文章编号:1008-0244(2001)03-0055-07

陕西省凤县银母寺铅锌矿床原生 地球化学异常特征

黄转莹1.2,路润安2

(1.中国科学院地球化学研究所,贵州贵阳,550002;2.西北有色地质勘查局物化探总队,陕西西安,710068)

摘 要:对银母寺铅锌矿床中钻孔、槽探和坑道工程控制的勘探剖面进行系统采样分析,研究原生异常的三 维空间特征。经研究认为银母寺铅锌矿床的原生地球化学异常具有分带性,垂向分带序列(自上向下)为 (Hg,As,Zn)→Cd→*Cu→ (Pb,Ag),以向分带序列为:Cu→Pb→Ag→Cd→Hg→Zn,横向分带序列(从矿体中 心向两侧)为 Pb→Zn←Cu、Ag、Hg、As←Cu→Pb→Ag→Hg→Zn→F。原生异常的分带指数具有明显变化规律 且可用于预测同类型矿床的剥蚀程度。

关键词:原生异常;分带序列;分带指数;银母寺

中图分类号:P595;P618 文献标识码:A

秦岭造山带泥盆系金、银、多金属成矿带是 我国重要的金属成矿带,其中凤太泥盆纪沉积盆 地中金-多金属矿床引起前人的关注和研究^[1~9], 已建成我国金-多金属矿产工业基地。前人多集 中在矿床的地质、地球化学特征及成因等方面的 研究^[1~9],而对矿床的原生异常研究较少,研究 矿床的原生异常的三维空间特征、分带序列及分 带指数等,对于已知矿床的外围及深部的成矿预 测具有十分重要的指导作用^[10]。在这些已知矿 床的深部和外围进一步开展成矿预测和找矿工作 是保证凤太金-多金属矿产工业基地实现可持续 发展的基础,在这些已知矿床的外围有众多已知 多金属矿(化)点,估计和预测这些已知多金属矿 (化)点的剥蚀程度和深部延伸规模,优选最有望 靶位进行地质勘查是降低投资风险和提高投资效 益的最佳途径。本文仅以银母寺铅锌矿床为例, 研究原生地球化学异常特征和分带序列。银母寺 铅锌矿床原生地球化学异常的分带指数为预测同 类型矿床的剥蚀程度提供了有效的评价指标。

1 区域地质特征

凤太地区出露地层有前泥盆系、泥盆系、石炭 系,二叠系、三叠系、侏罗系和白垩系,以泥盆系为

收稿日期:2001-04-13

第一作者简介:黄转莹(1961-)、女,工程师,地球化学探矿专业。

主,占80%以上的面积。泥盆系可划分为中泥盆 统古道岭组(D₂g)和上泥盆统九里坪组(D₃j),在 上泥盆统星红铺组碎屑岩与中泥盆统古道岭组碳 酸盐岩的过渡部位赋存着中型、大型-超大型金-多金属矿床,如八卦庙超大型金矿床、铅硐山及八 方山大型多金属矿床和银母寺中型铅锌矿床。褶 皱构造总体上由古岔河一般家坝复式向斜和马槽 沟一大箭沟复式背斜组成。形态属紧闭线状褶 皱,区域构造线为 NWW-SEE 向。矿田内有下白 云一都督门、三岔高坡子一狮子坝断裂呈 EW 向 展布,长数十公里。在凤太矿田北侧有太白花岗 岩基大面积出露,但矿田范围内岩浆活动不发育, 仅见狮子岭花岗闪长岩体(γδ¹5)。

银母寺铅锌矿床位于银母寺一大黑沟矿带的 西部,西起尹家沟,东到大地沟全长5 500m,有大 小矿体共11个。含矿地层为中泥盆统古道岭组 和上泥盆统星红铺组,岩性以薄层含炭灰岩、结晶 灰岩、生物灰岩、炭质钙质千枚岩为主。含矿岩石 为硅质灰岩、硅化铁白云岩、石英方解石铁白云 岩、硅质千枚岩。矿体受倒转的银母寺一大黑沟 背斜控制,矿区断裂发育,NWW 向走向断层控制 着矿体分布,NE 向横断层破坏矿体。区内仅见 少量闪长玢岩及钠长斑岩脉,多沿横断层及走向 断层充填,破坏矿体。按其矿体赋存部位不同分 南、北两个矿带(图1)。北矿带中铅锌矿体赋存 于古道岭组与星红铺组接触部位的古道岭灰岩一

