黔中喀斯特石漠化地区土壤温室气体浓度的时空分布 特征

刘芳^{1,2},刘丛强^{1*},王仕禄¹,吕迎春³

(1. 中国科学院地球化学研究所环境地球化学国家重点实验室,贵阳 550002; 2 百色学院化学与生命科学系,百色 533000; 3. 中国科学院烟台海岸带可持续发展研究所,烟台 264003)

摘要: 2006~2007 年对喀斯特石漠化地区土壤剖面中 CO₂、N₂O 和 CH₄ 的浓度分布进行观测. 结果表明, 土壤剖面中 CO₂、N₂O 和 CH₄ 浓度分别介于 530 2~31512 6、0 27~0 67 和 0 1~3. 5^{4} L°L⁻¹. 总体上, 自地表向下, CO₂ 和 N₂O 浓度逐渐增大, CH₄ 浓度则为逐渐减小, 但在阴冷潮湿的 10、11 月和 1 月, 15 cm 以下土层中 CO₂ 和 N₂O 浓度随着深度的增加逐渐减小, CH₄ 浓度则明 显增加. 土壤温度、水分同时影响剖面中 CO₂、N₂O 和 CH₄ 的时空分布, 但影响效应以及作用的土层深度有所不同. 相关分析结 果表明, 土壤中 CO₂和 N₂O 浓度的时空分布显著正相关(r 为0 780~0 894, p<0 05~0 01), 相关关系受环境因子的影响; CO₂ 和 CH₄ 的时空分布则呈显著负相关关系(r= 330 p<0 01); N₂O 和 CH₄ 的空间分布为互逆关系, 但只在土壤水分较大月份达 到显著水平(r 为-0 829~-0 956, p<0 05~0 01).

关键词:喀斯特;土壤;温室气体浓度;时空变化;黔中地区

中图分类号: X144 文献标识码: A 文章编号: 0250-3301(2009)11-3136-06

Temporal and Spatial Variations of Greenhouse Gases Concentrations in Soils in Karst Stone Desertification Areas in Central Part of Guizhou Province

LIU Fang^{1, 2}, LIU Cong-qiang¹, WANG Shi-lu¹, LÜYing-chun³

(1. State Key Laboratory of the Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences Guiyang 550002 China; 2 Department of Chemistry and Life Science, Baise University, Baise 533000, China; 3 Yantai Institute of Coastal Zone Research for Sustainable Development, Chinese Academy of Sciences Yantai 264003, China)

Abstract: Concentrations of CO₂, N₂O and CH₄ of soil profile_i n Karst Stone Desertification Areas were measured monthly from June of 2006 to May of 2007. The results indicated that the concentrations of CO₂, N₂O and CH₄ varied from 530. 2 to 31512. 6, 0. 27 to 0. 67 and 0. 1 to 3. 5 μ L°L⁻¹. On the whole, with the increase of soil depth, the concentrations of CO₂ and N₂O increased, while CH₄ decreased. However, in the cold and wet October, November and January, the concentrations of CO₂ and N₂O decreased with the depth below 15 cm. In contrast CH₄ had the inverse trend. Soil temperature and moisture were the main factors which had impacts on the temporal and spatial variations of CO₂, N₂O and CH₄ concentrations in soil profile, but the influence impacts were different. The correlation analysis showed that there was positive correlation between CO₂ and N₂O (*r* 0. 780·0. 894, *p* < 0. 05·0. 01), while correlation degree was controlled by environmental factors in different months. CH₄ concentrations in soil had significantly negative correlation with CO₂ concentrations(*r*= 330, *p*<0. 01), but correlated with N₂O concentrations just in moisture months(*r*=0. 829--0. 956, *p*<0. 05-0. 01).

