

are generally between 7.1 and 9.0, and the pH values

of the samples (Fig. 3a) with As concentra-

tions[ 10 lg/l exhibited no significant correlation

with As (Table S2). These findings indicated that As

release due to high pHmight be mainly occurred in the

uppermost deposits prior to the transportation of As

down through infiltration to the groundwater. The

depth of the well was not correlated with As concen-

tration, as the bivariate plot between As and well depth

showed that As[ 10 lg/L were dominant throughout

the range of available well depth from 30.1 to 61.1 m,

while the high As concentrations were found at well

depths lower than 27.1 to 35.0 m (Fig. 3b). However,

the highest As concentrations were dominant in areas

with elevated EC and TDS concentrations (Fig. 3c, d).

Rainfall in arid areas is also strongly correlated

with high As concentrations, which is strongly asso-

ciated with the evaporation process in Sindh and

Punjab, as suggested by Brahman et al. (2013) and

Rasool et al. (2016c). The latter study found a

prevalence of As (V) species associated with the

reduced As (III) species (Donner et al. 2017). How-

ever, our current findings are more favorable for As

release caused by oxidizing conditions or high pH

dissolution, as the process of reductive dissolution in

the region is primarily responsible for As release in the

region. The reducing condition mainly is prevailed due

to the organic waste generation from anthropogenic

and natural sources in the urban areas (Nickson et al.

2005) or intense agricultural activities (Podgorski

et al. 2017). Additionally, in the present study, we

rarely observed a comparable basic pH and very low

Fe concentrations in the tube well water along the

Fig. 3 Bivariate plots of As concentrations in groundwater with: pH (a) Well depth (b), EC (c) and TDS (d)
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main rivers of Sindh and Punjab, Pakistan, thus

indicating that As release might be geogenic and

mainly related to reductive dissolution, as described in

the previous studies (Hasan et al. 2009; Shakoor et al.

2018).

The concentration of U in Sindh ranged from 0.8 to

59.0 lg/L (average = 14.0 lg/L, SD = 11.0 lg/L),
and results showed that approximately 32.0% of the

samples from Sindh exceeded the WHO drinking

water guidelines for U (15 lg/L). However, in Punjab
the concentrations of U ranged from 0.1 to 556.0 lg/L
(average = 29.5 lg/L, SD = 61.0 lg/L) and 41.0% of

the samples from Punjab are exceeding the WHO

limits. The maximum U concentration of 556.0 lg/L
was reported in the groundwater samples from the

Lahore district in Punjab (Fig. 1b). The results indi-

cated that the average U level of 29.5 lg/L in

groundwater can cause serious human health risks in

Lahore and Kasur, Punjab province, because the most

people regardless of age and sex consume groundwa-

ter water on daily basis. The kriging map (Fig. 2b)

estimated that the higher concentrations of U were

dominant in the southeast region along the India–

Pakistan border. However, on the other side of the

Pakistan border, a similar study was conducted by

Bajwa et al. (2017) in the district of Indian–Punjab and

reported that the U level ranged from 0.5 to 579.0 lg/
L in groundwater. The possible sources of U in

groundwater water may be associated with the leakage

of U from adjoining basement with granite-rich rock

formations. The anthropogenic activities, urbaniza-

tions and widespread use of pesticides and fertilizers

are the main causes for the increase in the TDS level in

groundwater, which may consequently lead to the high

concentrations of U in aquifer (Bajwa et al. 2017).

However, the current study showed no correlation

between U concentration and TDS. The high concen-

tration of U in the region may be due to geogenic or

extensive use of fertilizers or pesticides and direct

dispose of industrial waste into waterways. Further

investigations are required to evaluate the sources and

mobilization of U in drinking water. For comparison

purposes, the concentration and possible sources U

reported in the drinking water throughout the world

are summarized in Table S1.

