贵州典型岩溶流域水循环驱动的 岩溶碳汇通量及其主控因素分析

曾 $\overline{\mathbf{L}}^{12}$,赵 $\overline{\mathbf{W}}^{12}$,杨 睿¹²,刘再华^{12,*}

(1. 中国科学院地球化学研究所 环境地球化学国家重点实验室,贵阳 550081;2. 中国科学院普定喀斯特生态系统观测研究站,贵州 普定 562100)

摘 要:利用高分辨率水文水化学自动记录仪 对地处湿润亚热带季风气候条件下的贵州省黔南峰丛洼地区的板寨和黄后, 以及位于黔中高原面上丘原区的后寨3个岩溶流域进行了为期6年半(2007年5月至2013年10月)的连续监测。结合流域 出口水中主要化学组分的野外滴定与室内分析实验,建立了水中碳酸氢根、钙和镁等主要离子与电导率之间的线性相关关 系,进而获得了高时间分辨率的水中 CO₂分压、方解石饱和指数和岩溶碳汇通量等指标。数据统计分析发现:(1)板寨、黄后 和后寨岩溶流域的多年平均岩溶碳汇通量分别为29、33和39t-CO₂km⁻²•a⁻¹;(2)岩溶流域出口水中碳酸氢根离子具有化学 稳定性行为,流量是流域岩溶碳汇通量的主控因子。

关键词: 岩溶流域; 岩溶地下河; 碳汇通量; 化学稳定性行为; 径流

中图分类号: X141; X143 文献标识码: A 文章编号: 1672-9250(2017) 01-0074-10 doi: 10.14050/j.cnki.1672-9250.2017.01.010

全球碳循环研究是深入了解气候变化内在机制的重要基础。当前全球碳循环模型中的全球碳收支不平衡,存在陆地遗失碳汇8~12×10⁸ tC/a^[1], 而降低此模型中的不确定性是准确预测未来大气 CO₂ 浓度变化的前提条件。岩溶碳汇可能是陆地遗 失碳汇的重要组成部分^[2],对其进行深入研究意义 重大。前人在岩溶碳汇研究方面已做了大量工作, 估算出全球岩溶碳汇通量可能高达 6.08~8.2× 10⁸ tC/a^[3-4],该值不但与陆地遗失碳汇量相当,而 且这一碳汇很有可能会随着全球大气 CO₂ 的升高 和水循环强度的加剧而增大^[5]。如此量级的全球 岩溶碳汇不应在现代碳循环研究中被忽视。

岩溶碳汇是与全球水循环相伴生的重要环境 效应之一 随着高分辨率水文水化学自动监测技术 的日益提高 使得我们能在更高分辨率的时间尺度 上对岩溶碳汇机制进行研究。近年来 利用水文水 化学自动监测技术开展的岩溶碳汇研究日益见诸 于报道 其中具有代表性的研究是在贵州省黔南州 荔波县板寨岩溶流域开展的,发现岩溶流域的排泄 量是岩溶碳汇的主控因素^[6-8],这一结论的主要依 据是将瞬时岩溶碳汇通量分别与流量和水中重碳 酸根离子浓度进行线性相关分析,从相关系数的高 低来判断岩溶碳汇通量的主控因素。本文拟总结 近年来我们利用水文水化学自动监测技术所取得 的数据,统计贵州省典型岩溶流域的多年平均岩溶 碳汇通量,并利用相关的数理统计理论对水循环是 岩溶碳汇通量主控因子的这一认识进行理论分析。

1 研究区概况

研究所涉三个岩溶流域——板寨、黄后和后寨 岩溶流域分别位于贵州省的荔波县、独山县和普定 县,前两个流域地处贵州高原向广西盆地过渡的斜 坡地带,属黔南峰丛洼地地貌区,第三个处于贵州 高原面上的峰林盆地地貌区。三个流域的气候类 型相似,都属湿润亚热带季风气候。

1.1 板寨岩溶流域

板寨岩溶流域为一典型的地下河系统(图1,

收稿日期: 2016-10-08; 改回日期: 2016-11-20

基金项目:国家重大科学研究计划(2013CB956703)国家自然科学基金项目(41673129、41003056、41430753和41103084)贵州省科学技术基金项目(黔科合 SY 字[2013]3163 号)。

第一作者简介:曾成(1979-),男 副研究员,主要从事岩溶水文地质研究。E-mail: zcchampion@qq.com.

^{*} 通讯作者: 刘再华(1963-) ,男 研究员,研究方向为岩溶水文生物地球化学与全球变化。E-mail: liuzaihua@vip.gyig.ac.cn.

Fig.1 Sketch hydrogeological map of Banzhai Karst Subterranean stream

25°12′~25°15′N; 107°55′~108°05′E; 出口海拔 534 m),流域面积为19 km²。岩性主要为石炭系 中、下统白云质石灰岩,地貌形态为峰丛洼地、峰丛 谷地。属亚热带季风气候,年均降水量为1569 mm, 每年5月至10月间的降水量约占全年降水量的 80.5% 年平均气温为18.3℃(由安放于流域出口 的小型自动气象站监测,统计时段为2008 年至 2012年)。流域内峰丛山体上基岩裸露,土壤浅薄 且分布不连续,山体的石质坡地上覆盖有浓密的原 生林。人类农业活动微弱,流域内耕地面积比例仅 为5%,大部分耕地主要分布于洼地底部的小块平 地上。

1.2 黄后岩溶流域

黄后岩溶流域中地下河系十分发育,为一典型 的岩溶地下河系统(图 2,出口位置:107°41′E;25° 16′N;海拔722 m),流域面积257 km²。区内主要出 露石炭系石灰岩,并分布有少量二叠系砂页岩,补 给区地貌形态主要为峰林平原,排泄区主要为峰丛 洼地。年均降水量为1425 mm,每年5月至10月间 降水量占年降水量的78.1%,年平均气温为15℃ (由安放于流域出口的小型自动气象站监测,统计 时段为2008年至2012年)。区内人类活动强烈,岩 溶石漠化现象严重,耕地、林地和城镇用地分别占 流域总面积的 30.7%、67.7% 和 1.6%。

1.3 后寨岩溶流域

后寨岩溶流域(图 3,105°41′~105°43 ± 26°13′ ~26°15′N,出口海拔1250 m)中发育有地表与地下 两套河流系统,流域面积达81 km²。岩性主要为三 叠系中统关岭组石灰岩、白云岩夹石膏薄层,地貌 类型主要为峰林盆地。属亚热带季风气候,年均降 水量为1225 mm 5月至10月间降水量占年降水量 的86.3%,年平均气温为15.1℃(由安放于流域出 口的小型自动气象站监测,统计时段为2008年至 2012年)。人类活动十分强烈,岩溶石漠化剧烈,耕 地、林地和裸岩地分别占流域总面积的49.0%、 20.4%和27.8%。

2 研究方法

2.1 高时间分辨率水文水化学自动监测

将澳大利亚 GreenSpan 公司生产的 CTDP300 多参数水质自动记录仪于 2007 年 5 月安放在各岩 溶地下河系统的出口处,监测时间间隔设定为 15 min ,对降雨量、相对水位、pH 值、水温(t) 和电导 率(EC) 进行自动记录,测量精度分别达到0.5 mm、 0.01 m、0.01 个 pH 值单位、0.01 ℃和 0.01 μ S/cm (电导率由温度自动补偿至 25 ℃的值)。流量(Q)

由 CTDP300 自动记录的相对水位值通过相应的堰 流公式或流量-水位关系计算获得。

2.2 水样采集及其化验

一般按月对水样进行采集。水样室内分析项 目主要包括: K⁺、Na⁺、Mg²⁺、Cl⁻和 SO₄²⁻离子浓度, 由中国科学院地球化学研究所环境地球化学国家 重点实验室测试。其中阴离子由美国 Dionex 公司 产的 ICS-90 型离子色谱仪测定; 阳离子则用美国 Varian 公司产的 VBTA MPX 型电感耦合等离子体--光发射光谱仪测定。

由于岩溶水的 pH 值、水温、电导率、[Ca²⁺]、 [HCO₃]随环境变化迅速,因此这些参数须在现场 测定。具体方法是在下载 CTDP300 多参数水质自 动记录仪所监测的高时间分辨率数据的同时,用德 国 Merck 公司生产的碱度测试盒和 Ca²⁺测试盒在野 外现场滴定岩溶水中的 HCO₃ 和 Ca²⁺的浓度(精度 分别达到0.1 mmol/L(或6.1 mg/L 和4 mg/L)),并 选取 CTDP300 所记录数据中与水样采集时间相对 应的 pH 值、T 和 EC 等物理化学指标。

2.3 水中 CO₂ 分压和方解石饱和指数计算

利用 WATSPEC 程序批量计算水中 CO₂ 分压 (p_{CO_2}) 和方解石饱和指数(SI_c)^[9]。

水中二氧化碳分压(
$$p_{co_2}$$
) 计算公式为:
$$p_{co_2} = \frac{[HCO_3^-][H^+]}{K_1 K_{co}}$$
(1)

式中, K_1 和 K_{CO_2} 为 H_2CO_3 和 CO_2 的平衡常数;

 $[HCO_3^-]$ 、 $[H^+]$ 为离子的摩尔活度。

方解石饱和指数(SI_c)则由下式得出:

$$SI_{\rm c} = \lg \left(\frac{\left[\operatorname{Ca}^{2^+} \right] \left[\operatorname{CO}_3^{2^-} \right]}{K_{\rm c}} \right) \tag{2}$$

式中 K_c 为方解石平衡常数 , $[Ca^{2+}]$ 、 $[CO_3^{2-}]$ 为钙和 碳酸根离子的摩尔活度。当 $SI_c = 0$ 时 ,表示溶液中 的方解石呈平衡状态; 当 $SI_c > 0$ 时 ,表示溶液中的 方解石浓度已超过饱和 ,可能沉淀方解石; 当 $SI_c < 0$ 时 表示溶液对方解石尚未饱和 ,可以溶解更多的 方解石。

岩溶水中 CO₂ 分压和方解石饱和指数主要取 决于 Ca²⁺、Mg²⁺、HCO₃ 离子的浓度以及 pH 值和水 温^[10-11]。在实际计算中,常将 K⁺、Na⁺、Cl⁻、SO₄²⁻等 低浓度离子的平均值作为计算参数。pH 值和水温 可直接利用自动记录仪监测的数据,而对 Ca²⁺、 Mg²⁺、HCO₃等离子的浓度必须采用间接方法进行 估算。在岩溶水中作为主要阳离子的 Ca²⁺、Mg²⁺和 作为主要阴离子的 HCO₃是决定电导率的主要因 素,可依据电导率与 Ca²⁺、Mg²⁺、HCO₃等离子浓度 间的线性相关关系计算相关离子的浓度。

由此,通过 CTDP300 多参数水质自动记录仪监 测的水温和 pH 值,结合 K⁺、Na⁺、Cl⁻、SO₄²⁻ 等离子 的平均浓度(表 1),以及由该自动记录仪所获连续 的电导率数据经线性相关关系(表 2)计算出的 Ca²⁺、Mg²⁺、HCO₃ 等离子的浓度,便可获得连续的水 中 CO₂ 分压(p_{CO_2})与方解石饱和指数(SI_c)。

表1 板寨、黄后和后寨岩溶流域水化学现场测试数据的多年均值与变差系数(2008年1月至2012年12月) Table 1 Multi-year mean values and C.V.s of the hydrochemical data measured in situ of the Banzhai, Huanghou and Houzhai catchments(January 1, 2008 through December 31, 2012)

指标	单位	板寨 均值	$n = 44^{a}$ C.v. ^b	黄后 均值	n = 44 C.v.	后寨地下河 均值	<i>n</i> = 45 C.v.	后寨地表河 均值	n = 45 C.v.
水温	°C	18.22	0.04	19.01	0.03	18.14	0.08	17.74	0.37
$_{\rm pH}$	—	7.83	0.03	7.55	0.02	7.61	0.02	7.89	0.07
\mathbf{K}^+	mg/L	0.44	0.38	0.58	0.39	2.21	0.33	2.81	0.39
Na^+	mg/L	0.57	0.28	0.91	0.66	6.24	0.75	3.06	0.62
Ca ²⁺	mg/L	73.67	0.17	68.86	0.08	96.16	0.18	80.52	0.24
Mg^{2+}	mg/L	16.91	0.17	2.54	0.27	20.08	0.32	17.09	0.32
C1 ⁻	mg/L	1.23	0.45	1.89	0.37	11.44	0.56	7.99	0.33
SO_{4}^{2-}	mg/L	14.83	0.23	15.75	0.33	96.96	0.60	52.78	0.33
HCO_3^-	mg/L	229.05	0.09	182.71	0.07	230.69	0.08	203.45	0.18
电导率	μS/cm	374.68	0.05	322.77	0.03	560.33	0.18	446.92	0.14
$SI_{\rm C}{}^{\rm c}$	—	0.50	—	0.13	—	0.32	_	0.43	—
$p_{\rm co_2}^{\rm d}$	Pa	337.36	0.58	504.44	0.40	526.67	0.32	365.06	0.58

注: a 样本个数; b 变差系数=均方差/均值(对于方解石饱和指数 *SI*_C,没有统计其 C.v.值 原因是 *SI*_C有正有负); c 方解石饱和指数; d 水中 CO₂ 分压。在统计时,为了获得年平均值,特地选取 2008 年 1 月至 2012 年 12 月作为统计时段,而将 2007 年和 2013 年的不满 1 年的监测数据 略去。

表 2 利用自动记录数据计算 $p_{co,}$ 和 SI_c 指标所需的平均离子浓度和线性相关关系

Table 2	Mean minor ion concentrations	(mg/L) and concentration	-electric co	onductivity(EC	C) linear	regression	equations
	for calculations of m	ajor ion concentrations(m	g/L), use	ed for continuo	ous $p_{co.}$		

指标	板寨	黄后	后寨地下河	后寨地表河
K*	0.44	0.58	2.21	2.81
Na ⁺	0.57	0.91	6.24	3.06
Ca ²⁺	0.42×EC-78.95	0.29× <i>EC</i> -20.64	0.119× <i>EC</i> +27.97	0.22×EC-10.83
Mg^{2+}	0.047× <i>EC</i> -0.23	0.02×EC-4.61	$0.041 \times EC - 0.55$	0.02× <i>EC</i> +9.09
Cl-	1.23	1.89	11.44	7.99
SO_4^{2-}	14.83	15.75	0.46×EC-159.76	0.16× <i>EC</i> -23.55
HCO_3^-	0.681× <i>EC</i> -27.33	0.76× <i>EC</i> -72.74	$0.176 \times EC + 128.20$	$0.48 \times EC + 8.71$

1.01					
and SI_{c}	calculation	using	automatically	recorded	data

注: EC 的单位: µS/cm。

2.4 岩溶碳汇通量计算

岩溶地下河系统岩溶碳汇通量的计算拟采用 水化学-径流法^[12]。岩溶作用过程中消耗大气 CO₂ 量的化学式见(3)~(5)式,岩溶碳汇通量计算公式 见(6)式:

$$CO_2(g) \Leftrightarrow CO_2(aq)$$
 (3)

$$CaCO_{3} + CO_{2}(aq) + H_{2}O \Leftrightarrow Ca^{2+} + 2HCO_{3}^{-}$$
(4)
$$CaMg(CO_{3})_{2} + 2CO_{2}(aq) + 2H_{2}O$$

$$\Leftrightarrow Ca^{2+} + Mg^{2+} + 4HCO_3^{-}$$
 (5)

$$CSF = 0.5Q \times [HCO_3^-]44/A$$
 (6)

式(3)为大气或土壤中的气态 CO_2 通过慢转化过程 成为溶解 CO_2 的过程;式(4)与(5)为石灰岩或白 云岩的溶蚀过程;式(6)为岩溶水系统碳汇强度计 算公式,该式中 *CSF*为岩溶碳汇强度(或碳汇通 量);*A*为岩溶流域面积;*Q*为流域排泄量; [H CO_3^{-}]为水中 H CO_3^{-} 的摩尔浓度;44为 CO_2 的分 子量;因子 0.5 表示碳酸盐溶解形成的 H CO_3^{-} 只有 一半是大气成因的碳。

3 结果及分析讨论

图 4 和图 5 分别给出了板寨、黄后和后寨岩溶 流域水文水化学指标的多年变化,清晰地显示出这 些岩溶流域出口的流量、水温、pH 值、[HCO₃]、 SI_c 、 p_{co_2} 和 CSF 等指标具季节性变化规律。由于这些岩 溶地下河系统均属湿润亚热带季风气候,雨热同 期,所以它们的流量峰值出现于雨季;水温雨季较 高,旱季较低; p_{co_2} 随着土壤中生物活动性的季节变 化而显示出雨季高、旱季低的规律性,该值也决定 着岩溶水 pH 值与 SI_c 的变化,使得 pH 值与 SI_c 呈 现雨季低、旱季高的同步变化规律。 [HCO₃]总体 上表现出相对平稳的情势,季节变化不明显,仅在 暴雨期间流量峰值处因稀释作用而有小幅降低,反 映出碳酸盐溶解的快速特征,即碳酸盐的溶解属于 传输控制过程^[13]。

表3中列出了板寨、黄后和后寨这三个岩溶流域 水文水化学指标的多年统计特征值(统计时段为 2008 年至 2012 年,略去了 2007 年和 2013 年不满一 年的数据)。因后寨岩溶流域内地表河子系统的水 化学指标受外界环境的影响较大,所以对后寨地表 河未予讨论。在此,我们仅对这三个岩溶流域中地 下河系统的水文水化学指标的统计值进行讨论。

在地热活动非常弱的地区,地下水水温与当地 的多年平均气温基本一致 ,它可以综合反映岩溶地 下河系统所处环境的热量条件。对于水温指标 ,黄 后>板寨>后寨,表明黄后的热量条件最好,板寨居 中,而后寨较差。pco,是岩溶作用驱动力的重要指 标 ,它不仅取决于岩溶系统的水热条件 ,而且还与 地下含水系统保存 CO₂ 的能力有关。 p_{CO_2} 的排序为 黄后>后寨>板寨,对于黄后岩溶地下河系统而言, 由于其热量条件最好,虽有轻度石漠化现象,但是 其上覆土壤植被中的生物活动性相对较强,所以它 的*p*_{co},较高;板寨岩溶地下河系统虽有较好的热量 条件,且上部覆盖有茂密的原生林,但是由于该系 统发育在纯质白云质灰岩中,成壤条件较差,使得 峰丛山体上岩石裸露、土壤层浅薄,进而形成石质 坡地景观 而厚层土壤仅在岩溶洼地或谷地的底部 零星分布,所以生物成因的 CO, 不能被很好地蓄积 于岩溶系统中,易向大气扩散逃逸,最终导致该系

Fig.4 Dynamic changes of discharge , water temperature , pH , calculated HCO $_3^-$ concentration , SI_c , p_{CO_2}

and carbon sink flux(CSF) from Banzhai and Huanghou karst catchments at 15 min intervals.

统的 p_{co_2} 最低;后寨岩溶地下河系统的 p_{co_2} 居中,主 要原因是该系统发育在不纯碳酸盐岩中,地面以土 质坡地为主,上覆土壤对岩溶系统中的 CO₂ 保存条 件较好。[HCO₃]的排序为后寨>板寨>>黄后,其主 因是白云石和方解石的溶解度差异,白云石的溶解 度大大高于方解石,所以以白云质灰岩为主的后寨 和板寨岩溶地下河系统的[HCO₃]要远高于以石灰 岩为主的黄后岩溶地下河系统。 SI_c 值主要决定了 岩溶水是否具有侵蚀或者沉积碳酸钙的趋势,这些 岩溶地下河系统 $0 < SI_c < 0.30$,表明此时的岩溶水基 本处于碳酸钙饱和状态,且因 SI_c 小于 0.8,故大量 沉积碳酸钙的条件还未具备^[14]。*CSF* 是岩溶强度 的重要衡量指标,它取决于水循环强度和水中碳酸 氢根离子的浓度。*CSF* 的排序为:后寨岩溶流域 (地表河+地下河)>黄后>板寨,板寨地下河系统上 部虽然覆盖有茂密的原生林,但是原生林强烈的蒸 腾作用会降低流域的径流系数,也就是浓密原生林 会使岩溶流域的水循环强度降低,最终导致了较低 的岩溶碳汇通量。

比较 [HCO₃]、流量和 *CSF* 的变异系数 ,发现三 个岩溶地下河系统出口 [HCO₃]的都接近于 0,而流 量的变异系数虽然略大于 *CSF* 的,但它俩的系数总

重碳酸根离子浓度、方解石饱和指数和岩溶碳汇通量的动态变化

Fig.5 Dynamic changes of discharge , water temperature , pH , calculated HCO $_3^-$ concentration , SI_c , p_{co_2}

and carbon sink flux(CSF) from underground and surface stream systems of Houzhai karst catchments at 15 min intervals

表3	这3个岩溶流域的水文水化学自动记录数据统计值	(2008年至2012年)
----	------------------------	---------------

and nyurochemical parameters of the time karst catchinents (2006 timotign 2012)									
长观站名	指标 单位	流量 /(m ³ /s)	径流深 /(m/a)	径流系数	水温 /℃	$P \operatorname{co}_2^{a}$ /Pa	[HCO ₃] /(mg/L)	SI _C ^b	CSF^{c} /(t km ⁻² • a ⁻¹ CO ₂)
	均值	0.22	0.365 2	0.23	18.24	488.25	218.70	0.29	28.84
板寨	$C.V.^d$	4.37			0.03	0.52	0.09		4.05
	\mathbf{N}^{e}	147 899			147 898	147 898	147 899	147 898	147 899
	均值	4.34	0.5326	0.38	18.84	585.19	170.76	0.03	32.81
黄后	C.V.	0.59			0.02	0.37	0.07		0.56
	Ν	175 392			175 392	175 391	175 392	175 391	175 392
	均值	0.99	0.385 4	0.31	18.15	525.80	224.24	0.30	31.20
后寨地下河	C.V.	0.66			0.07	0.27	0.06		0.63
	Ν	151 449			157 975	157 975	151 449	157 975	151 449
	均值	0.26	0.101 2	0.08	17.28	378.58	216.88	0.35	7.93
后寨地表河	C.V.	6.88			0.35	3.08	0.12		6.37
	Ν	162 307			162 648	162 648	162 307	162 648	162 307

Table 3 Statistics on the temporal variations of continuous hydrologicaland hydrochemical parameters of the three karst catchments (2008 through 2012)

注: a 水中 CO_2 分压; b 方解石饱和指数; c 岩溶碳汇通量; d 变差系数 = 均方差/均值; e 样本数。

体上较为相近,且皆比[HCO₃]的要高出近2个数 量级。此外,由图4和图5明显可见*CSF*的变化曲 线形态与流量的曲线形态极为相似。前人对上述 *CSF*和流量数据进行了线性相关分析,并由这两个 变量之间较高的相关系数得出岩溶碳汇的主控因 子是岩溶流域排泄量的结论^[6-8]。下面,笔者将对 上述结论做进一步的讨论。

由式(6) 与表 3 可知,时间序列 *CSF* 是流量 (*Q*) 与 [HCO₃] 两变量的乘积,且自变量 *Q* 的变异 系数远远大于自变量 [HCO₃] 的。由于变异系数是 时间序列数据离散程度(即相对变幅的大小)的表 征参数 因此我们认为时间序列 *Q* 的相对变幅远大 于 [HCO₃] 的。现对 *CSF* 和 *Q* 两个变量的变异系数 之间的关系进行数学分析。

为简化运算符, 令式(6)中的 *C* = [HCO₃],则该式(6)可写为:

$$CSF = 22/A \times Q \times C = 22/A \cdot \overline{Q} \cdot \overline{C} \cdot \frac{Q}{\overline{Q}} \cdot \frac{C}{\overline{C}}$$
(7)

式中, \overline{Q} 和 \overline{C} 分别为流量和 HCO₃浓度的均值,

$$\Leftrightarrow \qquad x = \frac{Q}{\overline{O}} , y = \frac{C}{\overline{C}}$$

则 x 与 y 可看作是与 Q 和 C 两时间序列相对应的 模比系数序列 则有

$$CSF = \alpha xy$$
 (8)

式中,系数 $\alpha=22\overline{Q}\overline{C}/A$

对 z=xy 进行误差分析

由于 x 和 y 两者皆为模比系数序列,其相应的 变差系数和均方差相等,即

$$Cx_v = \sigma_x$$
$$Cy_v = \sigma_y$$

由误差分析理论知:

$$Cz_{v} = \sqrt{\left(\frac{\partial z}{\partial x}\right)^{2} \sigma_{x}^{2} + \left(\frac{\partial z}{\partial y}\right)^{2} \sigma_{y}^{2}}$$
$$= \sqrt{\bar{y}^{2} \sigma_{x}^{2} + \bar{x}^{2} \sigma_{y}^{2}}$$
$$= \sqrt{\sigma_{x}^{2} + \sigma_{y}^{2}}$$
$$= \sqrt{\sigma_{x}^{2} + \sigma_{y}^{2}}$$
$$= \sqrt{\sigma_{x}^{2} \left(1 + \frac{\sigma_{y}^{2}}{\sigma_{x}^{2}}\right)}$$
$$\therefore \quad \sigma_{x} \gg \sigma_{y}$$
$$\therefore \quad Cz_{v} \approx \sigma_{x} = Cx_{v}$$

即因变量 CSF 的变异系数近似相等于 Q 的变 异系数。也就是由 Q 与 [HCO₃]的乘积所构成时间 序列 *CSF*,其曲线的变化形态由相对变幅较大的 *Q* 所决定。图 6 直观地给出了上述变量 *Q*、[HCO₃]和 *CSF* 的变化曲线模式,在降水事件中,流量的相对增 幅远大于[HCO₃]的相对减幅(因稀释效应),由两 者乘积所构成的 *CSF* 的变幅则近似于流量。事实 上 这就是流域的化学稳定性行为,即河流中元素 浓度的变化幅度小于流量的变幅几个数量级^[15]。

图 7 给出了板寨、黄后和后寨三个岩溶流域在 某 2 个月时段内的岩溶碳汇通量与流量和 HCO₃ 浓 度的相关关系。在 $CSF \sim Q$ 平面内,两变量均呈现 极高的线性相关关系,相关系数 r 均在 0.99 以上; 而在 $CSF \sim [HCO_3]$ 平面内,两者的相关性很弱。

实际上,在对 *CSF* 与 *Q* 和 [HCO₃]进行线性相关分析时,采用的是直线相关模型,即

$$y = a + bx \tag{9}$$

式中的待定常数 *a* 和 *b* 一般采用最小二乘法进行求

解。在此 我们仍令 $x = \frac{Q}{\overline{Q}} y = \frac{C}{\overline{C}}$,

作线性拟合模型:

$$xy = a + bx \tag{10}$$

据相关的数理统计理论,该线性拟合模型的相 关系数r(越接近于1,线性相关性越好)为:

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (x_i y_i - \bar{x} y)}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (x_i y_i - \bar{x} y)^2}}$$
(11)

由于 y 的变异系数接近于 0,其变化幅度非常 小,可用 1 近似代替,

$$\therefore \sum_{i=1}^{n} x_{i} y_{i} \approx \sum_{i=1}^{n} x_{i}$$

进而有: $\overline{xy} = \overline{xy} = 1$

81

经推导 有:

$$\sum_{i=1}^{n} (x_i - \bar{x}) (x_i y_i - \bar{x} y) = \sum_{i=1}^{n} x_i^2 - n$$

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - n$$

$$\sum_{i=1}^{n} (x_i y_i - \bar{x} y) = \sum_{i=1}^{n} x_i^2 - n$$

$$\therefore r \approx \frac{\sum_{i=1}^{n} x_i^2 - n}{\sum_{i=1}^{n} x_i^2 - n} = 1$$

以上表明,当有两个时间序列 *x* 与 *y*,若序列 *x* 的变异系数远大于序列 *y* 的(*Cx_x*>>*Cy_x*),则新时间 序列 *xy* 的变异系数与序列 *x* 的相近,且 *xy* 与 *x* 具 有极高的线性相关关系。这也表明,流域化学稳定 性行为(即小变幅的元素浓度和大变幅的流量),必 然会导致岩溶碳汇通量与流量间具有极高的线性 相关性。

4 结 论

本文对贵州省三个典型岩溶流域多年的水文 水化学动态进行了系统研究,结果发现(1)板寨、黄 后和后寨岩溶流域的多年平均岩溶碳汇通量分别 为: 29、33 和 39 t-CO₂ km⁻²·a⁻¹; (2) 岩溶流域出口 水中碳酸氢根离子的化学稳定性行为,必然使流域 水循环成为岩溶碳汇通量的主控因子。 参考文献

- [1] IPCC. Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker T F, Qin D, Plattner GK, et al]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
- [2] Liu Z H , Dreybrodt W. Significance of the carbon sink produced by H₂O-carbonate-CO₂-aquatic phototroph interaction on land. Science Bulletin , 2015, 60, 182–191.
- [3] Yuan D X. The carbon cycle in karst [J]. Zeitschrift fur Geomorphologie Neue Folge , 1997 , 108 , 91-102.
- [4] 刘再华, Dreybrodt W, 王海静. 一种由全球水循环产生的可能重要的 CO2 汇. 科学通报, 2007, 52(20): 2418-2422.
- [5] Liu Z H, Dreybrodt W, Wang H J. A new direction in effective accounting for the atmospheric CO₂ budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms [J]. Earth Science Reviews, 2010, 99(34), 162–172.
- [6] 康志强 ,袁道先 ,常勇 ,等. 岩溶碳汇的主控因子-水循环 [J]. 吉林大学学报(地球科学版) 2011 41(5): 1542-1547.
- [7] 康志强,何师意,冉景丞.茂兰原生森林区岩溶流域水循环碳汇效应[J].地球与环境 2014 A2(3):322-327.
- [8] 曾成 赵敏 杨睿等. 缺土的板寨原始森林区岩溶地下河系统的水-碳动态特征 [J]. 地球科学-中国地质大学学报 ,2012 ,37(2):253 -262.
- [9] Wigley T M L. A computer program for determining the equilibrium speciation of aqueous solutions. British Geomorphological Research group [J]. Technical Bulletin, 1977, 20: 1–40.
- [10] 刘再华, Chris Groves, 袁道先,等.水-岩-气相互作用引起的水化学动态变化研究-以桂林岩溶试验场为例.水文地质工程地质, 2003, (4): 13-18.
- [11] Liu Z H, Groves C, Yuan D X, et al. Hydrochemical variations during flood pulses in the south-west China peak cluster karst: impacts of CaCO₃ -H₂O-CO₂ interactions [J]. Hydrological Processes, 2004, 18: 2423–2437.
- [12] Liu Z H , Zhao J B. Contribution of carbonate rock weathering to the atmospheric CO₂ sink [J]. Environmental Geology , 2000 , 39: 1053-1058.
- [13] White A F, Bullen T D, Vivit D V, et al. The role of disseminated calcite in the chemical weathering of granitoid rocks [J]. Geochimica et Cosmochimica Acta, 1999, 63: 1939–1953.
- [14] Dreybrodt W, Buhmann D, Michaelis J, et al. Geochemically controlled calcite precipitation by CO₂ outgassing: Field measurements of precipitation rates to theoretical predictions [J]. Chem. Geol., 1992, 97: 287–296.
- [15] Godsey S E, Kirchner J W, Clow D W. Concentration-discharge relationships reflect chemostatic characteristics of US catchments [J]. Hydrological processes, 2009, 23, 1844–1864.

Karst Related Carbon Sink Flux Driven by Water Cycle in Typical Karst Catchments of Guizhou Province and Its Main Controlling Factors

ZENG Cheng^{1,2}, ZHAO Min^{1,2}, YANG Rui^{1,2}, LIU Zaihua^{1,2}

(1. State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; 2. Puding Karst Ecosystem Research Station, Chinese Academy of Sciences, Puding 562100, China)

Abstract: Hydrological and Hydrochemical variations of the three karst catchments, Banzhai, Huanghou(both in peak-cluster depression region) and Houzhai(in plateau hilly region) with similar subtropical monsoonal climate in South Guizhou Province were monitored with high-resolution hydrological and hydrochemical automatic data loggers during the period of May 2007–October 2013.Linear correlations between bicarbonate, calcium and magnesium concentrations with electrical conductivity were established with titration in field and chemical analysis in laboratory of major components of discharge waters. The continuous data of CO₂ partial pressure, calcite saturation index and karst related carbon sink were therefore calculated. Statistical analyses show that the annual average karst related carbon sink fluxes in Banzhai, Huanghou and Houzhai karst catchments were 29, 33 and 39 t-CO₂ km⁻²a⁻¹, respectively. There is a chemostatic behavior of bicarbonate ion in the catchments. Runoff(karst river discharge) plays a key role in controlling the karst related carbon sink flux. **Key words**: Karst catchment; Karst subterraneous river; carbon sink flux; chemostatic behavior; runoff