Key words: Karst; soil; greenhouse gas concentration; temporal and spatial variation; central part of Guizhou Province

二氧化碳、甲烷和氧化亚氮是大气最主要的3 种温室气体,对全球变暖的贡献超过了70%^[1].土 壤是 CO₂、N₂O 和 CH₄ 重要的生物源和汇,据估计土 壤及其土地利用方式的改变等过程对大气中 CO₂、 N₂O 和 CH₄ 的净释放量的贡献率分别为5%~ 20%、30%和 80%~90%^[2].土壤剖面中气体的时空 分布直接影响气体的地-气交换,明确土壤剖面中温 室气体的时空变化规律,有助于更好地了解土壤温 室气体的库、源汇及其产生机制.目前对不同生态系 统土壤剖面中 CO₂、N₂O 和 CH₄ 的时空变化规律及 其主要影响因素的研究多为单独地研究某一种温室 气体,很少考虑相互间的关系.我国南方溶岩区是一 个巨大的碳库,对全球温室气体变化的贡献不容忽 视.贵州位于华南碳酸盐岩出露的中心部位,碳酸盐 岩分布面积有 $1.3 \times 10^5 \text{ km}^2$,其总厚度达8500 m,是 世界碳酸盐岩溶蚀作用强烈的地区之一.因此,本实

21994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

收稿日期: 2008-12-25;修订日期: 2009-06-02

基金项目: 国家重点基础研究发展规划(973)项目(2006CB403200) 作者简介: 刘芳(1980~), 女, 博士, 主要研究方向为土壤温室气体的 地球化学特征, E-mail: liu_fang@mails.gucas.ac.cn * 通讯联系人, E-mail: liucongqiang@vip.skleg.cn

验以黔中喀斯特石漠化地区为研究对象,分析土壤 剖面中 CO2、N2O 和 CH4 浓度分布特征,初步探讨它 们之间的关系,并研究温度、土壤水分对剖面温室气 体浓度分布的影响.

1 材料与方法

1.1 研究区概况

试验地点位于贵州省清镇市王家寨浅碟状峰丛 洼地小流域示范区,是典型的喀斯特生态环境条件. 该区域属亚热带湿润温和型气候,年均气温 14℃, 受季风影响,雨量较为充沛,降水量1 200 mm.采样 点土被不连续,植被覆盖度差,物种较单一,优势物 种为花椒(Zanthoxylum bungeanum)、异叶鼠李 (Rhamnus heterophylla)、悬钩子蔷薇(Rosa rubus)和火 棘(Pyracantha fortuneana).出露岩层为石灰岩,出露 面积70%以上,发育的土壤为棕色的石灰土,土层 浅薄,一般<30 cm, 20cm 土层以下,土壤发育不完 全.土壤理化性质见表 1.

表 1 观测点各土层土壤理化性质

Table 1 Soil physical and chemical characteristics of profile soil

 采样 点	土壤深度 有机碳		有机氮	容重		土壤颗粒/%		
	/em	1%	1%	$/\!\mathrm{g^{\circ}cm^{-3}}$	рп	粘粒	粉粒	砂粒
清镇 灌丛	0~5	4.416	0 369	1. 22	6.33	43 6	41 0	15.4
	5~10	4. 542	0 361	1. 12	6.42	40 6	30 0	29.4
	10~15	3. 255	0 266	1. 04	6.44	42 6	$22\ 0$	35.4
	15~20	2.296	0 214	1. 16	6.46	11 6	30	85.4
	20~25	1. 494	0 144	1. 31	6.45	45 6	26 0	28.4
	25~30	1. 355	0 125	1. 30	6.51	46 5	29 0	24.5