Elevated strontium and manganese in groundwater

Strontium (Sr) is ubiquitous in the environment and

present in nearly all kinds of rocks and soils (Höllriegl

and München 2011; Ruhl et al. 2014). The mean

concentration of Sr in soil is about 240 mg/g (Höll-

riegl and München 2011). However, agricultural areas

may contain more than 600 mg/g if treated with

phosphate fertilizer or limestone (Höllriegl and

München 2011). The release of Sr from earth crust

into the environment takes place through natural

processes such as the entrainment of dust particles,

resuspension of soil through wind, and sea spray.

Moreover, anthropogenic events, including milling

and processing of Sr compounds, coal burning,

extensive land application of phosphate fertilizers,

and the usage of pyrotechnic devices, all enhance Sr

contamination in the environment (Anke 2004; Höll-

riegl and München 2011). In Sindh, concentrations of

Sr ranged from 411.0 to 7137.1 lg/L (aver-

age = 1476.1 lg/L, SD = 1134.1 lg/L) and 92.1%

of the samples were exceeding theWHO limit for Sr in

drinking water 70 lg/L. In Punjab, Sr ranged from

101.1 to 9962.1 lg/L (average = 906.1 lg/L, SD =

955.1 lg/L) and 100% of the samples from Punjab

were exceedingWHO limit. The kriging estimate map

(Fig. 2c) indicated the maximum concentrations were

observed along coastal aquifers, and there were strong

positive correlations between Sr versus TDS and EC

(Table S2), which implied that the seawater intrusion

was a significant source of Sr in groundwater (Mondal

et al. 2010b). However, in Punjab, the high Sr was due

to agricultural activities, extensive use of phosphate

fertilizers and direct disposal of industrial wastewater

into waterways, and aquifer recharge with contami-

nated water. According to Höllriegl and München

(2011), the high intake of Sr content in drinking water

[ 400 lg/L can interrupt bone mineralization, which

may result in lower bone mineral density, reduce the

size of bone apatite and decrease calcium level, while

alkaline and oxidizing conditions promote oxidation

of soluble Mn2? to insoluble forms of Mn-oxyhy-

droxides such as Mn2O3, MnOOH and MnOx (Tebo

et al. 2005; Mora et al. 2017). The results from present

study indicated the high concentrations of Mn in the

groundwater collected from each tested province.

About 10.6% of the samples were exceeding theWHO

limit for Mn in drinking water (400 lg/L). In Sindh

and Punjab, the concentrations of Mn ranged from 0.4
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to 474.1 lg/L (average = 114.1 lg/L, SD = 127.1

lg/L) and 0.1 to 1954.1 lg/L (average = 132.1 lg/
L, SD = 268.1 lg/L), and 2.6% and 8.1% of samples,

respectively, exceeded WHO guidelines 400 lg/L in

groundwater. The estimates in the kriging map

(Fig. 2d) indicated that most of Sindh and the

southeast region of Punjab were contaminated with

Mn.

Status of other trace elements pollution

in groundwater

The concentrations of all other target trace elements

are shown in (Table S3). Lithium (Li) as a trace

element is naturally present in vegetables, grains and

drinking water (Ohgami et al. 2009; Huthwaite and

Stanley 2010). Nutritional studies have suggested that

Li is an essential trace element with a recommended

daily intake of 1 mg/day (Liaugaudaite et al. 2017).

According to Zarse et al. (2011), the natural avail-

ability of Li in drinking water may increase the human

lifespan. The current study revealed the concentrations

of Li ranged from 4.0 to 182.0 lg/L (aver-

age = 25.0 lg/L, SD = 22.0 lg/L) in Sindh and from

8.0 to 45.0 lg/L (average = 23.0 lg/L, SD = 18.0

lg/L) in Punjab. So far, a recommended limit of Li in

drinking water has not been set by the WHO.

