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Abstract
During coal mining activities, a lot of coal gangue is produced, which usually contains high mercury (Hg) concentrations as well
as the acid mine drainage (AMD) generator of pyrite. In the present study, the total mercury (THg) and methylmercury (MeHg) in
gangue, water, sediment, paddy soil, and rice samples, collected from abandoned coal mining areas, were analyzed. Results
showed that the THg concentrations ranged from 0.37 to 35 mg/kg (11 ± 8.4 mg/kg) and 0.15 to 19 mg/kg (2.0 ± 3.9 mg/kg) in
gangue and sediments, respectively. For paddy soils, the THg concentrations andMeHg varied from 0.16 to 0.91 mg/kg and 0.71
to 11 ng/g, respectively. Rice samples exhibited wide concentration ranges of THg (3.0–22 ng/g) and MeHg (0.71–8.9 ng/g).
Sequential extraction of Hg revealed that the nitric acid-extractable state Hg (F4) was the dominant Hg species in gangue and
sediment, while humic acids state Hg (F3) was the dominant form in paddy soil. Compared with gangue, higher percentages of F3
and the residual state Hg (F5) in both sediment and soil samples implied the transformation of F4 to F3 and F5 during
transportation. Soil n-HAs (the difference between the total organic carbon and humic acids) were positively correlated with
both THg and MeHg in soil and rice, indicating that n-HAs enhance Hg bioavailability under acidic conditions. Further studies
should be conducted to reveal the factors influencing the transformation of different Hg fractions, providing ideas on decreasing
the bioavailability of Hg in coal mining areas.
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Introduction

Mercury (Hg) is a highly toxic heavy metal that occurs in
different forms in the environment, including elemental Hg
(Hg0), inorganic Hg, and organic Hg. Since Hg0 that is emitted
into the air is able to travel long distances in the atmosphere, it
is considered to be a global pollutant (Lindberg and Stratton
1998). The airborne Hg circulating in the atmosphere eventu-
ally deposits back onto the Earth’s surface in rainfall or in the
dry gaseous form (Korosi et al. 2018). Once deposited, Hg can
go through a series of chemical transformations to methylmer-
cury (MeHg), a highly toxic organic form that is readily accu-
mulated and biomagnified in food chains (Hintelmann et al.
2002). Although only a minute fraction of Hg is present as
MeHg in the environment, it is of the highest concern due to
its biomagnification in the food web (Lee and Fisher 2017).

Both natural and anthropogenic emissions contribute to the
global Hg reservoir, and the latter mainly includes artisanal
and small-scale gold mining, coal combustion, non-ferrous
metal production, cement production, and Hg-added product
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usage (Wu et al. 2018). Among the anthropogenic emission
sources, approximately 21% of Hg emissions were attributing
to stationary coal combustion, the second largest contributor
after artisanal gold mining. And the estimated global emis-
sions of Hg into the atmosphere from anthropogenic sources
in 2015 were approximately 20% higher than they were in
2010 (UNEP 2018). China highly depends on coal energy,
and coal combustion contributed nearly 50% of the Hg emis-
sions in China (Wang et al. 2012; AMAP/UNEP 2013; Tian
et al. 2013; BP 2015; Zhang et al. 2015). These emissions
cause concern regarding their impact on the health of wildlife
and human populations.

Better knowledge of the Hg concentrations in the coals of
China has been achieved. The results for the average concen-
trations of Hg in Chinese coals ranged from 0.15 to 0.20 μg/g
(Ren et al. 2006; Bai et al. 2007; Dai et al. 2012; Tian et al.
2013), which were higher than that of 0.10μg/g in world coals
(Ketris and Yudovich 2009). The coal-bearing regions in
southwestern China are enriched in Hg. As high as 22.5 μg/
g Hg was reported in the coal from the Guizhou Province
(Zhang et al. 2002). Those elevated Hg in coals could result
in significant Hg emissions with high atmospheric Hg depo-
sition occurring in areas inside and downwind of the station-
ary combustion sources, eventually causing risks to the eco-
systems and human health (Xu et al. 2017a). Recent studies
revealed the impact of atmospheric Hg deposition on the sur-
roundings of coal-fired power plants (Xu et al. 2017a; Li et al.
2017) and found that approximately 79% of vegetables and
67% grain samples exceeded the PTWI’s food safety stan-
dards of maximumHg concentrations of 10 ng/g in vegetables
and 20 ng/g in grains (GB 2762-2012). They also found that
rice grain tended to have high MeHg concentrations.

In coal mining areas, gangue is the dominant coal mining
waste. Considering the highest coal production in China, coal
gangue is estimated to reach 4.5–5 Gt with an annual increase
of 0.37–0.55 Gt (Liang et al. 2016). Due to its low heating
value, significant quantities of gangue were stored in open-air
adjacent to coal mining sites. Notably, gangue has a higher
concentration of Hg than coal (Zhai et al. 2015).

Recently, researchers have conducted several studies onHg
released from gangue during the heating process, indicating
that gangue may be an important contributing factor to the
anthropogenic Hg inventory (Zhai et al. 2015; Liang et al.
2014, 2016; Zhao et al. 2017; Wu et al. 2019). Furthermore,
gangue also releases inorganic Hg into aquatic systems (Liang
et al. 2018). Long-term weathering and AMD may enhance
the leakage and release of Hg due to the low pH. Hence, the
legacy Hg in gangue may act as a major source of inorganic
Hg to the surroundings, which can be bio-transformed into
MeHg and accumulate in the local crops. However, how
AMD influence the speciation and bioavailability of Hg and
MeHg in coal mining areas are still poorly understood. Hence,
a better understanding of the levels of Hg contamination,

particularly MeHg, in the environment impacted by the coal
mining activity is necessary.

To address the knowledge gap, we measured the concen-
trations of THg and MeHg in gangue, water, sediment, soil,
and rice from abandoned coal mining areas to evaluate Hg
contamination, distribution, and their influential factors under
acidic condition. The sequential extraction of Hg chemical
forms in gangue, sediment, and soil were investigated to elu-
cidate their mobilization mechanism.

Materials and methods

Study area

The Jiaole coal mine (25° 09′ N, 105° 21′ E) is located 20 km
southwest of Xingren City in the Guizhou Province in south-
western China, and it covers approximately 15 km2 (Fig. 1).
The region is hilly and karstic with an elevation of 1785m. The
climate is characterized as a mild and humid subtropical mon-
soon climate. The average annual temperature is 15 °C, and the
average annual rainfall is 1400 mm. The prevailing wind di-
rection is from the southwest throughout the entire year. The
coal-bearing strata are mainly in the Permian Longtan
Formation. Mudstones, silt-mudstones, and siltstones general-
ly present at the top of the coal layers, which are composed of
clay rock and sandstone mixed with coal and limestone, flinty
carbonate, and siliceous shale, respectively (Wu et al. 2009).
The Lugou River flows through the Jiaole mining district and
has been directly impacted by the historic coal mining activity.
Two tributaries, the Maoshitou and Shitouzhai streams, flow
across the coal mining district and finally flow into the Lugou
River at a confluence in the Jiaole Village.

The coal mining activity in Jiaole experienced approxi-
mately 40 years and closed in the early 2000s. The coal
gangue covers a total area of 1.5 km2 (1.5 km length, 0.5–
1.5 km width). The dominant ore mineral of Jiaole is anthra-
cite, characterized by high levels of Au, As, Hg, and F (Li and
Wu. 2017). Huge gangue piles and waste rocks combinedwith
gangue can be observed. Most of the coal mine solid wastes
were piled along the Maoshitou and Shitouzhai streams with-
out any treatment. The drainage and runoff through the
gangue piles directly flows into tributaries of the Lugou
River. Approximately 3200 people of the Jiaole Village live
downstream, whose staple food is rice locally yielded from
paddies irrigated by acid mine drainage.

Sampling and sample preparation

Sampling campaign was conducted at a total of 42 sites (28
along with mainstream, 14 along the tributaries) in the Jiaole
coal mining area during the rice harvest season in September
2017. Coal gangue samples (n = 39) were randomly collected
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from 5 to 20 cm from gangue piles, and at each sampling site,
the final sample was composed of 3–5 subsamples collected
within an area of 25 m2. Sediment (n = 48) and surface water
samples (n = 33) were collected from the Lugou River as well
as its tributaries. Approximately 100 mL of unfiltered surface
water was collected in a 100-mL borosilicate glass bottle pre-
cleaned by heating at 550 °C for 1.5 h. Sediment samples were
collected from the surface layer (0–10 cm) and composited
from 2 to 3 localities at each site within a 10-m distance along
the river. Paddy soil samples (n = 92) were collected from
farmlands irrigated by the nearby river. The soil samples were
collected using a stainless-steel grab sampler and a plastic
scoop, and each sample was a composite of 3 to 5 subsamples,
for a total sample size of 0.5–1 kg. Simultaneously, rice grain
samples (n = 22) and their corresponding soil samples were
collected. Each rice sample was comprised of at least five
subsamples within an area of approximately 25m2 in the same
paddy field. Sampling information and sample numbers for
each site are listed in Table S1 in the Supporting Materials.

After collection, all solid samples were stored in polyethyl-
ene bags to avoid cross-contamination. In the laboratory, the
soil and sediment samples were air-dried, crushed, and passed
through a 200-mesh sieve for subsequent analysis. For rice, the
polished rice was separated using a mortar and pestle and
ground to 200 mesh (IKA-A11 basic, Germany). Surface water
samples for THg analysis were acidified with ultra-pure HNO3

and forMeHg analysis; they were acidified with ultra-pure HCl
to a final acid concentration of 0.4% (v/v) within 24 h of the
collection (Qiu et al. 2012a). All water samples were stored in
refrigerator (+ 4 °C) and the THg and MeHg in samples were
measured within 28 days after collection.

Analytical methods

Gangue, sediment, and soil

Total Hg For the THg concentrations in gangue, soil and sed-
iment samples, approximately 0.1–0.3 g of sample, were
weighed and placed into a tube with a fresh mixed solution
of HCl and HNO3 (3:1, v/v), followed by heating to 95 °C for
30 min using a water bath. Then, BrCl was added, and the
mixture was heated to 95 °C for another 30 min (Xu et al.
2017b). Afterwards, an appropriate amount of the digested
solution was determined by cold-vapor atomic absorption
spectrometry (CV-AAS, Brooks Rand).

MeHg For soil and sediment MeHg determination, approxi-
mately 0.2–0.5 g of dry sample was extracted with CH2Cl2
after leaching with a saturated solution of CuSO4 and HNO3

(Liang et al. 1996). Then, an appropriate amount of the
digested solution was analyzed by GC-CVAFS according to
US EPA Method 1630 (USEPA 2001).

Fig. 1 Study area and sampling sites
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Hg fractions A modified sequential extraction procedure
(Bloom et al. 2003) was applied to analyze the Hg species in
all of the solid samples. The water-soluble state Hg (F1), fulvic
acid state Hg (F2), humic acid state Hg (F3), nitric acid-
extractable state Hg (F4), and residual state Hg (F5) fractions
were obtained via the extraction process. In brief, approximate-
ly 1.0 g of a solid sample was weighed and placed into a 50-mL
centrifuge tube, and then, 45 mL of the extraction regent was
added for each extraction step. The tube was then shaken for
24 h at room temperature. After that, the solution and the solid
phase were separated by centrifugation at 3500 rpm for 20 min.
The supernatant was removed and preserved in borosilicate
glass for Hg analysis. The detailed extraction procedure is de-
scribed in Table S2 in the Supporting Materials. The Hg was
determined by cold-vapor atomic fluorescence spectroscopy
(CVAFS) according to Method 1631E (USEPA 2002).

X-ray diffractometry The minerals in solid samples were
identified via XRD analysis. The XRD data were collected
on a PANalytical multifunction X-ray diffractometer
(Empyrean, Malvern PANalytical Ltd., United Kingdom)
equipped with an Anton Paar high-temperature accessory
(APHTK-16N) and a 3D PIXcel detector. The XRD measure-
ments were performed in a 2θ range of 4.1–60° in continuous
scanning mode with a 0.026° step size and a counting time of
35 s per step.

TOC and pH in the soil and sediment The potassium dichro-
mate oxidation spectrophotometric method was used to mea-
sure the total organic carbon (TOC) contents of the soil and
sediment samples. The determination of humic acid, and
fulvic acid were performed according to the method reported
previously (NY-T-1867-2010) (Wang et al. 2019). The soil
and sediment pH were measured by transferring 5 g of sample
into 12.5 mL of deionized water and then analyzing the pH
using a pH meter (LeiciZD-2; Shanghai, China).

Surface water

THg concentrations in water were measured after BrCl oxida-
tion and SnCl2 reduction by CVAFS detection according to
Method 1631E (USEPA 1999). For MeHg, water samples
were distilled, followed by NaBEt4 ethylation, Tenax trap-
ping, and GC-CVAFS detection according to Method 1630
(USEPA 2001). The method requires a sequence of distilla-
tion, Tenax trapping, thermal desorption, GC separation, and
CVAFS detection (Brooks Rand Model III, Seattle, USA).

Rice

For rice THg concentration measurements, approximately
0.5–1.0 g of rice sample was weighed and placed into a glass
tube. Then, 5 mL of ultra-pure HNO3 was added, and the

sample was digested at 95 °C in a water bath for 3 h. After
that, a suitable aliquot was measured using CVAFS. For mea-
surement of the rice MeHg concentration, approximately 0.2–
0.5 g of rice sample was digested using 25%KOH at 80 °C for
3 h. Then, MeHg in the rice sample was leached with CH2Cl2
and back-extracted into the water for determination according
to Method 1630 (USEPA 2001).

QA/QC

The QA and QC of the THg and MeHg analyses were
assessed using duplicates, method blanks, matrix spiking,
and reference materials (GBW07405; BCR580, TORT-2).
For gangue and soil samples, the THg in the certified reference
material GBW07405 was measured, and the average concen-
tration of 0.30 ± 0.06 (n = 5) observed was comparable with
the certified value of 0.29 ± 0.04 μg/g. For sediment, THg in
the certified reference material GBW07305a was measured
and the average concentration of 0.30 ± 0.07 μg/g (n = 5) ob-
served was comparable with the certified value of 0.29 ±
0.03 μg/g. The relative percentage difference of all measured
values was less than 5%. For Hg species in all solid samples,
the extraction efficiency was evaluated by calculating the ratio
between the total amount of Hg in the extracted species and
the THg concentration directly measured for the correspond-
ing sample. The recoveries varied from 81 to 96% for gangue
samples, from 92 to 118% for soil samples, and from 90 to
117% for sediment samples. For MeHg in sediment and soil
samples, the BCR 580 was measured, and the obtained aver-
age concentration of 77 ± 8.0 ng g−1 (n = 5) confirmed the
certified value of 75 ± 4.0 ng g−1. The relative percent differ-
ence was less than 10%.

For water samples, the recoveries of matrix spike varied from
94 to 101% for THg and 88 to 109% for MeHg. The detection
limits of THg and MeHg were 0.05 ng/L and 0.007 ng/L, re-
spectively. The relative percentage differences were less than
10% for THg and less than 9% for MeHg in duplicates.

For rice samples, the TORT-2 reference material was used
for MeHg determination, and the MeHg value of 150.9 ±
10.8 ng/g (n = 5) obtained was comparable with the certified
concentration of 152 ± 13 ng/g. Matrix spike recoveries of
THg and MeHg were 97–106% and 101–107%, respectively.
The relative percentage differences were < 10% for THg and
6% for MeHg in duplicates. The detection limits for Hg and
MeHg were 0.01 ng/g and 0.002 ng/g, respectively.

Results and discussion

THg and MeHg in gangue, sediment, and soil

Gangue samples exhibited highly varied THg concentrations,
ranging from 0.37 to 35 mg/kg with an average of 11 ±
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8.4 mg/kg. The total Hg in the sediment samples ranged from
0.15 to 4.4 mg/kg with an average of 1.3 ± 1.3 mg/kg, with the
exception of sample X02, which contained a concentration as
high as 19 mg/kg (Table S3 in the Supporting Materials). In
contrast, paddy soils contained slightly low THg concentra-
tions of 0.16–0.91 mg/kg with an average of 0.40 ±
0.22 mg/kg (Table 1). Generally, along the water flow, THg
concentrations presented the order of gangue > sediment >
soil. The concentrations of THg in the gangue samples in
the present study were much higher than that in gangue sam-
ples from the Shanxi Province (Querol et al. 2008; Zhao et al.
2008), Shandong Province (Hua et al. 2018), Anhui Province
(Cui et al. 2004; Cai et al. 2008), and InnerMongolia Province
(Liang et al. 2016). The high levels of Hg in gangue were well
consistent with the elevated Hg reported in Xingren coal (Dai
et al. 2006). This is probably due to its high geological back-
ground of Hg within the world largest circ-Pacific
mercuriferrous belt (Qiu et al. 2005), and the elevated levels
of Hg in gangue cause it to be a significant Hg source to the
environmental surroundings.

Sediments collected from sites that were heavily im-
pacted by gangue and its drainage, such as X01-X06,

X09-X11, and X13, as expected, contained high Hg con-
centrations of greater than 1.1 mg/kg, indicating the ripar-
ian gangue Hg source. The high Hg concentrations in
sediment samples generally decreased with increasing dis-
tance away from the gangue piles (Fig. S1). Similarly,
paddy soils collected from upstream sites adjacent to
gangue piles contained higher THg concentrations than
those from downstream sites, suggesting that Hg-
enriched particles are transported from the upstream Hg
source of gangue and/or re-suspended sediment during
flooding and/or irrigation. Compared with the probable
e f fec t Hg concen t ra t ion (PEC) of 1 .06 mg/kg
(MacDonald et al. 2000), the sediments (> 1.1 mg/kg)
could become a threat to dwelling organisms, which con-
stitute the main reservoir of Hg in the aquatic ecosystem
in the Xingren mining area.

Both sediment and soil samples exhibited a wide range of
MeHg concentrations, varying from 0.036 to 7.8 ng/g and from
0.71 to 11 ng/g, respectively. Peak concentrations of MeHg in
sediments were found at sites proximal to gangue piles (X09,
7.8 ng/g) and at sites distances downstream (X20, 5.2 ng/g;
X24, 5.3 ng/g). High percentages of MeHg to THg in paddy

Table 1 Concentrations of THg and MeHg in soil and rice, and other parameters in soil.

Sample ID Soil Rice

THg (mg/kg) MeHg (ng/g) TOC (%) HA (%) FA (%) n-HA (%) pH THg (ng/g) MeHg (ng/g)

X14 0.47 2.2 2.85 0.30 1.2 2.6 4.33 9.4 4.1

X15 0.56 3.2 3.73 0.93 1.2 2.8 4.78 6.0 3.5

X16 0.55 1.7 4.06 1.1 1.3 3.0 4.58 9.5 3.9

X17 0.86 2.8 3.85 1.3 0.74 2.6 5.09 12 4.9

X18 0.91 8.3 3.49 0.89 1.8 2.6 5.62 12 3.6

X19 0.63 11 3.84 0.86 0.97 3.0 5.70 18 8.9

X20 0.62 9.0 3.35 1.1 0.72 2.2 5.94 4.9 2.1

X21 0.61 6.6 3.52 1.0 0.96 2.5 6.09 15 7.8

X22 0.32 1.8 3.34 1.4 0.73 2.0 7.07 4.9 1.3

X23 0.23 1.3 2.82 1.5 0.68 1.3 6.82 5.9 2.5

X24 0.22 1.6 2.62 1.2 0.17 1.4 6.71 8.7 2.3

X25 0.25 1.5 2.65 1.7 0.70 0.95 6.32 7.0 0.96

X26 0.22 0.92 2.78 0.84 0.94 1.9 6.64 5.0 0.71

X27 0.22 1.3 3.01 0.83 0.61 2.2 6.78 3.9 0.94

X28 0.20 0.71 2.33 0.97 0.41 1.4 6.73 3.0 0.85

T07 0.18 3.0 3.31 0.54 1.3 2.8 6.19 7.0 2.2

T08 0.19 2.3 3.61 0.82 0.84 2.8 6.62 8.7 3.8

T09 0.21 3.8 3.28 0.60 1.3 2.7 6.96 22 8.2

T10 0.60 5.3 3.43 0.96 0.37 2.5 6.18 12 5.9

T11 0.41 1.3 2.56 6.23

T12 0.32 2.9 3.91 5.21

T13 0.31 1.6 3.21 7.03

T14 0.16 1.4 2.27 0.72 0.99 1.5 6.92 3.1 1.4

Mean 0.40 ± 0.22 3.28 ± 2.83 2.27–4.06 0.30–1.7 0.17–1.8 0.95–3.0 4.33–7.07 8.9 ± 5.0 3.5 ± 2.5
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soils were found and ranged from 0.31 to 1.8%with an average
of 0.82 ± 0.47%, probably attributed to the in situ favorable
conditions of the pH and organic matter for Hg methylation
(Ullrich et al. 2001; Galloway and Branfireun 2004). The ele-
vated MeHg concentrations as well as their high percentages
could be eventually accumulated and biomagnified in the food
web, posing a potential health exposure risk.

THg and MeHg in water and rice

Surface water samples contained a wide range of THg con-
centrations, ranging from 1.0 to 11 ng/L with an average of
3.8 ± 2.3 ng/L. MeHg concentrations varied widely as well,
from 0.008 to 0.37 ng/L with an average of 0.11 ± 0.093 ng/L
(Table S3). A conversion rate of THg toMeHg as high as 18%
was observed in the water samples, suggesting an active Hg
methylation process in the aquatic ecosystems of the region,
which should be further investigated. Moreover, high concen-
tration of SO4

2− (1370 ± 314 mg/L) in Maoshitou Reservoir
and downstream in Lugou River (419 ± 449 mg/L) were re-
ported by our group (Zhang et al. 2013). The high SO4

2− may
be the key factor promoting the Hg2+ methylation by sulfate-
reducing bacteria (Shipp and Zierenberg 2008). Considering
the elevated concentrations of Hg in the sediment samples as
well as the highest value of THg (X02) being observed at a site
adjacent to the huge gangue piles, high levels of Hg in the
gangue may be the primary Hg source to the local aquatic
systems, which can be attributed to the continually accumu-
lating input of Hg from the untreated tailings by weathering
and/or leaching processes. A positive correlation (r2 = 0.380,
p < 0.005) was found between the sediment THg and water
THg, suggesting that Hg-contaminated sediment might be the
major source of Hg in the water, from which abundant Hg can
be released into overlaying water under the acidic conditions.

Rice samples exhibited high concentrations of Hg, ranging
from 3.0 to 22 ng/g with an average of 8.9 ± 5.0 ng/g for THg
and from 0.71 to 8.9 ng/g with an average of 3.5 ± 2.5 ng/g for
MeHg. High percentages of MeHg to THg were observed in
samples, ranging from 14 to 58% with an average of 37 ±
12%. The highest value of 22 ng/g THg exceeded the
Chinese national permitted limit of 20 ng/g Hg in cereals

(NSA 1994). Compared with the data for samples from sites
impacted by coal-fired power plants (Xu et al. 2017a) and that
for rice observed at the control site (Meng et al. 2010), the
concentrations of THg in rice of the Xingren coal mining area
were high. Elevated THg and MeHg as well as high MeHg
percentages observed in rice grains in the present study im-
plied that Hg released from coal mining can be readily bio-
methylated into MeHg, which can be accumulated in rice
plants (Qiu et al. 2008). This phenomenon indicates that the
coal mining areas with AMD are Hg-sensitive ecosystems.

Mercury speciation in gangue, sediment, and soil
as well as their transforming potential

Five sequential extractions of Hg fractions in gangue, sedi-
ment, and soil samples indicate that the dominant forms of
Hg were F4 and F3, accounting for 14.7–82.5% and 10.1–
68.2% of the THg, respectively (Fig. 2). For gangue, different
Hg fractions followed the order: F4 (82.5%) > F3 (10.1%) >
F5 (5.46%) > F2 (1.6%) > F1 (0.37%). Similar to gangue, Hg
fractions of sediments also had the flowing trend: F4
(49.2%) > F3 (25.7%) > F5 (21.7%) > F2 (3.44%) > F1
(0.057%). However, for paddy soils, Hg fractions followed a
quite different order: F3 (68.2%) > F4 (14.7%) > F2
(8.55%) > F5 (8.15%) > F1 (0.36%). Along the water flow,
from gangue via sediment to soil, F4 showed a decreasing
trend from 82.5 to 14.7%. However, F3 exhibited an increas-
ing trend from 10.1 to 68.2%. Although there were low per-
centages of F2 in gangue, sediment, and soil, an increasing
trend (from 1.6 to 8.55%) could be observed in F2.
Furthermore, in all three media (gangue, sediment, and soil),
significant negative correlations of the percentages between
F3 and F4 were observed (Fig. 3a–c). In all three media, from
gangue via sediment to soil, the dominant fraction changed
from F4 to F3 (Fig. 3d). Due to the dominant role of F3 + F4
(74.9 to 92.6%) in all three media, it could be assumed that the
nitric acid-extractable fraction Hg (F4) can be transformed
into the humic acid fraction Hg (F3) during the transportation.

As shown in Fig. S2, the dominant minerals of quartz,
anatase, kaolinite, and montmorillonite were observed in
gangue, sediment, and paddy soil, suggesting that sediment

Gangue

82.5%

5.46%

10.1%

1.6%
0.37%

Sediment

49.2%

25.7%

3.44%

0.057%
21.7%

Soil

68.2%

8.55%

0.36%

8.15%
14.7%

F4F3F2F1 F5Fig. 2 Percentages of Hg
speciation in gangue, sediment,
and soil
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and soil were impacted by the gangue. In contrast, pyrite rath-
er than jarosite was observed in both the sediment and soil
samples. Both jarosite and pyrite are considered as potential
sources of acid generation in aquatic systems (Liu et al. 2018).
The decomposition of jarosite in gangue can easily release
sulfate and hydrogen ions, producing acidic conditions in
the surroundings (Bigham and Nordstrom 2000). In return,
the acidic conditions would strengthen the desorption of Hg
from the solid into the aqueous phase (Geen et al. 1991;
Nelson and Lamothe 1993).

The roles of organic matter, humic acid, and fulvic
acid under acidic conditions on Hg biogeochemistry
across coal mining areas

Gangue, sediment, and soil samples usually contain the sulfur-
bearing minerals jarosite and pyrite, resulting in sulfuric acid and
strongly acidic environmental surroundings (Javier et al. 2005).
The surface water, flowing through coal mining areas, exhibited
strong acidity, with the pH ranging from 2.0 to 5.1. In addition,
both sediments and paddy soils exhibited low pH values with
averages of 4.3 (range 2.2–7.2) and 5.9 (range 4.3–7.1), respec-
tively. The concentrations of THg in sediment and soil negatively
correlated with the pH values (r2 = 0.409, p < 0.001; Fig. 4a).
The correlation between the THg and pH suggests that signifi-
cant amounts of Hgmight be released from gangue under certain

acidic conditions (Manceau et al. 2018). Moreover, the acidic
conditions can heavily increase the mobility and transformation
of Hg as well as the organic matter in the environment
(Fernández-Martínez et al. 2015). Thus, once the water is used
for irrigation, soils may be contaminated by Hg.

Significant positive correlations between THg and TOC (r2 =
0.271, p < 0.005) as well as between THg and n-HAs (r2 =
0.328, p< 0.0001) were observed, confirming their controlling
role for THg in both sediment and soil (Fig. 4b, c). Significant
positive correlations between THg and TOC (r2 = 0.438,
p < 0.001), THg and n-HAs (r2 = 0.268, p< 0.05) in soil were
observed (Fig. S3). Similarly, THg had significant positive cor-
relations with TOC (r2 = 0.278, p< 0.01) and n-HAs (r2 = 0.416,
p < 0.01) in sediment (Fig. S4). However, in Fig. 4b and c,
highest THg value points can be found, which is highly biased,
once omitting this point, higher r2 values (0.429 in Fig. 4b, 0.546
in Fig. 4c) can be obtained, suggesting the weights of the point
are 15.8% and 21.8% in Fig. 4b and c, respectively. And the
highest values in both Fig. 4b and cwere collected at X02 nearby
the gangue piles, which implied the impact of gangue piles and
indicated that gangue piles could act as the primaryHg sources to
the local environment. No correlation was observed between
MeHg and HAs; however, a significant correlation between the
FAs and MeHg (r2 = 0.185, p = 0.0037) (Fig. 4d) was found.
Those phenomena indicate that a high TOC, particularly n-
HAs in soils, can bind more Hg under certain acidic conditions
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(Bäckström et al. 2003). The phenomena that MeHg shows a
significant correlation with FAs in acidic conditions, HAs in
alkaline conditions may be explained by the properties of HAs
and FAs. It is well known that HAs and FAs are pH dependent,
and HAs is soluble in alkaline conditions rather than acidic con-
ditions (Sparks et al. 1996). In contrast, FAs are soluble in water
under all pH conditions and can still remain in solution after the
removal of the HAs by acidification (Uwayezu et al. 2019).
Thus, in this study, under acidic conditions, HAs bound with

Hg will deposit in the stable state; nevertheless, FAs bound with
Hg in the soluble state, which are more bioavailable than HAs
bound with Hg. This could explain the significant positive cor-
relation between FAs and MeHg as well as the significant posi-
tive correlation between n-HAs and THg observed in the present
study.

Rice THg and MeHg were positively correlated with the
soil TOC (r2 = 0.260, p = 0.023; r2 = 0.348, p = 0.0059;
Fig. 5a). Similarly, rice THg and MeHg show positively
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correlation with soil n-HAs (r2 = 0.292, p = 0.014; r2 = 0.397,
p = 0.0028; Fig. 5b). These phenomena probably indicate that
THg and MeHg binding to soil n-HAs are bioavailable and
can be taken up by rice. In comparison with n-HAs, under
acidic conditions, once Hg or MeHg are absorbed onto soil
HAs, which become stable and are unbioavailable for rice
plant (Bäckström et al. 2003; Xu et al. 2019). However, under
alkaline conditions, both FAs and HAs are generally positive-
ly correlated with the Hg in rice (r2 = 0.372, p < 0.001) (Qiu
et al. 2012b). Thus, it may be concluded that low pH decreases
the solubility of humic acid and then decreases of soluble
organic matter, resulting in low bioavailability of Hg.
Correspondingly, this will cause the similar change of Hg in
rice grain.

Conclusions

This study revealed the contamination and mobility of Hg in
gangue, water, sediment, and soil impacted by coal mining
activities, and it also found elevated THg and MeHg concen-
trations in rice. High THg concentrations in sediments and
soils were mainly a result of flooding and/or weathering of
the abandoned gangue, which represents the major source of
Hg in the area. The dominant Hg fractions in gangue were the
nitric acid-extractable fraction (F4), which showed a signifi-
cantly negative correlation with potassium hydroxide-
extractable fraction (F3), indicating the potential ability of
the transformation between each other under certain acidic
conditions. Positive correlations of soil n-HAs with THg and
sediment, soil, and rice were observed, probably due to acidic
conditions and the specific roles of organic matters.
Significant Hg release from gangue occurs and can cause el-
evated concentrations of both THg and MeHg in rice; thus,
gangue must be appropriately treated. We suggest that Hg in
coal and gangue is readily released and mobilized under acidic
conditions, enhancing the bioavailability and methylation of
Hg in coal mining areas, causing MeHg bioaccumulation in
the food web. High MeHg concentrations as well as its high
percentages in environmental compartments indicate that
areas impacted by coal mining activities are Hg-sensitive eco-
systems. In the future, a more comprehensive study should be
conducted to reveal the fate and transformation of Hg under
certain acidic conditions around other coal mining areas.
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