1.2 研究方法

2006年6月~2007年5月,用自制的采样装 置『采集土壤剖面的气体样品(图1).使用内径为6 mm T 字型不锈钢管, 一端密封, 另一端接采样装置. 钻入土壤的底端打磨成尖形,便于插入土壤,其上2 cm 部分均匀分布 2 mm 的通气孔, 便于土壤空气流 入管道.每次采样按5 cm 间隔由浅至深逐层采集5 ~30 cm 土层气体, 使用 100 mL 注射器采集, 用三通 连接转存储于事先抽成高真空(1.0 Pa)的 30 mL 玻 璃气瓶内.样品带回实验室后使用惠普 6890 气相色 谱仪分析,使用自动进样系统,每次进样体积为1 mL.N₂O 的测定使用 Porapak Q 填充柱分离, 电子捕 获检测器(ECD)测定.分离柱和检测器的温度分别 为 50 ℃和 320 ℃, 载气为 Ar-CH₄ (95 % ⁺5%), 流速 20 mL°min⁻¹.CH4 的测定使用 Porapak Q 填充柱分离、 火焰原子检测器(FID)分离检测,分离柱和检测器的 温度分别为 50 ℃和 250 ℃,载气为高纯 N₂,流速 20

 $mL^{\circ}min^{-1}$. CO₂ 经 Ni 催化剂高温催化为 CH₄ 后测 定, 催化温度为 375 [°]C.

电位法测定土壤 pH (H₂O),水土比为 5⁻¹.比重 法测定土壤粒径.用 0.1 mol^oL⁻¹的 HCl 溶液浸泡 24 h 去除土壤无机碳氮后,在 PE2400型元素分析仪 上测定土壤有机质、氮含量.每次采集 气体样品同 时,用温度计同步测定气温和剖面土层温度.用土钻 采集剖面 0~5、5~10、10~15、15~20、20~25、25~ 30 cm 土壤样品,带回实验室用烘干法测定土壤 水分.

数据图表使用 Microsoft Office Excel 2003 和 Origin 7.0 绘制,相关性分析统计分析使用 SPSS 11.5.

2 结果与分析

2.1 土壤剖面中 OO_2 、 N_2O 和 CH_4 的浓度变化

土壤剖面中 CO₂、N₂O 和 CH₄ 浓度分别介于 530.2~31512.6、0.27~0.67 和 0.1~3.5^µL°L⁻¹. 总 体上, 随着土壤深度的增加, CO2 和 N2O 浓度逐渐增 大,CH4 浓度则为逐渐减小(图 2). 由于采样点土壤 浅薄,土壤中 CO_2 、 N_2O 和 CH_4 受到大气的影响, 剖 面中温室气体浓度由上自下形成梯度^[4].在降雨历 时长、雨量较大的 10、11 月和 1 月, 15m 以下 CO2 和 N₂O 浓度随着深度的增加明显减小, 而 CH₄ 浓度 明显增加.由碳酸盐基岩-H2O-CO2 三相构成的岩溶 动力学系统对土壤中的 CO2 的含量具有明显的影 响,降雨后基岩对土壤中CO2的溶蚀消耗作用增 强^[5]:另一方面,在厌氧条件下,土壤中的产 CH4 菌 能以 CO_2 为碳源还原生成 $CH_4^{[6]}$,使剖面中 CH_4 浓 度增大.降雨对底层土壤 N₂O 的影响则主要表现在 促进 N₂O 的溶解^[7],同时形成长期的厌氧环境增加 反硝化反应中 N_2O 进一步还原成 N_2 的几率^[8]

Fig. 2 Variations of greenhouse gases concentrations with the depth in soil profile

底层土壤 N₂O 浓度的降低. 在温度最高的 7、8 月, 底 层中 CH₄ 浓度也要高于表层土壤, 这可能是由于上 层土壤温度较高, CH₄ 氧化菌对 CH₄ 的氧化作用增 大的结果.

2.2 温度和土壤水分对土壤剖面温室气体浓度的 影响

相关分析结果表明,除了表层土壤(0~5 cm), 土壤温度与5~30 cm 土层剖面 CO₂ 浓度显著相关 (图 3),温度是影响土壤剖面 CO₂ 浓度分布的主要 影响因素.随着温度的升高,根系呼吸和土壤微生物 的代谢活动增强,尤其在高温多雨的 6 月份,10 cm 以下土层中的 CO₂ 浓度都超过了10 000 μ L°L⁻¹(图 2).表层土壤中 CO₂ 由于受到大气的影响,对温度和 土壤水分的响应均不显著.全年范围来看,土壤水分 与0~15 cm 土层 N₂O 浓度显著相关(图 4),水分的 增加有利于促进微生物的硝化和反硝化反应⁹.土 壤温度和水分则只与表层土壤(0~5 cm) CH₄ 浓度 显著相关(图 5),温度的升高和水分的降低有利于 提高土壤中,O₂ 浓度,进而促进 (H₄ 的氧化^[10].虽然