Figure 2e shows high concentrations of Li in the

Lahore City of Punjab. Among all target analytes, Rb

concentrations in the drinking water found almost

within the limits recommended by the WHO 10 lg/L
ranged from 0.2 to 11.6 lg/L (average = 2.1 lg/L,
SD = 1.7 lg/L) and 1.0% of samples exceeded WHO

guidelines. However, the concentrations of Cd, Co, Cr,

Cu, Cs, Ni, Sb, V and Zn in all samples from both

Sindh and Punjab were also within limits recom-

mended by the WHO. The concentrations of Ga, Be,

Se, Tl and Fe were found below detection limit (BDL),

both in Punjab and Sindh.

Principal component analysis

The PCA results of the present study are summarized

in Table S4, including the principal components

loadings and eigenvalues of each principal cofactor.

Different criteria are used to identify the numbers of

components retained to recognize the underlying

overall data structure (Jackson 2005). In the present

study, the principal cofactors with eigenvalues[ 1

were considered. By following this rule, five indepen-

dent principal components (PC-1, PC-2, PC-3, PC-4

and PC-5) were extracted that explain 59.2% of the

total population variance. The PC-1 explains 21.6% of

the total variance and has high loadings. The PC-1

explains the strong positive correlation between EC,

TDS, Li, Sr, Co, U and Mn. The strong positive

correlation between EC, TD and Sr that again

confirmed seawater intrusion, agricultural activities,

extensive use of phosphate fertilizers and direct

disposal of industrial wastewater into waterways

might be a significant source of Sr in groundwater.

The PC-2 explains 16.2% of the total dataset variance

and mainly reflects the contributions of the positive

correlation between As, pH, Cd and Mo (Fig. 4). The

PC-2 describes the redox controls on the overall

variability of As in groundwater, PC-3 explains 12.7%

of the total data variance and is primarily associated

with high factor loadings for Sb and V, whereas PC-4

and PC-5 explain 4.8% and 3.9% of the total data

variance mainly linked with Ba, Rb and Cu, Zn,

respectively.

Arsenic and uranium health risk assessment

There are several exposure pathways associated with

the trace elements, mostly dependent on pollution

medium such as water, soil, air, food and exposed

population. However, among these pathways, the

exposure via drinking contaminated water is a critical

pathway for trace elements to enter human body

(Caussy et al. 2003; Muchuweti et al. 2006). In the

current study, the mean ADD values of As and U in

Sindh and Punjab ranged from 0.1 to 3.4 lg/kg/day
(average = 0.5 lg/kg/day), 0.3 to 2.5 lg/kg/day (av-

erage = 0.6 lg/kg/day) and 0.1 to 20.8 lg/kg/day
(average = 1.1), 0.1 to 23.2 lg/kg/day (aver-

age = 1.2 lg/kg/day), respectively, (Table 3). The

HQ values of As and U in Sindh and Punjab ranged

from 0.1 to 11.2 (average = 1.7) and 0.1 to 0.8

(average = 0.2) and 0.2 to 69.6 (average = 3.2) and

0.1 to 7.7 (average = 0.4), respectively. However,

these HQ values of As lower than those previously

reported in groundwater samples (ranged from 1.13 to

41.7) from Mailsi, Punjab, Pakistan (Rasool et al.

2017). The CR values of As and U in Sindh and Punjab

groundwater samples ranged from 0.2 to 5.1 9 10-3

(average = 7.5 9 10-5) and 3.9 9 10-4 to

2.9 9 10-3 (average = 6.9 9 10-4) and 6.2 9 10-5
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to 3.1 9 10-2 (average = 1.4 9 10-3) and

3.5 9 10-6 to 2.8 9 10-2 (average = 1.5 9 10-3),

respectively. In the present study area, the CR value of

As exceeded those previously reported, i.e.,

2.6 9 10-6 and 4.56 9 10-4 in groundwater samples

from Ubon Ratchathani province, Thailand, and west

Bengal, India, respectively (Mondal et al. 2010b;

Wongsasuluk et al. 2014). The ADD, HQ, and CR

values of As and U for exposed population in Punjab

residing along riverine ecosystem of present study

area locations were much higher than the safety limits.