维普资讯 http://www.cqvip.com

侧,长3 600m,宽 10~30m, 有大小矿体 5 个, 其 中 I - 1、I - 2、I - 4 号矿体为主矿体, 具工业 意义。 I - 1 号矿体位于 10~17 线, 长约 300m, 控制斜深 310m, 呈似层状, 平均厚度3.68m, 原生 矿石 Pb 平均品位为 3.78%、Zn 平均品位为 11.25%。南矿带中铅及铅锌矿体赋存于中泥盆 统古道岭组上岩段上部薄层灰岩夹生物灰岩的底 部, 距古道岭组与星红铺组界面 100m 左右, 由 6 个矿体组成。其中 14 号矿体位于 23~33 线, 矿 体长度 260m,平均厚度0.99m,矿体呈透镜状、似 层状,矿体上下盘围岩均为含炭薄层灰岩,含矿岩 石为硅化灰岩、石英方解石脉,平均品位 Pb: 1.06%、Zn:2.49%、Cu:0.02%。矿石矿物:原生 矿物有闪锌矿、方铅矿、偶见黄铜矿、磁黄铁矿、黄 铁矿;次生矿物有褐铁矿、白铅矿、菱铁矿;脉石矿 物有石英、方解石、铁白云岩、炭质。围岩蚀变较 弱,主要为硅化、铁白云石化、碳酸盐化。

2 研究方法

对银母寺矿床中典型勘探线剖面经系统钻 孔、槽探和坑道工程控制的勘探剖面进行系统采 样,采样点距地表一般 5~10m,矿化地段加密到 1~2m。钻孔岩芯的采样间距一般在 5~10m,矿 (化)体、蚀变体的岩芯加密到 1~2m。坑道采样 间距 2~4m,一般在采样范围内连续拣块取样合 并。银母寺矿床的研究勘探线共五条,分别为 29 线、27 线、19 线、15 线、13 线。对这五条勘探线的 钻孔、坑道、地表进行系统采样,以研究原生异常 的剖面特征。对 YM 坑道的不同穿脉进行了系 统采样,以研究原生异常的平面特征。从剖面和 平面异常特征,研究矿床原生地球化学异常的三 维空间转征、分带序列及分带指数。

3 矿床原生地球化学异常特征

3.1 指示元素

银母寺矿床中形成异常的元素有 Cu、Pb、Zn、 Ag、As、Sb、Hg、Mn、Ba、Sr、F、Ni、Co、Ga、In 等。 通过对 37 件样品的相关分析,得相关阵(表 1)。

表1 相关系数距阵表

Table 1. Matrix of correlation coefficients

元素	Pb	Zn	Cu	Ag	As	Hg	Mn
Pb	1.00	0.92	-0.20	0.90	-0.10	0.82	- 0.09
Zn		1.00	0.25	0.89	- 0.13	0.92	-0.10
Cu			1.00	- 0.04	0.33	- 0.28	0.16
Ag				1.00	0.10	0.83	-0.15
As					1.00	-0.11	-0.11
Hg						1.00	-0.31
Mn						_	1.00

a=1%(置信度) γ=0.418(临界相关系数)

表 2 初始因子载荷表

Table 2. Loading values of primary factors

	6	-	-
因子	F ₁	F ₂	F,
 Pb	0.945	0.056	0.158
Zn	0.971	-0.000	0.134
Cu	- 0.292	0.747	0.292
Ag	0.924	0.285	0.093
As	-0.112	0.830	-0.254
Hg	0 950	-0.160	- 0.096
Mn	-0.236	-0.047	0.924

从表 1 可以看出 Pb、Zn、Ag、Hg 密切相关, Cu-As基本相关。通过因子分析(见表 2),得如 下结果:F₁因子的主载荷元素为 Pb、Zn、Ag、Hg, 反映了成矿因子的元素组合;F₂因子的主载荷元 **素**为 Cu、As(Ag),反映了后期热液改造因子;F₃ 反映了含矿相带的因子,含矿层位以高 Mn 为特 征,主要为铁白云石化引起。通过相关分析、因子 分析、原生异常的综合对比,银母寺矿床的找矿指 示元素有 Cu、Pb、Zn、Ag、Hg、Cd、F、Mn、As。特 征指示元素有 Cu、Pb、Zn、Ag、Hg、Cd。

图 2 银母寺铅锌矿床 29 线原生异常剖面图 Fig. 2. Profile of primary geochemical anomalies along the No. 29 exploration line in the Yinmusi Pb-Zn deposit.

3.2 原生异常的空间形态特征

剖面上,异常形态基本上为一带状异常,沿 D₂g₂ 与 D₂x₁ 接触部位 50m 范围内分布,Zn、Hg 异常基本上围绕矿体分布,顺层异常可达地表,其 浓度中心明显出现在矿体上部,异常宽度一般在 30~50m,向深部 Zn、Hg 异常逐渐减小,异常强 度减弱(图 2)。Pb、Ag 异常基本围绕矿体分布, 其浓度中心在 I-4 号矿体中(图 2)明显地集中 在矿体下部,由地表向深部异常规模逐渐增加。 在 I-2、I-1号矿体中,Ag的最大浓集中心出 现在矿体上部,中部强度减小,向矿体下部强度逐 渐变大。Pb、Ag在星红铺组中存在着独立的异常 体,反映星红铺组中另一含矿层位。Cu异常一般 仅限于矿体内,矿体中上部异常规模较小,强度 低,向深部异常逐渐增加,并出现最大浓集中心, 在矿体的上下盘围岩中(均为 D₂g₂ 灰岩)有时出 现以 Cu 异常为主的异常体,反映了以 Cu 为主的 独立小矿体,Cu、Pb、Zn 的最大浓集中心在空间 上均不吻合。Cd 异常分布与 Zn、Hg 具有一致 性,最大浓集中心出现在矿体的上部,异常仅限于 矿化带内,在空间上连续性差。Mn 异常基本上 将矿化带包围在其中,其范围宽于矿化带,在空间 上浓度变化不大,主要是含矿岩相的反映。F 异 常在矿体中形成一低值区(<1000 × 10⁻⁶)。F 在近矿围岩中,明显形成一高值区,在矿体下盘灰 岩中高值区呈零星分布,形成中弱强度的异常 (500~1000)、10⁻⁶;在矿体中下部的上盘千枚 岩中,形成中等强度的异常(1000~2000)×

10⁻⁶,强异常(>5 000 × 10⁻⁶,在千枚岩一侧)形 成于矿体上部的上盘围岩中。远矿围岩中 F 则 进入背景含量。As 异常与 Zn、Hg、Cd 分布具有 类似特征,但异常强度与规模较小,As 一般小于 500 × 10⁻⁶。

平面上,矿体的原生异常分布受构造、地层、 蚀变、含矿岩性等控制。异常沿古道岭与星红铺 组接触部位分布,一般异常体主要位于古道岭一 侧,离开矿体异常发育宽度小,千枚岩一侧异常的 发育宽度大,多在 20~30m,整个异常宽 20~ 50m,异常基本上呈带状分布,局部见有分枝状、 似层状,尚见有膨缩现象,横向异常不发育,在纵 向上异常延伸较大。

表 3	崔母寺铅锌矿床原生异常浓度分带()	× 10 ⁻⁶)
-----	-------------------	----------------------

fable 3.	Concentration	zoning of	primary	geochemical	anomalies	in th	ie Yinmusi	Pb-Zn	deposit
----------	---------------	-----------	---------	-------------	-----------	-------	------------	-------	---------

一分	元 🕈	Сц	Pb	Zn	Ag	Hg	As	Ca	F
	内带	100 - 2000	>1 000	>1 000	>1.00	>5 00	$20 \sim 500$	>10	<100
	外带	$40 \sim 100$	75~1 000	$100 \sim 1 000$	0 1~1.00	0.1 - 5.00	10~20	< 10	500 ~ 6 600

表 4 银母寺铅锌矿床 29线分带指数

Table 4. Zoning indices of primary geochemical anomalies along the No.29

exploration line in the YInmusi Pb-Zn deposit

分带指数	元 紫	Cu	РЬ	Zn	Ag	Hg	As	Ca
标高/m	1 515	0 245	0.002	0.016	0.019	0.041	0.011	0.042
	1 425	0.259	0.284	0.484	0.037	0.609	0.731	0.032
	1 420	0.032	0.213	0.470	0.028	0.306	0.203	0.848
	1 235	0.289	0 079	0.002	0.089	0.004	0.015	0 058
	1 105	0.175	0.421	0.027	0.828	0.039	0.040	0.019