温度和水分对底土层中 N₂O、CH₄ 浓度全年的时空 分布影响不显著,但在降雨历时长、雨量较大的秋冬 季节,长期的水淹状况会导致底层土壤成为一个 N₂O 的吸收汇,CH₄ 的产生源(图 2).

3 讨论

3.1 土壤剖面 CO2 和 N2O 浓度分布的耦合关系

度显著正相关.本研究中,土壤中 $CO_2 和 N_2O$ 浓度分 布也呈显著正相关,但在不同的月份回归出来的耦 合关系方程不同(图 6).土壤中 CO_2 主要来自于有 机质的分解和植物根系的呼吸作用,二者分布上的 一致性反映了 N_2O 可能与这一过程有关.土壤中有 机质的分解能够为硝化和反硝化细菌活动提供碳源 和能量^[12],土壤呼吸造成的氧胁迫还可以调节土壤 中 N_2O 的产生和消耗^[13 14];而土壤中氮的生物化学 转化过程也会影响土壤呼吸^[15 16].二者之间的耦合 关系还受到环境因子的影响,在不同的月份耦合关 系方程式不同.6月份,剖面中 CO_2 和 N_2O 受到土壤 温度的负向调控(CO_2 ; r=-0.999, p<0.01; N_2O ;

图 5 0~5cm 土层中 CH₄ 浓度与土壤温度、水分的相关关系 Fig. 5 CH₄ concentrations *versus* soil temperature, water moisture in 0.5 cm

r=-0.909, p<0.05); 1 月和 5 月, 二者与温度、水 分的相关性都不显著; 而在其它月份, 二者则主要受 到土壤水分的正向调控(CO₂: r=0.473, p<0.01; N₂O: r=0.423, p<0.01).

3.2 土壤剖面 CO₂ 和 CH₄ 浓度分布的耦合关系 <u>剖面中 CO₂ 和 CH₄ 的浓度分布规律(图 7)呈现</u> 21994-2018 China Academic Journal Electronic Publ

显著负相关关系. 土壤中 CO₂ 和 CH₄ 的产生和消耗 涉及碳的生物地球化学反应,在一定条件下,二者互 为反应基源. 好氧条件下,土壤对 CH₄ 的氧化主要 由 CH₄ 氧化菌完成,其氧化的最终产物为 CO₂^{1/3};而 在厌氧条件下,土壤中的产 CH₄ 菌又可以利用 H₂ 还原 CO₂ 生成 CH₄¹⁸. 从回归出的关系方程来看,土 壤中 CO₂ 和 CH₄ 之间的互逆关系并非 1 ¹1 的线性关

http://www.cn

ing House. All rights reserved.

系,这可能是由于土壤呼吸本身也会影响 CH₄ 产生和氧化过程¹⁹.

3.3 土壤剖面 N₂O 和 CH₄ 浓度分布的耦合关系

全年土壤中 N_2O 和 CH_4 的浓度分布趋于负相 关关系,但只在土壤水分较大的 6.9、10 月和次年的 1 月达到显著水平(图 8),说明土壤水分增加可以增 强二者之间的联系.6 月和 9 月,土壤剖面 N_2O / CH_4 随着土壤深度的增加而增大/减小(图 2),整个剖面 中表现为产生 N_2O 和消耗大气 CH_4 ;而 10 月和 1 月,15 cm 土层以下 N_2O / CH_4 浓度随着深度的增加