Therefore, on the basis of these findings, the

groundwater of district Lahore and Kasur, Punjab,

Pakistan, is more contaminated and not suitable for

drinking purposes in comparison with that of Sindh.

Conclusion and recommendations

The current study revealed groundwater pollution

mediated by As, U, Mn, Li and Sr prevailing in several

areas along major rivers of two central provinces of

Pakistan, Sindh and Punjab. These contaminants were

especially present in the middle and eastern regions of
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 (1
6.

2%
)
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Principal components (PC-1 & PC-2: 37.8 %)Fig. 4 Principal

component analysis (PCA)

showing the relationship

between principal

components (PC-1 and PC-

2) indicating

distribution/grouping of

trace elements As, U, Sr and

various other trace elements

measured in groundwater

along riverine ecosystem of

Pakistan

Table 3 Summary of As and U concentrations corresponding to cancer risk (CR), average daily dose (ADD) and hazard quotient

(HQ) for all groundwater along riverine ecosystem in Sindh and Punjab, Pakistan

Locations Parameters CR minimum–maximum and

average

ADD minimum–maximum and average

(lg/kg/day)
HQ minimum–maximum

and average

Sindh

n = 38

As 0.2–5.1 9 10-3 and

7.5 9 10-5
0.1–3.4 and 0.5 0.1–11.2 and 1.7

U 3.9 9 10-4–2.9 9 10-3 and

6.9 9 10-4
0.3–2.5 and 0.6 0.1–0.8 and 0.2

Punjab

n = 110

As 6.2 9 10-5–3.1 9 10-2 and

1.4 9 10-3
0.1–20.8 and 1.1 0.2–69.6 and 3.2

U 3.5 9 10-6–2.8 9 10-2 and

1.5 9 10-3
0.1–23.2 and 1.2 0.1–7.7 and 0.4

Number of samples (n)
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the country. In Sindh, 39.5%, 32.0% and 92.1% of the

samples containing As, U and Sr concentrations

exceeded the WHO-defined guidelines for drinking

water (10, 15 and 70 lg/L), while 43.1%, 41.0% and

100% of the samples from Punjab exceeded these

limits, respectively. Alkaline pH and very low Fe

concentrations indicating oxidizing conditions pre-

vailed in both Sindh and Punjab. As release in

environment due to high pH desorption mainly

occured in the uppermost deposits before being

transported downward through infiltration to the

groundwater. Moreover, the highest As concentrations

were dominant in areas with elevated EC and TDS

values, which indicated that salination, agricultural

activities and the direct disposal of industrial waste

into the riverine system contributed to As release into

groundwater. The PCA revealed positive correlation

between As and pH, which described the redox

controls on the overall variability of arsenic in

groundwater. Most noteworthy, the elevated concen-

trations of U in the groundwater samples were

observed and this was the first evidence of U

contamination in the aquifers of Pakistan. Strong

positive correlations among Sr, TDS and EC revealed

that seawater intrusion, extensive use of phosphate

fertilizers and direct disposal of industrial wastewater

into waterways are significant sources of Sr in

groundwater. Health risk assessment parameters

ADD, HQ and CR indicated severe risks of As and

U occur in the sampling locations of the current study

area. The HQ values of As and U in Punjab reached

69.6 and 7.7, respectively, which indicate the severity

of the health risks associated with the use of As and U

polluted groundwater for drinking purposes. However,

further in-depth research must be conducted as to

follow-up on the present study, with specific regard to

the mobilization mechanisms and sources of As, U and

other elements in the groundwater. Within another

sphere, the synergistic and antagonistic health effects

of As, U, Mn and Sr should be observed as to

determine the cancer risks posed to population in

Sindh and Punjab.
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