3.3 原生异常的分带性

据矿(化)体、近矿围岩的浓度变化特征,可分 为内、外两个浓度带,内带基本上反映了矿(化)体 的异常特征,外带反映了由矿化体、含矿岩相带所 引起的异常。

垂向分带:采用戈里戈良法计算了银母寺矿 床的垂向分带,从上表可以看出分带序列:(Hg、 As、Zn)--Cd--Cu--(Pb、Ag),由于括号内的元素 相互关系不确定,利用变化度($G = \Sigma D_{max}/D_i$),其 顺序按 G 增加顺序排列, $G_{Pb} = 219.20 > G_{Ag} =$ 104.83,所以 Pb 排在 Ag 之前。Zn、Hg、As 最大 值位于上部中段,其顺序按 G 值递减排列, $G_{As} =$ 67.01 < G_{Hg} = 169.86 < G_{Zn} = 260.96。所以 29 线的分带序列是:

 $A_{s} \rightarrow H_{g} \rightarrow Z_{n} \rightarrow C_{d} \rightarrow C_{u} \rightarrow P_{b} \rightarrow A_{g_{o}}$

横向分带:通过对银母寺矿床 YM₁、YM₂ 坑 道及地表剖面的系统研究,横向分带序列(从矿体 中心向两侧)为 Pb←Zn←Cu、Ag、Hg、As←Cu→ Pb→Ag→Hg→Zn→F。

纵向分带:通过对比 35 线、29 线、27 线、19 线、17 线、15 线、13 线、 YM_1 、 YM_2 坑道的资料,经 计算得纵向分带序列是: $Cu \rightarrow Pb \rightarrow Ag \rightarrow Cd \rightarrow Hg$ →Zn。这种纵向分带实际上反映了一种矿物的 纵向分带性,在 YM_1 坑 CM_{28} 穿脉中,可见到大量 的石英一黄铜矿,团块状方铅矿、闪锌矿。到 CM₂₉穿脉以方铅矿、闪锌矿为主,向 CM₃₀、CM₃₁ 穿脉方铅矿逐渐减少,再向外基本以闪锌矿为主。

3.4 分带指数的变化规律

以 970m 标高(海拔高度)为 0m(相对标高),

置信度:	<i>α</i> = 5%
临界相关值:	$\gamma = 0.754$
Y(相对标高)=5+	208.71 (Zn/Pb)
$Y = 111 + 2.33 \langle Zn / $	(Cu)
Y = 137 + 233.15(H)	lg/As)
Y = 27 + 107.62(2 >	$(Z_n/Pb + Cu)$
$Y = 13 + 210.84(Z_n$	+ 100Hg/Pb + 100Ag)
Y = 29 + 74 45(3 ×	Zn/Pb + Cu + 100Ag)
Y = 61 + 160.7 (Zn - 1)	+ Cd + 100Hg/Pb + Cu + 100Ag)

从上述回归方程的关系可以看出:除 Hg/Ag

外,其余各回归方程其可靠程度均在 99% 以上, 说明回归效果显著,其与高程的综合误差在 10~ 银母寺 15 线其分带指数与高程的回归方程

970m 以下基本未见工业矿体,向上相对标高为正

值,其下为负值。银母寺 29 线分带指数与相对标

a = 1% y = 0.874 y = 0.930 y = 0.906 y = 0.946 y = 0.944 y = 0.945 y = 0.945y = 0.945

高的回归方程如下:

50m。如图 3。

显著,其与高程的综合误差在 10~ 如下:	
置信度: a = 5%	$\alpha = 0.878$
Y(相对标高)=226+92.94(2 < Zn/Pb + Cu)	$\gamma = 0.902$
Y = 149 + 219.83(Zn/Cu)	$\gamma = 0.839$
$Y = 157 + 217.52(Z_n + 100Hg/Pb + 100Ag)$	γ = 0.960
$Y = 182 + 173(Z_n + 100Cd/Pb + Cu)$	$\gamma = 0.944$
Y = 228 + 66.72(3 > Zn/Pb + Cu + 100Ag)	$\gamma = 0.907$
$Y = 173 + 160(Z_n + 100Cd + 100Hg/Pb + Cu + 100Ag)$	$\gamma = 0.959$

上述方程中,Zn/Pb 与相对标高的可靠程度 综合误差 10~30m,如图 4。 在 90%,其余各方程可靠程度均在 95%以上,其

图 3 银母寺铅锌矿床 29 线分带指数回归曲线图

Fig. 3. Regression equation of zoning index for the No.29 exploration line in the Yinmusi Pb-Zn deposit.

2001年

图 4 银母寺铅锌矿床 15 线分带指数回归曲线图 Fig. 4. Regression equation of zoning index for the No. 15 exploration line in the Yinmusi Pb-Zn deposit.

4 结 论

银母寺铅锌矿床的原生地球化学异常具有分 带性,垂向分带序列(自上向下)为(Hg,As,Zn)→ Cd→Cu→(Pb,Ag),纵向分带序列为:Cu→Pb→ Ag→Cd→Hg→Zn,横向分带序列(从矿体中心向 两侧)为 Pb←Zn←Cu、Ag、Hg、As←Cu→Pb→Ag →Hg→Zn→F。原生异常的分带指数具有明显变 化规律且可用于预测同类型矿床的剥蚀程度。以 上分带指数与相对高程的回归方程可以用于对与 银母寺铅锌矿床同类型矿(化)点的剥蚀程度进行 估计,预测其深部的规模,以判断和预测与银母寺 铅锌矿床同类型矿(化)点的深部工业规模和价 值,优选最有望靶位进行地质勘查,降低投资风 险,提高投资效益。

参考文献

- [1] 王俊发,张复新,炎金才,等.秦岭泥盆系层控金属矿床[M].西安;陕西科学技术出版社,1991.2~71.
- [2] 王集磊,何伯墀,李健忠、等。中国秦岭型铅锌矿床[M].北京:地质出版社、1996、1~125.
- [3] 王 相,唐荣杨,李 实,等,秦岭造山与金属成矿[M],北京:冶金工业部出版社,1996.1~185.
- [4] 方维查. 陕西凤县铅硐山大型铅锌矿床矿物地球化学研究[J]. 矿物学报, 1999, 19(2): 198~205.
- [5] 方维萱,卢纪英,张国伟. 南秦岭及邻区大陆动力成矿系统及成矿系列特征与找矿方向[J]. 西北地质科学,1999,20 (2):1~16.
- [6] 祁思敬,李英. 南秦岭晚古生代海底喷气-沉积成矿系统[J]. 地学前缘, 1999、16(1):171~179.
- [7] 方维萱. 陕西铅铜山大型铅锌矿床热水沉积岩相特征[J]. 沉积学报,1999,17(1):44~50.
- [8] 方维萱,黄转莹,刘方杰.八卦庙超大型金矿床构造~矿物-地球化学[J].矿物学报,2000,20(2):121~127.
- [9] 方维萱,张国伟、芦纪英,等。秦岭泥盆纪沉积盆地形成、演化与热水成岩成矿[J]. 西北大学学报(自然科学版), 2000,30(4):122~129.
- [10] 方维萱. 陕西省凤太多金属矿床成矿成晕模式及地球化学找矿预测系统[A]. 阮天健,吴昌荣,朱有光. 第四届勘查地球化学学术讨论会论文远编[C].中国地质大学出版社、1991,49~55.
- [11] 杨海棠. 秦岭银母寺铅锌矿床含矿地层沉积环境探讨[J]. 岩相古地理,1996,16(4):50~55.

61

CHARACTERISTICS OF PRIMARY GEOCHEMICAL ANOMALY FOR YINMUSI Pb-Zn DEPOSIT, FENGXIAN, SHAANXI PROVINCE

Huang Zhuanying^{1,2}, Lu Runan²

(1. Open Lab of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002;
2. Institute of Geophysical and Geochemical Exploration, CNNC, Xi'an 710068)

Abstract

Characteristics of primary geochemical anomaly in three dimensions for the Yinmusi Pb-Zn deposit, Fengxian, Shaanxi Province, are described in this paper. The geochemical samples were collected from drill-hole, trench and adit in the Yinmusi Pb-Zn deposit. Typical zoning of primary geochemical anomalies is recognized in the Yinmusi Pb-Zn deposit. Sequence of lateral zoning (from the upper part downward) is (Hg, As, Zn) \rightarrow Cd \rightarrow Cu \rightarrow (Pb,Ag); that of vertical zoning is Cu \rightarrow Pb \rightarrow Ag \rightarrow Cd \rightarrow Hg \rightarrow Zn; and that of cross zoning(from the center of an orebody to both sides) is Pb \leftarrow Zn \leftarrow Cu, Ag,Hg,As \leftarrow Cu \rightarrow Pb \rightarrow Ag \rightarrow Hg \rightarrow Zn \rightarrow F. Zoning index of primary geochemical anomaly can be used to evaluate the denudation extent of Pb-Zn deposits of the same type.

Key words: primary anomaly; zoning sequence; zoning index; Yinmusi