3.4 气候因子对土壤剖面温室气体浓度的影响

土壤剖面中气体浓度分布特征反映了气体产 生、消耗和扩散释放后的综合结果.土壤温度、水分 不仅影响土壤中 CO₂、N₂O 和 CH₄ 的生成、消耗速 率;同时也影响它们在土壤中的迁移和扩散.对于喀 斯特地区,土壤温度、水分同时影响剖面中 CO₂、N₂O 和 CH₄ 的浓度分布,但影响的效应以及作用的土层 深度有所不同:土壤温度是影响土壤剖面 CO₂ 浓度 分布的主要因素,而气候因子对剖面 N₂O、CH₄ 浓度 分布的调控则主要在浅层和表层土壤.虽然土壤水 分对剖面 CO₂ 和底土层 N₂O、CH₄ 浓度分布的影响 不显著,但在降雨历时长、雨量较大的秋冬季节,土 壤水分的增加会导致底层土壤消耗 CO₂、N₂O,产生 CH₄.不仅如此,土壤温度和水分也是影响剖面中 CO₂ N₂O 和 CH₄ 浓度耦合关系的重要因素.尤其是 对土壤 CO2 和 N2O 之间的耦合关系,进一步反映了 二者在土壤中的产生、消耗和扩散同时受到土壤温 度和水分的影响.

逐渐减小/增大(图 2),表现为消耗 N_2O 和产生 CH_4 .

早期学者对土壤 N_{2O} 和 CH_4 通量的监测结果表明 土壤中 N_{2O} 的产生和 CH_4 的消耗相互关联^[20~22], 认

为这主要与 NH4 (和 域 NH3)对 CH4 氧化菌氧化

CH4 的竞争性抑制作用有关^[23, 24], 随着水分的增大,

这种抑制作用增强^[25].本研究结果表明,在厌氧条

件下, 土壤中 $N_{2}O$ 的消耗和 CH_4 的产生同样相互关

联.可见,随着土壤水分的增加,土壤中 N₂O 产生/消

耗和 CH4 消耗 产生的负相关性加强,但要进一步确

定二者相关性的诱因,还需要深入研究.

4 结论

(1)总体上, CO₂ 和 N₂O 浓度随着土壤深度的增加逐渐增大, CH₄ 浓度则为逐渐减小. 但在阴冷潮湿的 10、11 月和 1 月, 持续性降雨导致 15 cm 以下 CO₂ 和 N₂O 浓度随着深度的增加而明显减小, CH₄ 浓度 明显增加.

(2)剖面中 CO₂ 与 N₂O、CH₄ 的时空分布显著正 相关, N₂O 和 CH₄ 的时空分布的互逆性在水分较大 的月份也达到显著水平,表明土壤中碳、氮的生物过 程是紧密关联的.

 CO_2 , N_2O 和 CH_4 浓度耦合关系的重要因素, 尤其是 (3)土壤温度和水分不仅影响剖面中 CO_2 , N_2O

和 CH4 的浓度分布,同时也调控三者间的耦合 关系.

- [1] Shrestha B M, Sitaula B K, Singh B R, et al. Fluxes of CO₂ and CH4 in soil profiles of a mountainous watershed of Nepal as influenced by land use, temperature, moisture and substrate addition [J]. Nutrient Cycling in Agroe cosystems. 2004. 68: 155-164.
- [3] 郑乐平. 土壤气体采样装置的研制[J]. 地质地球化学, 1999, 27(1): 113-114.
- [4] 郑乐平. 黔中岩溶地区草地下土壤 CO₂ 含量的变化特征[J].
 上海环境科学, 2000 19(7): 333-335.
- [5] 潘根兴,曹建华,何师意,等.岩溶土壤系统对空气 CO₂ 的吸收及其对陆地系统碳汇的意义——以桂林、丫吉村岩溶试验场的野外观测和模拟实验为例[J].地学前沿.2000.7(4):580-587.
- [6] 马学慧, 刘兴土. 湿地甲烷排放研究简述[J]. 地理科学, 1995, 15(2): 163-169.
- [7] Huang S, Pant H K, Lu J. Effects of water regimes on nitrous oxide emission from soils[J]. Ecological Engineering 2007, 31:9-15.
- [8] Smith K A, Thomson P E, Clayton H. Effects of temperature water content and nitrogen fertilization on emissions of nitrous oxide by soils
 [J]. Atmospheric Environment, 1998, 32: 3301-3309.
- [9] Ball B C, Crichton I, Horgan G W. Dynamics of upward and downward N₂O and CO₂ fluxes in ploughed or no-tilled soils in relation to water-filled pore space, compaction and crop presence[J]. Soil Tillage Research, 2008, 101: 20-30.
- [10] Einola J M, Kettunen R H, Rintala J A. Responses of methane oxidation to temperature and water content in cover soil of a boreal landfill[J]. Soil Biology and Biochemistry, 2007, 39: 1156-1164.
- [11] Smek M, Elhottová D, Kliměš F. Emissions of N₂O and CO₂, denitrification measurements and soil properties in red clover and ryegrassstand [J]. Soil Biology and Biochemistry, 2004. 36: 9-21.
- [12] Kettunen R Saarnio S, Martikainen P J, et al. Can a mixed stand of N₂-fixing and non-fixing plants restrict N₂O emissions with increasing

 ${\rm CO}_2$ concentration[J]. Soil Biology and Biochemistry, 2007, 39: 2538-2546.

- [13] Baggs E M, Richter M, Cadisch G. Denitrification in grass sward is increased under elevated atmospheric CO₂ [J]. Soil Biology and Biochemistry, 2003, 35: 729-732.
- [14] Azam F, Gill S, Farooq S. Availability of CO₂ as a factor affecting the rate of nitrification in soil[J]. Soil Biology and Biochemistry, 2005, 37: 2141-2144.
- [15] Kessel C V, Pennok D J, Farrel R E. Seasonal variation in denitrification and nitrous oxide evolution at landscape scale[J]. Soil Science Society of America Journal, 1993, 57: 988-995.
- [16] Liikanen A, Ratilainen E, Saanio S, *et al.* Greenhouse gas dynamics in boreal, littoral sediments under raised CO₂ and nitrogen supply
 [J]. Freshw Biol. 2003. 48: 500-11.
- [17] Yavitt B. Methane consumption in decomposing sphagnum-derived peat[J]. Soil Biology and Biochemistry, 1990, 22:441-447.
- [18] Rigler E, Boltenstem S Z. Oxidation of ethylene and methane in forest soils-effect of CO₂ and mineral nitrogen[J]. Geoderma, 1999, 90: 147-159.
- [19] 宋长春,杨文燕,徐小锋.沼泽湿地生态系统土壤 CO₂和 CH₄
 排放动态及影响因素[J].环境科学,2004 25(7):1-6.
- [20] Mosier A, Schimel D, Valentine D, et al. Methane and nitrous oxide fluxes in native fertilized and cultivated grasslands [J]. Nature, 1991, 350: 330-332.
- [21] 张秀君, 徐慧, 陈冠雄. 影响森林土壤 N₂O 排放和 CH₄ 吸收的 主要因素[J]. 环境科学, 2002, **23**(5): 8-12.
- [22] 肖冬梅, 王淼, 姬兰柱, 等. 长白山阔叶红松林土壤氧化亚氮和 甲烷的通量研究[J]. 应用生态学报, 2004.15(10):1855-1859.
- [23] Sitaula B K. Bakken L R. Nitrous oxide release from spruce forest soil-relationships with nitrification methane uptake, temperature, moisture and fertilization [J]. Soil Biology and Biochemistry, 1993, 25: 1415-1421.
- [24] Zhang H, He P, Shao L. N₂O emission at municipal solid waste landfill sites: effects of CH₄ emissions and cover soil [J]. Atmospheric Environment 2009, 43: 2623-2631.
- [25] Boeckx P, Cleemput O V. Methane oxidation in a neutral landfill cover soil: Influence of moisture content, temperature and nitrogenturnov er[J]. Journal of Environmental Quality, 1996 25: 178-183.

参考文献: