大洋岛屿玄武岩低温蚀变作用及其 对大洋过渡金属循环的贡献

卜文瑞^{1,2,3},石学法²,彭建堂⁴,刘季花²,张铭杰⁵,漆 亮⁴

(1. 中国科学院海洋研究所,山东青岛 266071;2. 国家海洋局 第一海洋研究所海洋沉积与环境地质国家海洋局 重点实验室,山东青岛 266061;3. 中国科学院 研究生院,北京 100039;4. 中国科学院 地球化学研究所,贵州贵阳 550002;5. 兰州大学 资源环境学院,甘肃 兰州 730000)

摘要:用化学方法和 ICP-MS 方法分别对中、西太平洋海山富钴铁锰结壳产出区玄武岩的主元素、 微量元素和稀土元素(REE)含量进行了测定,结果表明,研究区玄武岩经受了强烈的洋底低温蚀 变作用,主元素成分发生了明显的变化,失去了原岩的特征.样品与新鲜大洋岛屿玄武岩(OIB) 极为相似的稀土元素配分模式和微量元素含量特征表明,所研究的岩石属典型的大洋板内玄武 岩. 受洋底低温蚀变作用的影响,样品的 Al_2O_3 , Fe_2O_3 , $MnO_3K_2O_3O_2$ 含量增加, MgO_3FeO_3 的 含量降低. 蚀变作用使大洋岛屿玄武岩中的镁、铁等活动组分大量流失,从而表现出相对富 SiO2 的特征(标准矿物计算结果中出现石英).由于蚀变作用,活动组分的流失使样品的 REE 相对富 集, 而富 REE 铁锰氧化物在玄武岩气孔和裂隙中的沉淀不仅使样品的 REE 含量增大, 而且引起 轻稀土元素(LREE)与重稀土元素(HREE)分馏,表现为 $\sum c(Ce)/\sum c(Yb)$ 值增大.以REE 富集 机制为基础,对样品中铁锰氧化物的沉淀量和单位质量新鲜玄武岩中活动组分的流失量进行了理 论计算,结果表明,因低温蚀变作用所引起的新鲜玄武岩的单位质量亏损为0.150~0.657,而单 位质量新鲜玄武岩中铁锰氧化物的沉淀量为 0.006~0.042. 主元素中以铁、镁的流失亏损最为明 显,新鲜玄武岩中铁、镁的流失比例分别为18.28%~70.95%和44.50%~93.94%,超过了岩石 总量的流失亏损比例(15.0%~65.7%),因而样品相对贫铁、镁. 其他元素的流失量和流失比例 都很好地印证了地球化学研究的结果. 样品中铝、钾、磷负的流失量是由于沸石在岩石气孔中的充 填和岩石的磷酸盐化.理论计算结果和地球化学研究都表明,大洋岛屿玄武岩的低温蚀变向海水 提供了大量金属,这是大洋海水中金属循环的重要环节.

关键词:大洋岛屿玄武岩;低温蚀变作用;大洋金属循环;理论计算;富钴结壳 中图分类号:P512.1;P549⁺.2 **文献标识码:**A **文章编号**:0253-4193(2007)05-0055-14

1 引言

暴露在海底的大洋玄武岩极易与海水发生反应,如玄武岩的橙玄玻璃化作用在熔岩喷发至海底 后就逐渐开始^[1].玄武岩与海水的反应有两种途 径^[2]:发生于 70℃以下的低温透入性风化或海解作 用;发生于 70~400 ℃的高温蚀变作用.低温蚀变 作用更为常见,持续时间更长(>100 000 a),而高 温蚀变作用一般局限于大洋中脊或板内火山附近, 持续时间相对较短(100~10 000 a).玄武岩的低温

收稿日期:2006-03-03;修订日期:2006-10-30.

基金项目:中国大洋协会国际海底区域研究开发"十五"项目"深海铁锰矿床成矿系统及矿集区研究"资助项目(DY105-01-04-02);国家自然科 学基金项目"太平洋水成铁锰沉积的胶体地球化学成矿动力学"资助项目(40376016).

作者简介:卜文瑞(1972---),男,甘肃省宁县人,副研究员,在读博士生,从事海底成矿研究. E-mail: buwenrui@fio. org. cn

蚀变是海底普遍存在的地质作用,至少发生于洋壳 循环 500 m 深度内^[3.4].原始岩石的结构是决定岩石蚀

常较结晶质枕状玄武岩蚀变更快,蚀变程度更深^[6]. 玄武岩与海水的持续反应引起了其矿物组成和 化学成分的改变.玄武岩与海水反应最常见的产物 有橙玄玻璃、黏土矿物(蒙脱石和蒙皂石)、沸石(钙 十字沸石)以及铁的氧化物和氢氧化物^[7,8].玄武岩 与海水的反应通常使玄武岩获得钾、铯、铷、硼、锂 和¹⁸O(玄武岩为"汇",这些元素通常进入蚀变作用 形成的矿物相),而玄武岩则流失钙、镁、硅(玄武岩 为"源")^[9].实验研究^[10]表明,在 300℃时硅酸盐相 中几乎所有的镁、钠、钙、铜、锌和 CO₂ 以及大部分 钾、钡、锶、锰被淋滤出来,铝、硅、钴等元素也明显活 化.玄武岩的海水蚀变作用使钙、铁、锰、铜、锌、硅 等元素从玄武岩迁移进入海水^[11],并从海水进入 沉积物^[6].玄武岩的低温蚀变作用在大洋海水元素

变程度和矿物组合的重要因素^[5],非晶质玄武岩通

维普资讯 http://www.cqvip.com

循环中起着重要的作用.

已有的玄武岩一海水蚀变作用研究^[10,12~15]多 以模拟实验为基础,探讨蚀变作用所引起的玄武岩 成分变化及过程. Pichler 等^[5]研究了南智利海脊 蚀变玄武岩次生矿物的成因和元素的行为,Mukhopadhyay 等^[8]研究了中印度洋盆地结核区蚀变玄 武岩元素含量的变化.本文以中、西太平洋蚀变玄 武岩为研究对象,研究海底低温蚀变作用引起的大 洋岛屿玄武岩成分变化的规律,并定量计算了蚀变 作用引起的玄武岩中元素含量的变化,探讨了大洋 岛屿玄武岩低温蚀变作用对大洋金属循环的贡献.

2 样品和方法

本文研究所用的玄武岩样品由"大洋一号"科学 考察船于 1999 年 DY95-10 航次拖网取得. 样品采 自中太平洋富钴结壳产出区和西太平洋富钴结壳产 出区(图 1). 采样水深介于 2 274~2 880 m.

图 1 取样位置图 括号中的数字为水深

对4块玄武岩样品的显微镜下薄片鉴定发现, 所研究的样品均经受了不同程度的蚀变,其中C9号 样品的蚀变最强,呈褐灰色,气孔较发育,辉石蚀变 为叶蛇纹石和蒙脱石,基质蚀变为蒙脱石(见图2a), 且明显碳酸盐化,薄片中有大量方解石. M55和 C12号样品的气孔发育,具气孔杏仁状构造,气孔大 小一般为0.5 mm,最大可达2 mm,部分气孔中充填 杏仁体. M55号样品中斑晶主要为普通辉石和斜长 石,偶见橄榄石. C12 号样品中的斑晶主要有透辉 石、普通辉石和斜长石,偶见橄榄石. M43 号样品相 对新鲜,呈灰黑色,块状构造,斑状结构. 斑晶主要 有普通辉石和斜长石,橄榄石较少,偶见黑云母、

样品的基质多脱玻化,薄片中有大量针状和不 规则状磁铁矿析出,副矿物主要为磷灰石,偶见斜 锆石和金红石.沿暗色矿物边缘常析出磁铁矿(见 图 2b),橄榄石多伊丁石化而仅保留其假象(见图 2c),有时有蛇纹石化.岩石气孔中多有沸石充填 (图 2d),沿岩石裂隙和气孔壁也常见铁锰质微结核 (图 2e)或铁锰氧化物沉淀(图 2f).

样品的分析测试由中国科学院地球化学研究所

e 120 μm 完成.利用 Finningan MAT ELEMENT 型高分辨 率电感耦合等离子体质谱仪(ICP-MS)测定微量元 素和 REE,相关分析方法和实验步骤见文献[16]. 主元素测定通过化学方法完成.

图 2 蚀变玄武岩矿物组合和构造特征

a. 辉石蚀变残余,边缘蚀变为蒙脱石,中心蚀变为叶蛇纹石,4×10(+)(C9号);b. 普通辉石边缘大量析出磁铁矿,20×10(-)(M55号);c. 伊丁石化橄榄石,20×10(-)(C12号);d. 气孔中之沸石沉淀,呈环带状,20×10(+)(C12号);e. 气孔中之铁锰质微结核,10×10 (-)(M55号);f. 气孔中之铁锰质沉淀,10×10(-)(C12号)

3 结果

岩石中的主元素、REE 和微量元素的含量及相 关特征参数分别列于表 1 和 2.

3.1 主元素特征

因海底蚀变作用,样品表现出烧失量(LOI)大 (4.90%~10.4%)、CO₂含量高(1.00%~1.70%) 等特征(表 1).根据显微镜下薄片观察,样品中有大 量方解石.本文在全部扣除岩石中的LOI和CO₂含 量,并以方解石(CaCO₃)中CaO和CO₂比例扣除部 分CaO含量,将其余氧化物含量重新换算为100% 的基础上,计算了岩石化学参数和CIPW标准矿物 的含量(表 1).

长日日

中、西太平洋海山 4 个玄武岩样品以低 SiO₂含量 为特征,其含量为 40.37%~41.39%,低于玄武岩中 SiO₂含量的下限(43%).与大洋岛屿玄武岩(OIB)^[17] 和大洋中脊玄武岩(MORB)^[18]相比,样品明显富集 Al₂O₃,Fe₂O₃,MnO,K₂O,P₂O₅,其平均含量分别为 17.42%,10.95%,0.68%,1.55%和 1.89%,亏损 MgO 和 FeO,且变化范围大,分别为 1.50%~ 5.40%和 0.55%~0.87%(表 1,见图 3),尤以 MgO 的低含量最为突出,不仅低于 OIB 值(9.32%)^[17]和 MORB 值(9.67%)^[19],而且明显低于洋壳中的相应 值(7.7%)^[20].样品中的高 MnO 含量是由其中高锰 含量的铁锰氧化物的沉淀引起的^[8].

H¥ F F

				OID2) MODD	44 志		件吅写				OIB2)	MORB			
	C9	C12	M43	M 55	OID	old more ;	和九		C9	C12	M43	M55	OID	WORD	
				数据来调	į				数据来源						
		本	文		[17]	[18]	[19]			z	文		[17]	[18]	
$c(SiO_2)$	40.97	40.87	41.39	40. 37	46.53	48.77	13. 41	$c(Na_2O+K_2O)$	5. 53	3.85	2. 94	4.36	3.66	2.51	
$c(TiO_2)$	2.37	2.75	2.17	2.30	2.25	1.15	2.22	AR	1.52	1.38	1.23	1.34	1.35	1. 20	
$c(Al_2O_3)$	14.64	16.30	18.19	20.55	14.53	15.90	3.19	c(Q)	6.73	11.35	4.58	10.26	0.00	0.00	
$c(Fe_2O_3)$	10.25	11.20	11.63	10.70	3.15	1.33	25.43	c(C)	0.97	6.26	0.94	8,91	0.00	0.00	
c(FeO)	0.55	0.60	0.87	0.70	9.51	8.62		c(Or)	14.57	8.31	8.33	9.66	5.20	0.47	
c(MnO)	1.42	0.75	0.26	0.28	0.19	0.17	27.11	c(Ab)	25.91	20.66	12.94	23.08	20.84	20.56	
c(MgO)	1.50	4.70	5.40	2.20	9.32	9.67	2.12	c(An)	20.48	19.52	40.63	21.81	24.57	32.24	
c(CaO)	11.60	6.20	9.60	7.50	10.34	11.16	3.32	c(Ne)	0.00	0.00	0.00	0.00	1.45	0.00	
c(Na ₂ O)	2.77	2.10	1.40	2.42	2.78	2.43	2.30	c(Di)	0.00	0.00	0.00	0.00	20.10	18.29	
$c(K_2O)$	2.23	1. 21	1.29	1.45	0.88	0.08	0.78	c(Hy)	4.13	13.61	14.69	6.17	0	10.59	
$c(P_2O_5)$	4.33	0.93	0.63	1.67	0.29	0.09	0.98	c(O1)	0.00	0.00	0.00	0.00	18.10	12.90	
LOI	4.90	10.35	6.00	8.06				c(I1)	4.64	3.34	2.61	2.34	4.27	2.18	
$c(\mathrm{CO}_2)$	1.70	1.25	1.00	1.10				c(Hm)	11.33	13.02	12.70	12.06	0.00	0.00	
$c(Fe_2O_3)/c(FeO)$	18.64	18.67	13.37	15.29	0.33	0.15		c(Ru)	0.18	1.44	0.99	1.36	0.00	0.00	
c(Fe)	8.40	9.66	9.63	9.05	9.60	7.64		c(Ap)	10.45	2.36	1.50	4.11	0.63	0. 20	
σ	13.35	3.28	3.91	7.63	3.79	1.09									

表 1 中、西太平洋蚀变玄武岩主元素含量(%)、岩石化学参数及 CIPW 标准矿物含量(%)¹⁾

1) 以主元素的 LOI 及碳酸盐的校正值计算.2) 为 28 个样品的平均值.

 $c(Fe^{3+})/c(Fe^{2+})$ 比值和水的含量是度量玄武岩 蚀变程度的重要参数,根据 $c(Fe^{3+})/c(Fe^{2+})$ 比值和 水的含量,Hart^[21]将低温蚀变作用划分为四个阶段. 随着蚀变程度的增强,蚀变玄武岩中的 $c(Fe_2 O_3)/c(FeO)$ 比值增大,水、K₂O的含量升高,MgO含量降 低^[22].大洋新鲜玄武岩中的 $c(Fe_2 O_3)/c(FeO)$ 之比 值和水的含量分别为 0.1~0.3 和 0.6%~1.1%,— 般不超过 0.2 和 1%^[23],蚀变作用使玄武岩的 Fe³⁺ 含量增加, Fe²⁺含量降低^[24], 从而c(Fe₂O₃)/c(FeO) 之比值升高.与 OIB 和 MORB 相比, 样品中的 Fe₂O₃含量(10.25%~11.63%)明显偏高, FeO 含量 (0.55%~0.87%)明显偏低, c(Fe₂O₃)/c(FeO)比值 (13.37~18.67)高出 OIB (0.33)和 MORB (0.15) 40~125 倍(表 1),表现出强烈氧化蚀变的特征, 样 品 LOI 高的含量(4.90%~10.35%)也是岩石强烈蚀 变的表现.

图 3 玄武岩中主元素 OIB 标准化蛛网图 OIB 值据文献[17], 主元素经 LOI 和碳酸盐校正

CIPW 标准矿物含量计算表明,样品的标准矿 物组成与 OIB 和 MORB 明显不同(见表 1),表现 为相对富集 SiO₂ 和 Al₂O₃,标准石英(Q)和刚玉 (C)的含量分别介于 4.58%~11.35%和 0.94%~ 8.91%,平均分别为 8.23%和 4.27%.与 OIB 相 比,样品中无标准橄榄石(OI)[2(Mg,Fe)O・ SiO₂]出现,而存在标准紫苏辉石(Hy)[(Mg,Fe)O O·SiO₂],这是岩石相对富硅、SiO₂饱和的表现; 样品中标准透辉石(Di)[CaO·(Mg,Fe)O· SiO₂]的缺失是相对贫 CaO(硅酸盐相中的 CaO 亏 损,其含量为 4.61%~9.44%,其余 CaO 以CaCO₃ 形势存在,其含量为 $1.27\% \sim 2.16\%$)的表现^[25]. 样品中标准赤铁矿 (Hm)高的含量 ($11.33\% \sim 13.02\%$),与其高的 $c(Fe_2 O_3)/c(FeO)$ 比值相对应,这是岩石经受氧化作用的表现.样品较 OIB 和 MORB 高的标准磷灰石 (Ap)含量 (见表 1)与其 P₂O₅的高含量相对应,是磷酸盐化在岩石地球化学 特征上的体现.

岩石的 Rittmann 指数(σ)介于 3.28~13.35, 碱度率(AR)为 1.23~1.52, 全碱含量(Na₂O+ K₂O)为 2.94~5.53%(见表 1).在 TAS 图解^[26]中 投点于碱玄岩、碧玄岩区(图略),属碱性系列.

3.2 稀土元素特征

样品的 REE 含量高,变化范围大,REE 总量 [$\sum c$ (REE)]为 229.49~497.17 µg/g,平均为 335.36 µg/g(表 2).不同样品 REE 总量的差异可 能是其蚀变程度不同的表现,REE 总量愈大,岩石 经受的蚀变程度愈强^[27].样品中的 LREE 总量与 HREE 总量的比值[$\sum a_t$ (Ce)/ $\sum a_t$ (Yb)]为 6.00~ 12.1,属 LREE 富集型,在 REE 球粒陨石配分曲 线上表现为右倾(见图 4). δEu 值与 δCe 值分别为 0.78~0.88 和 0.45~0.94,表现出弱铕负异常和 中等到弱的铈负异常的特征.配分曲线中铕负异常 的出现可能是因为在岩石形成之前斜长石的结晶分 离^[28],而铈负异常的出现则可能是在长期的蚀变 作用中岩石中的 Ce³⁺氧化流失的结果^[29].

		 样品	 品号						()102)				
	C9	C12	M43	M55	- 016.7	珀冗		C9	C12	M43	M 55	- 0182	箔宂
			数据	来源						数执	来源		
	本文 [[17,30]	[19]							[19]	
c(La)	161.0	60.57	83.27	58.64	20.07	361	c(Sc)	20.42	20.81	26.57	20.45	33.39	5
c(Ce)	131.4	118.2	134.1	67.31	50,16	2354	c(V)	241.3	178.5	224.2	207.0	330.4	626
c(Pr)	23.21	13, 55	14.77	11.01	7.00	87.1	c(Cr)	251.3	83.37	475.5	29.53	552.3	118
c(Nd)	98.02	56.07	52.02	47.21	30.87	371	c(Co)	219.8	207.4	76.04	78,94	63.54	6 904
c(Sm)	17.89	12.00	9.50	9.83	7.85	74.4	c(Ni)	460.9	238, 5	124.4	88, 44	244.5	3 651
c(Eu)	4.77	3.26	2.62	2,73	2,39	18.3	c(Cu)	395.6	134.6	127.8	223.0	96.36	760
c(Gd)	19.84	10.40	8.66	10,17	7,25	69.2	c(Zn)	190,6	213.6	189.2	162.6	88.18	531
c(Tb)	2.79	1.47	1.16	1.52	1.05	12.7	c(Rb)	29,42	32.01	38.46	35, 13	33, 39	1715
c(Dy)	16,26	8.26	6.51	9.28	6.29	62.4	c(Sr)	1000	833.7	549.1	647.8	433.0	864
c(Ho)	3.34	1,54	1. 21	1, 78	1.20	11.4	c(Y)	169.3	45.58	40.10	66, 17	19.96	178
c(Er)	9,52	4.19	3.38	4.84	3.05	30.1	c(Zr)	307.0	308.0	263,5	202.0	143.1	
c(Tm)	1.25	0.52	0.44	0,67	0.42	4.0	c(Nb)	48.59	81.40	75.04	49.15	30.87	
c(Yb)	6.82	3,36	2.79	3,93	2.36	26.0	c(Ba)	1082	585.9	2292	373.3	305.4	1889

表 2 中、西太平洋蚀变玄武岩 REE 和微量元素含量(µg/g)及其特征参数

海洋学报 29卷

	续表														
		样品	品号							品号		()102)			
	C9	C12	M43	M 55	- 0ib./	疝冗		C9	C12	M43	M 55	- 016"	477		
			数据	来源					数挑	居来源					
		本	文		[17,30]	[19]			本	文		[17,30]	[19]		
c(Lu)	1.08	0.48	0.43	0.58	0.34	3.57	c(Hf)	7.71	7.73	6.95	4.92				
$\sum c(\text{REE})$	497.2	293.9	320.9	229.5	140.3	3 485	c(Ta)	2.56	4.57	4.38	2.89				
δCe ²⁾	0.45	0.94	0.84	0.59	0.99	3.04	<i>c</i> (Th)	4.15	6.12	17.79	4.09				
δEu ²⁾	0.78	0.88	0.87	0.84	0.96	0.77	c(Rb)/c(Sr)	0.029	0.038	0.070	0.054	0.077	0.504		
$\sum a_{t}(Ce) / \sum a_{t}(Yb)$	7.16	8.73	12.05	6.00	5.39	14.89	<i>c</i> (Zr)/ <i>c</i> (Nb)	6.32	3.78	3.51	4.11				
$[c(La)/c(Sm)]_N^{2}$	5.67	3.18	5.52	3.76	1.56	3.05									

注:1)稀土元素据文献[30](7个样品的平均值),微量元素据文献[17](28个样品的平均值).2)据球粒陨石标准化值计算,球粒陨石的标准 化值据文献[20].

3.3 微量元素特征

与 MORB 相比, 样品的 REE 和微量元素含量明 显表现出与 OIB 更为接近的特征(见表 2).图 5a,b 分别为样品的原始地幔标准化蛛网图和 MORB 标准 化蛛网图,图中样品的曲线形态与 OIB^[31]的形态相 当一致,而与 MORB^[32]的形态明显不同,表明所研 究岩石为产于大洋板内环境的大洋岛屿玄武岩.图 5 中样品的钽、铌、铪、锆及钛等高场强元素(HFSE)较 OIB 的相应值略高,可能暗示了高场强元素性质稳 定,在蚀变作用中表现为惰性,因淋滤作用,活动组 分流失,从而相对富集.与新鲜的 OIB 相比(图 5), 样品的钡、钍、镧、磷、钇等元素含量不仅高,而且变 化范围大,这可能是岩石因低温蚀变作用而富集或 是经受磷酸盐化的结果.

对火成岩中的橄榄石、石榴石、辉石、角闪石、磁

图 5 玄武岩中微量元素蛛网图 a. 原始地幔标准化蛛网图,原始地幔标准值据文献[33],其中 磷的标准值据文献[31];b. MORB标准化蛛网图,MORB标 准值据文献[32];OIB标准值据文献[31]

铁矿及尖晶石等暗色矿物而言,铬、镍是强相容元 素^[34]. 在样品过渡金属元素球粒陨石标准化配分 模式(图 6)中,铬、镍明显表现为亏损,这是富含铬、 镍的暗色矿物被蚀变破坏、岩石中的铬和镍失去寄 主矿物而流失的表现.此外,铬与镍在配分曲线(图 6)上的系统性分散以及锰、钴、铜等元素的分散都表 明岩石中这些元素的含量发生了变化.在与海水长 期的相互作用中,活泼元素的含量易于改变,在高 温条件下过渡金属锰、锌、铜尤其活泼[14].

图 6 岩石中过渡金属球粒陨石标准化配分模式 球粒陨石标准值据文献[35],其中 Fe 的标准值据文献[36]

4 讨论

4.1 岩石成因类型

在次生蚀变作用中岩石微量元素和 REE 的活 动性差异较大.对次生作用敏感的活动性元素如铀、 钾、铷、铯、钡、锶以及挥发性元素的含量会因蚀变作 用发生改变^[37],在微量元素蛛网图上表现为分散 的特征(见图 5).高场强元素钛、锆、钇、铌、钽、铪和 REE 的性质稳定^[38],对岩浆期后次生蚀变作用不 敏感^[37],较好地保留了岩石的原始特征,是岩石形 成构造环境的良好指示剂,常被用于判识玄武岩的 产出构造环境^[39].LREE 有时较活动,但 HREE 不受次生作用的影响^[40].

OIB 的 c(Zr)/c(Nb)比值小于 10,而 N 型 MORB 的 c(Zr)/c(Nb)比值大于 30^[34],样品的 c(Zr)/c(Nb)比值为 3.78~6.32(见表 2),明显具 OIB 特征.样品的 $[c(La)/c(Sm)]_N$ 值(球粒陨石标 准化)为 3.18~ 5.67(见表 2),大于 1,也表现出与 地幔柱直接相关的特征^[29].另外,样品的 REE 配分 模式(见图 4)和微量元素蛛网图(见图 5)都与 OIB 极为一致,尤以 HREE 和 HFSE 最为明显.样品的 所有这些特征都表明所研究的岩石为产出于板内环 境的典型 OIB.

4.2 蚀变作用所引起的玄武岩成分变化

研究表明,低温蚀变作用可使玄武岩的硅、镁、 钙、 Fe^{2+} 含量降低^[41],钛、钾、磷、锰、镁、钠、 Fe^{3+} 含量 升高^[21].样品的主元素以明显亏损 SiO₂,MgO,FeO, 相对富集 Fe_2O_3 , K_2O ,MnO, P_2O_5 为特征,偏离海洋 环境各种构造背景产出玄武岩的特征(见表 1).样品 特殊的化学组成是岩石形成之后经历明显蚀变的结 果. 蚀变作用使岩石的主元素组成失去了原岩的特征, 也使主元素组成记录了岩石所经历的次生变化.

样品 Al₂O₃, H₂O, K₂O 及 REE 高的含量是因 海底蚀变作用,镁、钙、钠、SiO,等主要组分不同程度 流失,从而相对富集的结果[13]. 蚀变作用中橄榄 石、石榴石、辉石、角闪石、磁铁矿及尖晶石等暗色矿 物及基质的蚀变破坏可能是引起岩石主元素成分改 变的主要原因.因暗色矿物的蚀变破坏,岩石中 铁、镁等元素失去寄主矿物而大量流失,在标准矿 物计算时消耗 SiO₂的量减少,从而样品表现出 SiO2虽因流失而亏损(样品的 SiO2含量小于玄武 岩中 SiO₂含量的下限 43%), 但却有 CIPW 标准 矿物石英(Q)出现(相对铁、镁富集)的特征. 与新 鲜的 OIB 相比, 样品高的 Fe₂O₃ 与 FeO 比值与全 铁(Fe)含量(见表 1)不仅表明岩石中的 Fe^{2+} 被大 量氧化为 Fe^{3+[5]},而且表明伴随蚀变作用,铁流 失进入海水.应当指出,样品的 MnO 含量介于 0.26%~1.42%,平均为0.68%,明显较OIB和 MORB 高(分别为 0.19% 和 0.17%)(见表 1), 这 是铁锰氧化物在玄武岩裂隙和气孔中沉淀的结果 (见图 2e, f).

在表生环境中 REE 的性质相对稳定,其活 性与岩石类型或变质程度不存在简单的对应关 系,矿物组成和流体性质是其含量变化的主要控 制因素^[42].样品与 OIB^[30]极为相似的 REE 配分 曲线形态以及样品较 OIB 高的 REE(见图 4),可 能是因为 REE 在低温条件下性质稳定,随着岩 石中活动组分的大量流失,从而相对富集.此外, 富集 REE,尤以 LREE 富集为特征的铁锰氧化 物在玄武岩气孔和裂隙中的沉淀(见图 2e,f), 不仅使蚀变玄武岩的 REE 含量增大,而且使样 品 $\Sigma_{a,}$ (Ce)/ $\Sigma_{a,}$ (Yb)值增大(见表 2),反映了 LREE 与 HREE 分馏程度增强(见图 4).

4.3 蚀变作用质量平衡的理论计算

4.3.1 蚀变作用引起的玄武岩总量变化计算

如前所述, 蚀变玄武岩的 REE 会因活动组分 的流失而相对富集. REE 含量高的(尤以富集 LREE 最为明显)铁锰氧化物在玄武岩中的沉淀不 仅会引起 REE 绝对量的增加, 而且会引起蚀变玄 武岩中轻重稀土的分馏. REE 的性质稳定, 且经常 作为整体迁移^[28], 可用作质量平衡计算. 若假定 单位质量玄武岩蚀变前后的质量变化仅由活动组分 的流失和铁锰氧化物的沉淀引起, 那么蚀变玄武岩 中稀土元素 R 的测定值可表示为

 $c(R_{a}) = [c(R_{b}) + yc(R_{c})]/(1 - x + y),$ (1) 式中, $c(R_{a})$ 为样品中稀土元素 R 的含量测定值; $c(R_{b})$ 和 $cR(_{c})$ 分别为 OIB 和铁锰氧化物稀土元素 R 的含量;x 和 y 分别为单位质量新鲜玄武岩因蚀 变作用所引起的质量亏损和其中铁锰氧化物的沉淀 量; $c(R_{b}) + yc(R_{c})$ 的物理意义就是单位质量新鲜玄 武岩发生蚀变作用后稀土元素 R 的量; 1 - x + y 是 单位质量玄武岩蚀变后的剩余质量.

本文选择钕和 REE[Σc(REE)]进行质量平衡 计算.由式(1)可得

$$c(\mathrm{Nd})_{a} = [c(\mathrm{Nd})_{b} + y(\mathrm{Nd})_{c}/(1 - x + y)], \quad (2)$$
$$\sum c(\mathrm{REE})_{a} = [\sum c(\mathrm{REE})_{b} + y\sum c(\mathrm{REE})_{c}/(1 - x + y)], \quad (3)$$

式中, $c(Nd)_a$ 和 $\sum c(REE)_a$ 分别为样品中钕的测定 值和 REE 总量; $c(Nd)_b$ 和 $\sum c(REE)_b$ 分别为 OIB 的钕含量和 REE 总量; $c(Nd)_a$ 和 $\sum c(REE)_b$ 分别 为铁锰氧化物中钕的含量和 REE 总量.

若以 a 代替 y, 以 b 代替 1-x+y, 式(2)和 (3)可简化为

$$c(\mathrm{Nd})_{\mathrm{a}} = [c(\mathrm{Nd})_{\mathrm{b}} + ac(\mathrm{Nd})_{\mathrm{c}}]/b, \qquad (4)$$

$$\sum c(\text{REE})_{a} = \left[\sum c(\text{REE})_{b} + \right]$$

$$a \sum c(\text{REE})_c]/b,$$
 (5)

解由式(4)、(5)组成的方程组可得

$$a = [c(Nd)_{b} \sum c(REE)_{a} - c(Nd)_{a} \sum c(REE)_{b}] / [c(Nd)_{a} \sum c(REE)_{c} - c(Nd)_{c} \sum c(REE)_{a}],$$
(6)

$$b = [c(Nd)_{b} \sum c(REE)_{c} - c(Nd)_{c} \sum c(REE)_{b}] / [c(Nd)_{a} \sum c(REE)_{c} - c(Nd)_{c} \sum c(REE)_{a}],$$
(7)

若 $c(Nd)_{b}$ 和 $\Sigma c(REE)_{b}$ 分别取 OIB 的值 30.87 和 140.3 $\mu g/g^{[30]}$, $c(Nd)_{c}$ 和 $\Sigma c(REE)_{c}$ 分别取夏威夷 富钴结壳的值 371 和 3 485 $\mu g/g^{[19]}$ (见表 2),将 $c(Nd)_{b}$, $\Sigma c(REE)_{b}$, $c(Nd)_{c}$ 和 $\Sigma c(REE)_{c}$ 代人式 (6)、(7),即可求得 a, b的值,进而可得 x 和 y 的 值,计算结果见表 3.

表 3 中因蚀变作用引起的单位质量新鲜玄武岩 的质量亏损(x)为 0.150~0.657,相对单位质量新 鲜玄武岩而言,铁锰氧化物的沉淀量(y)为 0.006~ 0.042,而单位质量新鲜玄武岩蚀变后的最终质量 (1-x+y)为 0.353~0.892,其中以 C9 号样品的质 量减 少最 大(相对单位质量玄武岩的减少达 0.657),蚀变程度最深;M43 号样品的蚀变程度最 低(相对单位质量玄武岩的减少为 0.150),但铁锰 氧化物的沉淀量最大(相对单位质量新鲜玄武岩的 沉淀量为 0.042)(表 3).

表 3	蚀变玄武岩质量减少	量及铁锰氧化物沉淀	量的理论计算结果
-----	-----------	-----------	----------

参数	参数说明	С9	C12	M43	M55
a	单位质量玄武岩中铁锰氧化物的沉淀量	0.010	0.014	0.042	0.006
ь	1-x+y,单位质量玄武岩蚀变后的剩余质量	0.353	0.643	0.892	0.700
x	蚀变引起的单位质量玄武岩的质量减少	0.657	0.371	0.150	0.306
У	单位质量玄武岩中铁锰氧化物的沉淀量	0.010	0.014	0.042	0.006

4.3.2 单位质量新鲜玄武岩的金属及氧化物蚀变 流失量计算

与性质稳定、自岩石形成后无淋滤流失的 REE 不同,玄武岩中的金属和氧化物会随岩石蚀变而不 同程度地流失.蚀变玄武岩中金属和氧化物量的变 化不仅表现为铁锰氧化物在玄武岩中沉淀而"带 入",而且表现为因蚀变作用金属和氧化物流失而 "带出".若假定单位质量玄武岩蚀变前后金属量的 变化仅由铁锰氧化物的沉淀(带入)和活动组分的流 失(带出)所引起,那么蚀变玄武岩中金属或氧化物 M的测定值可表示如下:

$$c(M_{a}) = [c(M_{b}) + yc(M_{c}) - c(M_{l})]/$$

$$(1 - x + y), \qquad (8)$$

式中, $c(M_a)$ 为蚀变玄武岩中金属或氧化物 M 的测 定值; $c(M_b)$ 和 $c(M_c)$ 分别为 OIB 和铁锰氧化物中 金属或氧化物 M 的含量; $c(M_l)$ 为单位质量新鲜玄 武岩中金属或氧化物 M 的流失量.因此,式 $c(M_b)$ + $yc(M_c) - c(M_l)$ 是单位质量新鲜玄武岩蚀变后金 属或氧化物 M 的量, y = 1 - x + y 的意义同前.

若以 a 代替 y, 以 b 代替 1-x+y, 式(8)可简 化为

$$c(M_{\rm a}) = [c(M_{\rm b}) + ac(M_{\rm c}) - c(M_{\rm l})]/b, \quad (9)$$

由式(9),可得

 $c(M_1) = c(M_b) + ac(M_c) - bc(M_a)$, (10) 式中, $ac(M_c)$ 为单位质量玄武岩中由铁锰氧化物沉 淀所带入的金属或氧化物的量. 若 $c(M_b)$ 和 $c(M_c)$ 分别取 OIB 中的金属或氧化物含量(据文献[17, 30])和夏威夷富钴结壳金属或氧化物含量(据文献 [19])(见表 1,2),将表 1,2 中 OIB 和结壳的金属或 氧化物含量以及 a 和 b 的计算值(表 3)代入式(10) 即可求得单位质量玄武岩蚀变后相应金属或氧化物 的流失量.

单位质量玄武岩中铁锰氧化物带入的金属和氧 化物的量、蚀变作用后金属和氧化物的剩余量、单位 质量玄武岩因蚀变作用引起的金属和氧化物的流失 量及流失比例的理论计算结果列于表 4.

表 4 单位质量玄武岩蚀变作用中过渡金属和氧化物的流失及沉淀

	铁	锰氧化	沕带 人量	1)		蚀变剩	余量1)			蚀变流	失量1)		î	独変流失比例(%) $c(M_1)/c(M_b)$ 9 C12 M43 54 60.14 29.63 5 86 10.02 10.14 1 11 67.92 47.38 5 14 90.59 24.09 5 7.06 4.18 564.3 6 95 37.92 18.28 3 06 41.84 448.4 7 54 58.12 117.2 8 7.08 21.22 14.74 - 73 -47.32 - 66.15 - 90 34.75 14.53 3 87 16.46 - 21.07 - 94 62.62 44.50 8 60 67 16 06 7)
		ac(M _c)		c(M	(b)+ac($M_c)-c($	M_1)		c(N	<i>I</i> ()			$c(M_1)$	$/c(M_{\rm b})$	
	C9	C12	M43	M 55	C9	C12	M43	M 55	C9	C12	M43	M 55	C9	C12	M43	M 55
Sc	0.05	0,07	0.21	0,03	7.22	13.38	23.70	14.31	26,23	20.08	9.89	19.11	78.54	60.14	29.63	57.24
Ti	0.01	0.02	0.06	0.01	0.93	2.06	2.11	1.81	0.81	0.14	0.14	0,27	59.86	10.02	10.14	19.99
v	6.36	8.74	26.22	3.64	85.26	114.7	200.1	144.8	251.5	224.4	156.5	189.2	76.11	67.92	47.38	57.26
Cr	1.20	1.65	4.94	0.69	88.79	53.60	424.2	20.66	464.7	500.4	133.0	532.4	84.14	90.59	24.09	96.38
Mn	0.21	0.29	0.88	0.12	0.43	0.43	0.20	0.17	-0.07	0.01	0.83	0.10	-47.06	4.18	564.3	66.70
Fe	0.18	0.25	0.75	0.10	2.97	6.21	8.59	6.33	6.81	3.64	1.76	3.37	70.95	37.92	18,28	35.11
Co	70.10	96.40	289.2	40,1	77.68	133.4	67.84	55,22	55,96	26.59	284.9	48.42	88.06	41.84	448.4	76.20
Ni	37.07	50.98	152.9	21.21	162.9	153.4	111.0	61.87	118.7	142.1	286.4	203.8	48.54	58.12	117.2	83.37
Cu	7.72	10.61	31.83	4.41	139.8	86.53	114.0	156.0	-35.73	20,44	14.20	-55,23	-37.08	21.22	14.74	-57.32
Zn	5.39	7.41	22.24	3.08	67.36	137.3	168.8	113.7	26.21	-41.73	-58.33	-22.45	29.73	-47.32	-66.15	-25.46
SiO_2	0.14	0.19	0.56	0.08	16.00	30.55	40.33	31.82	30.66	16.17	6.76	14.78	65.90	34.75	14.53	31.77
Al_2O_3	0.03	0.04	0.13	0.02	5.72	12.18	17.72	16,20	8.84	2.39	-3.06	-1.65	60.87	16.46	-21.07	-11.36
MgO	0.02	0.03	0.09	0.01	0.59	3.51	5.26	1.73	8,76	5.84	4.15	7.60	93.94	62.62	44.50	81.52
CaO	0.03	0.05	0.14	0.02	3.69	3.45	8.11	4.81	6.69	6.94	2.36	5.55	64.68	67.13	22.87	53.68
Na_2O	0.02	0.03	0.10	0.01	1.08	1.57	1.36	1.91	1.72	1.24	1.51	0.89	61.92	44.70	54.40	31.86
K ₂ O	0.01	0.01	0.03	0.00	0.87	0.90	1.26	1.14	0.02	-0.01	-0.34	-0.26	1.92	-1.53	- 39.11	-29.37
P_2O_5	0.01	0.01	0.04	0.01	1.69	0.70	0.61	1.32	-1.39	-0.39	-0.28	-1.02	-479.8	-135.0	97.46	-352,0

1) Sc, V, Cr, Co, Ni, Cu, Zn 的含量单位为微克每克,其余的为百分数.

4.3.3 理论计算结果评价

图 4 中玄武岩样品 REE 含量配分曲线的位置 自下而上依次为 M43,C12,M55 和 C9,与表 3 中蚀 变作用引起的玄武岩组分流失量的理论计算结果相 当一致(各样品单位质量的总流失量依次为 0.150, 0.371,0.306 和 0.657). REE 性质稳定, 样品配分 曲线位置的差异(见图 4)与样品中活动组分的流失 和铁锰氧化物的沉淀有关,样品与新鲜大洋岛屿玄 武岩 REE 配分曲线的偏离代表了样品蚀变程度的 差异.样品蚀变愈强,活动组分流失愈多,则 REE 含量愈高, REE 总量也愈大(见图 7a), REE 配分曲 线的位置也就愈高(见图 4),反之亦然. $\Sigma c(Ce)/\Sigma$ c(Yb)比值代表了 LREE 与 HREE 的分馏程度,该 比值越大, LREE 与 HREE 的分馏越强. 表 2 中各 样品的 LREE 与 HREE 分馏程度以 M43 号的最 强,其 $\Sigma c(Ce)/\Sigma c(Yb)$ 值为 12.1, 接近富钴结壳 的∑c(Ce)/∑c(Yb)值(14.89)^[19], C12 和 C9 号样 品的 LREE 与 HREE 分馏中等, $\Sigma c(Ce) / \Sigma c(Yb)$ 比值 分别为 8.73 和 7.16), M55 号的 LREE 与 HREE 分馏最弱, $\Sigma c(Ce) / \Sigma c(Yb)$ 比值为 6.00,接近 OIB 的比值 5.39^[30]. 表征玄武岩中 LREE 与 HREE 分 馏程度的 $\Sigma c(Ce) / \Sigma c(Yb)$ 比值与其中铁锰氧化物 沉淀量密切相关(见图 7b), 蚀变玄武岩中沉淀的 铁锰氧化物越多, $\Sigma c(Ce) / \Sigma c(Yb)$ 比值就越大(见 图 7b),则 LREE 与 HREE 的分馏就越明显,反之 亦然,可见玄武岩中活动组分蚀变流失,从而 REE 相对富集,表现为配分曲线的整体向上平移,而铁 锰氧化物在玄武岩中的沉淀不仅使 REE 含量升高, 表现为配分曲线向上平移,而且增强了其 LREE 与 HREE 的"分馏"程度,在 REE 含量配分模式图上 表现为斜率增大(见图 4).

在所研究的 4 个样品中 C9 号的活动组分流失 量最大(相对单位质量新鲜玄武岩的流失量为 0.657), 蚀变程度最深,与其铈的强负异常∂Ce=

a. $\sum c(\text{REE})$ 与单位质量新鲜玄武岩中活动组分流失量的关系, $\sum c(\text{REE})$ 与活动组分流失量呈正相关,活动组分流失量越大, $\sum c(\text{REE})$ 值也越大,表明岩石活动组分流失量引起了 $\sum c(\text{REE})$ 值的增大.b. $\sum c(\text{Ce})/\sum c((\text{Yb})$ 与单位质量新鲜玄武岩中铁锰氧化 物沉淀量的关系, $\sum c(\text{Ce})/\sum c(\text{Yb})$ 与铁锰氧化物沉淀量呈正相 关,铁锰氧化物在岩石中的沉淀使岩石中的 $\sum c(\text{Ce})/\sum c(\text{Yb})$ 的比值增大,LREE 和 HREE 分馏程度增强

0.45(据球粒陨石标准化值计算,球粒陨石标准值 据文献[20])相对应,可能暗示大洋玄武岩中的铈 因低温蚀变作用而氧化流失,进入海水.C12 号和 M43 号样品铈的弱负异常(&Ce 值分别为 0.94 和 0.84)(见表 2)与其铁锰氧化物的高沉淀量(相对单 位质量新鲜玄武岩的铁锰氧化物沉淀量分别为 0.014 和 0.042)(见表 3)相对应,暗示富铈的铁锰 氧化物在玄武岩中的沉淀可能平滑了因蚀变流失所 引起的铈的负异常.Pichler 等^[5]指出,蚀变玄武岩 中 Ce⁴⁺ 与三价 REE 的分馏主要是因为铁锰氧化物 对 Ce⁴⁺ 的选择性吸附,可见就蚀变玄武岩中铈异 常的程度而言,玄武岩的蚀变效应与其中铁锰氧化 物的沉淀效应互为消长,蚀变程度的增强使玄武岩 的铈负异常程度增大,而铁锰氧化物的沉淀则平滑 了其铈的负异常.

理论计算结果表明,各元素的流失比例以 MgO为最大(44.50%~93.94%),铁居其次 (18.28%~70.95%)(见表4),均超过了岩石总量 的减小比例(15%~65.7%)(见表3).蚀变玄武岩 中铁锰氧化物及铁锰质微结核的出现以及岩石较新 鲜OIB低的铁含量是岩石因低温蚀变作用流失的 铁(1.76%~6.81%)较铁锰氧化物在岩石中沉淀 带入的铁(0.10%~0.75%)多(见表4)的表现.理 论计算表明,SiO₂的流失比例为14.53%~65.90% (见表4),与岩石总量流失比例(15.0%~65.7%) (见表 3)相当,但因较铁、镁流失程度小,从而相对 富集,在标准矿物计算时表现为硅饱和,出现标准 矿物石英(见表 1).

应当指出,在质量平衡计算结果中(见表 4)各 样品 P_2O_5 的流失量均为负值,表明对 P_2O_5 而言, 蚀变玄武岩是"汇"而不是"源",在低温蚀变过程中 玄武岩不是流失 P_2O_5 ,而是因磷酸盐化从海水获 得了 P_2O_5 .个别样品中的 Al_2O_3 , K_2O 的流失量有 时也表现为负值,可能与富铝、钾的沸石在岩石气 孔中的充填有关(见图 2d).表 4 中在玄武岩中含量 低而铁锰氧化物中含量高的元素锰、钴、镍、铜、锌的 流失量有时表现为负值,有时甚至超过 100%,这可 能是相对铁锰氧化物而言,玄武岩中这些元素的含 量太低,计算过程中容易引起误差,也可能暗示了样 品中这些元素的含量不是流失减小,而是因为铁锰 氧化物的沉淀而增加.

4.4 大洋岛屿玄武岩低温蚀变作用对大洋海水中 过渡金属循环的贡献

表4中几乎所有的过渡金属和铁锰氧化物沉淀 带入量均远较蚀变流失量小.理论计算结果表明, 除锰、铜、锌、铝、钾可由海水沉淀(以铁锰氧化物或杏 仁体)进入玄武岩外,其他元素均表现出自玄武岩流 失进入海水的趋势.因蚀变作用,相当于新鲜玄武 岩质量1.76%~6.81%的铁流失进入海水,而铁锰 氧化物沉淀仅带入了相当于新鲜玄武岩质量 0.10%~0.75%的铁,从而使蚀变玄武岩中铁的剩 余量仅为新鲜玄武岩质量的2.79%~7.85%(新鲜 大洋岛屿玄武岩的平均铁含量为9.60%^[17]),最多 有超过新鲜玄武岩 70%的铁淋滤进入海水(见表4).

大洋中脊每年喷发到海底的火山岩为 3 km³; 大洋岛屿喷发火山岩的速率约小一个数量级,为 0.3~0.4 km³/a^[43].新生洋壳形成的速率就更快, 为 15 km³/a^[44],质量可达 50 Gt^[10].如果假定 OIB 中有 5%发生明显蚀变,那么每百万年有大约 3 kt 的锰和 0.2 Mt 的铁进入海水,每百万年进入海水 的其他微量过渡金属一般也为 100~500 t,可以满 足每百万年在至少 1×10⁶~2×10⁷ km²的海底形成 5 mm 厚富钴结壳的成矿需求.大洋岛屿玄武岩是 大洋海水中金属元素的重要来源.

研究表明,富钴结壳是水成成因的^[19],其成矿物质主要来自海水^[45~47].大洋海水中金属的最终来 源有由河流和风力输入的大陆物质、海底热液活动 输入的物质、海底玄武岩的风化产物、海底沉积物中 释放的金属元素以及地外物质^[19].富钴结壳多见 于海山斜坡、洋中脊、海底高原等海底隆起的固结基 岩表面^[48~50],有利于富钴结壳成矿的环境是海山 翼部或顶部无沉积物的部位^[51,52].底流对沉积物的 "清扫"使玄武岩露头暴露于海水中,这不仅使富钴 结壳的形成成为可能,而且为玄武岩的持续蚀变提 供了条件.在剥蚀形成水下海山的过程中,因低温 蚀变作用,自大洋岛屿玄武岩中淋滤出大量的铁、 锰等过渡金属,为富钴结壳的形成提供了丰富的成 矿物质.由玄武岩淋滤可见,进入海水的铁因与氧 的高亲合力^[53]易于就近沉淀.富钴结壳在玄武岩 表面的生长或许是玄武岩蚀变的重要标志,富钴结 壳可能是指示玄武岩蚀变程度的"风化壳".

暗色矿物的大量蚀变破坏以及铁锰氧化物在岩 石裂隙和气孔中的沉淀,一方面表明岩石经受了明 显的蚀变作用,铁、锰等元素被大量淋滤出来,另一 方面也暗示了玄武岩是大洋铁锰矿床成矿物质的重 要来源.富钻结壳多见于世界大洋海山上的分布格 局以及厚度大、经济价值高的富钴结壳多以强烈蚀 变玄武岩为基岩^[24,54],或多产出于海山玄武岩表 面^[55]的事实都表明,富钴结壳的形成与洋底玄武岩 的低温蚀变作用关系密切,洋底玄武岩可能是富钴 结壳的重要矿源场.岩石裂隙和气孔中铁锰质微结 核(见图 2e)与铁锰氧化物(见图 2f)的出现也许是 大洋铁锰矿床中的铁、锰等成矿金属主要来自玄武 岩低温蚀变作用的最好证据.结壳与玄武岩的锶、 钕、铅同位素研究^[56]也表明海底玄武岩是海水和铁 锰矿床的金属来源之一.

玄武岩 $c(Fe_2O)/c(FeO)$ 比值和水, K_2O 含量 的增大以及 MgO 含量的减小是随着岩石暴露时间 的增长蚀变程度逐渐增强的表现^[22].远离洋中脊, 洋壳的年龄逐渐增大, 玄武岩的蚀变程度也逐渐加 深^[57], 但随着洋壳年龄的增大, 洋底岩石表面沉积 物的 厚度也逐渐增加^[58], 一旦洋底玄武岩 (MORB) 被大量非渗透性黏土覆盖, 其海解作用就 明显下降^[6].大洋岛屿和水下海山地形陡峭, 海山 玄武岩(OIB) 露头发育, 使蚀变作用的持续进行成 为可能. MORB 中的 $c(Fe_2O_3)/c(FeO)$ 比值最大仅 为 2. 2, 水 的含量最大为 5. 2%^[22], 而 OIB 的 $c(Fe_2O_3)/c(FeO)$ 值超过 10, LOI 最大值也超过 10%(见表 1),岩石中高的 $c(Fe_2 O)/c(FeO)$ 比值是 其经历强烈次生变化的表现^[59].若以 $c(Fe_2 O_3)/c(FeO)$ 值和水的含量作为度量玄武岩蚀变程度的 参数,则露头发育的 OIB 的蚀变程度要较被沉积物 覆盖的 MORB 深得多,可见虽然 OIB 产出量不大 $(0.3 \sim 0.4 \text{ km}^3/a)^{[43]}, 但其蚀变程度却要深得多.$ MORB 中的产出量巨大 $(3 \text{ km}^3/a)^{[43]}, 但因很快被$ 沉积物覆盖,从而渗透率降低,蚀变程度却很有限.

5 结论

(1)中、西太平洋海山富钴结壳产出区基底蚀 变玄武岩的 REE 和微量元素具典型大洋板内玄武 岩的特征,其原岩为典型大洋岛屿玄武岩。

(2) 蚀变作用使岩石的 $Al_2 O_3$, $Fe_2 O_3$, MnO, $K_2 O, P_2 O_5$ 的含量增加, MgO 和 FeO 的含量降低; 蚀变作用中活动组分的流失使样品的 REE 相对富 集, 而富 REE 的铁锰氧化物在玄武岩裂隙和气孔 中的沉淀不仅带入了 REE, 使其绝对量增加, 而且 由于铁锰氧化物相对富集 LREE, 引起样品中 REE 的"分馏". 活动组分的淋滤流失和自生组分的沉淀 是引起样品成分偏离新鲜大洋岛屿玄武岩的两种重 要机制.

(3)理论计算结果表明,单位质量新鲜玄武岩 发生蚀变作用后的剩余质量减为 35.3%~89.2%.
蚀变作用所引起的元素的流失比例以 MgO 为最大
(44.50% ~ 93.94%), 铁 居 其 次 (18.28% ~
70.95%),两者的流失比例均超过了岩石总量的流
失比例(15.0%~65.7%); SiO₂ 的理论流失比例
(14.53%~65.90%)与岩石总量流失比例相当;样
品中铝、钾、磷的负流失量是由于沸石在岩石气孔中
的充填或磷酸盐化的结果.

(4) 大洋岛屿玄武岩是大洋海水中过渡金属元 素的重要的"源", 而大洋铁锰矿床(富钴结壳和多金 属结核)则可能是大洋海水中过渡金属重要的"汇". 由玄武岩进入海水的过渡金属元素, 每百万年可在 至少1×10⁶~2×10⁷ km²的海底形成一层5 mm厚的 富钴结壳.大洋岛屿玄武岩的低温蚀变作用为大洋 铁锰矿床的形成提供了丰富的过渡金属, 大洋玄武 岩可能是大洋铁锰矿床的重要矿源场.

参考文献:

- [1] MOORE J G. Rate of palagonitization of submarine basalt adjacent to Hawaii [R]. U S Geol Surv Prof Pap, 550-D. 1966. 163-171.
- [2] THOMPSON G. Metamorphic and hydrothermal processes: basalt-seawater interactions [A]. FLOYD P A. Oceanic Basalts [M]. Glasgow: Blackie and Sons, 1991. 148-173.
- [3] STAUDIGEL H, HART S R. Alteration of basaltic glass: mechanisms and significance for the oceanic crust -- seawater budget [J]. Geochim Cosmochim Acta, 1983, 47: 337-350.
- [4] FURNES H, STAUDIGEL H. Biological mediation in ocean crust alteration: how deep is the deep biosphere? [J]. Earth Planet Sci Lett, 1999, 166: 97-103.
- [5] PICHLER T, RIDLEY W I, NELSON E. Low-temperature alteration of dredged volcanic from the Southern Chile Ridge: additional information about early stages of seafloor weathering [J]. Mar Geol, 1999, 159: 155-177.
- [6] CHAMLEY H. Clay Sedimentology [M]. Berlin: Springer, 1989. 291-329.
- [7] HONNOREZ J. The aging of the oceanic crust at low temperature [A]. EMILIANI C. The Sea: Vol. 7. The Oceanic Lithosphere [M]. New York: Wiley & Sons, 1981. 525-587.
- [8] MUKHOPADHYAY R, IYER S D, GHOSH A K. The Indian Ocean nodule field: petrotectonic evolution and ferromanganese deposits [J]. Earth Science Reviews, 2002, 60: 67-130.
- [9] CHESTER R. Marine Geochemistry [M]. 2th ed. Oxford: Blackwell Science, 2000. 88-97.
- [10] SEYFRIED W E Jr, MOTTL M J. Hydrothermal alteration of basalt by seawater under seawater-dominated conditions [J]. Goechim Cosmochim Atca, 1982, 46: 985-1 002.
- [11] 李学伦. 海洋地质学[M]. 青岛:青岛海洋大学出版社, 1997. 179.
- [12] MOTTL M J, HOLLAND H D. Chemical exchange during hydrothermal alteration of basalt by seawater—I. Experimental results for major and minor components of seawater [J]. Geochim Cosmochim Acta, 1978, 42: 1 103-1 115.
- [13] SEYFRIED W E Jr, BISCHOFF J L. Low temperature basalt alteration by seawater: an experimental study at 70°C and 150°C [J]. Geochim Cosmochim Atca, 1979, 43: 1 937-1 947.
- [14] SEEWAID J S, SEYFRIED W E Jr. The effect of temperature on metal mobility in subseafloor hydrothermal system: constraints from basalt alteration experiments [J]. Earth Planet Sci Lett, 1990, 101: 388-403.
- [15] 党 志,侯 瑛. 玄武岩一水相互作用的溶解机理研究 [J]. 岩石学报, 1995, 11(1): 9-15.
- [16] QI L, GRéGOIRE D C. Determination of trace elements in twenty-six Chinese geochemistry reference materials by inductively coupled plasma-mass spectrometry [J]. Geostandards New Letters, 2000, 24(1): 51-63.
- [17] CLAGUE D A, JACKSON E D, WRIGHT T L. Petrology of Hualalai volcano, Hawaii: implication for mantle composition [J]. Bull Volcano, 1980, 43: 641-656.
- [18] SCHILLING J G, ZAJAC M, EVANS R, et al. Petrologic and geochemical variations along the Mid-Atlantic Ridge from 27°N to 73°N [J]. Am Sci, 1983, 283: 510-586.
- [19] HEIN J R, KOSCHINSKY A, BAU M, et al. Cobalt-rich ferromanganese crusts in the Pacific [A]. CRONAN D. Handbook of Marine Mineral Deposits [M]. Boca Raton: CRC Press, 1999. 239-279.
- [20] TAYLOR S R, MCLENNAN S M. The continental crust: its composition and evolution [M]. Oxford: Blackwell Scientific Publication, 1985. 209-230.
- [21] HART R. Chemical exchange between sea water and deep ocean basalts [J]. Earth Planet Sci Lett, 1970, 9(3): 269-279.
- [22] HEKINIAN R. Chemical and mineralogical differences between abyssal hill basalts and ridge tholeiites in the Eastern Pacific Ocean [J]. Mar Geol, 1971, 11: 77-91.
- [23] MIYASHIRO A, SHIDO F, EWING M. Diversity and origin of abyssal tholeiite from the Mid-Atlantic Ridge near 24° and 30° north latitude [J]. Contrib Mineral Petrol, 1969, 23: 38-52.
- [24] HEIN J R, MORGAN C L. Influence of substrate rocks on Fe-Mn crust composition [J]. Deep-Sea Research, 1999, 46: 855-875.
- [25] 邱家骧. 岩浆岩岩石学 [M]. 北京. 地质出版社, 1985. 190-206.
- [26] Le MAITRE R W. A Classification of Igneous Rocks and Glossary of Terms [M]. Oxford: Blackwell Scientific Publications, 1989. 193.
- [27] 康显桂,康长生,杨荣勇.东太平洋海盆多金属结核玄武岩核心研究 [J]. 高校地质学报,1998,4(2):147-154.
- [28] 王中刚,于学元,赵振华.稀土元素地球化学 [M].北京:科学出版社,1989.133-246.
- [29] 陈德潜. 实用稀土元素地球化学 [M]. 北京:冶金工业出版社,1990. 59-114.
- [30] HOFMANN A W, JOCHUM K P. Source characteristics derived from very incompatible trace elements in Mauna Loa and Mauna Kea basalts, Hawaii Scientific Drilling Project [J]. Geophys Res, 1996, B101: 11 831-11 839.
- [31] SUN S S. Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs [J]. Phil Trans R Soc Lond,

1980, A297: 409-445.

- [32] SAUDERS A D, TARNEY J. Geochemical characteritics of basaltic volcanism within back-arc basins [A]. KOKELAAR B P, HOW-ELLS M F. Marginal Basin Geology; Vol. 16 [M]. London: Spec Publ Geol Soc, 1984. 59-76.
- [33] MCDONOUGH W F, SUN S S, RINGWOOD A E. K, Rb and Cs in the earth and moon and the evolution of the earth's mantle [J]. Geochim Cosmochim Acta, 1992, 56: 1 001-1 012.
- [34] WILSON M. Igneous Petrogenesis [M]. London: Unwin Hyman, 1989. 245-285.
- [35] LANGMUIR C H, BENDER J F, BENCE A E, et al. Petrogenesis of basalts from the FAMOUS area: mid-Atlantic ridge [J]. Earth Planet Sci Lett, 1977, 36: 133-156.
- [36] SUN S S. Chemical composition and origin of the earth's primitive mantle [J]. Geochim Cosmochim Acta, 1982, 46: 179-192.
- [37] PEARCE J A. Role of the sub-continental lithosphere in magmas genesis at active continental margins [A]. HAWKESWORTH C J, NORRY M J. Continental Basalts and Mantle Xenoliths [M]. Nantwich: Shiva, 1983. 230-249.
- [38] 张 旗. 如何正确使用玄武岩判别图 [J]. 岩石学报, 1990, 2: 87-94.
- [39] PEARCE J A, CANN J R. Tectonic setting of basalt volcanic rocks determined using trace element analysis [J]. Earth Planet Sci Lett, 1973, 19: 290-300.
- [40] CONDIE K C. Plate Tectonic and Crustal Evolution [M]. New York: Pergamon Press, 1982.258.
- [41] MACGEEHAN P J, MACLEAN W H. An Archaean sub-seafloor geothermal system, "calc-alkali" trends, and massive sulphide genesis [J]. Nature, 1980, 286: 767-771.
- [42] HUMPHRIES S E. The mobility of the rare earth elements in the crust [A]. HENDERSON P. Rare Earth Element Geochemistry
 [M]. Amsterdam, Elsevier, 1984. 315-341.
- [43] NCBIRNEY A R. Igneous Petrology [M]. San Francisco: Freeman, Cooper, 1984. 504.
- [44] WILLIAMS D L, von HERZEN R P. Heat loss from the earth: new estimate [J]. Geology, 1974, 2: 327-328.
- [45] HALBACH P, HEBISCH U, SCHERHAG C. Geochemical variations of ferromanganese nodules and crusts from different provinces of the Pacific Ocean and their genetic control [J]. Chem Geol, 1981, 34: 3-17.
- [46] SEIBOLD E, BERGER W H. The Sea Floor-An Introduction to Marine Geology [M]. Berlin: Springer-Verlag. 1993. 289-294.
- [47] KOSCHINSKY A, HALBACH P. Sequential leaching of marine ferromanganese precipitates: genetic implications [J]. Geochim Cosmochim Acta, 1995, 59; 5 113-5 132.
- [48] APLIN A C, CRONAN D S. Ferromanganese oxide deposits from the central Pacific Ocean: I. Encrustations from the Line Island Archipelago [J]. Geochim Cosmochim Acta, 1985, 49: 427-436.
- [49] HEIN J R, MANHEIM F T, SCHWAB W C, et al. Ferromanganese crusts from Necker ridge, Horizon Guyot and S. P. Lee Guyot: geological considerations [J]. Mar Geol, 1985, 69:25-54.
- [50] GLASBY G P. Manganese: predominant role of nodules and crusts [A]. SCHULZ H D, ZABEL M. Marine Geochemistry[M]. 2nd ed. Berlin:Springer-Verlag, 2006. 371-428.
- [51] HALBACH P, PUTEANUS D. The influence of the carbonate dissolution rate on the growth and composition of Co-rich ferromanganese crusts from Central Pacific seamount areas [J]. Earth Planet Sci Lett, 1984, 68, 73-87.
- [52] von BLANKENBURG F, O'NIONS R K, BELSHAW A, et al. Global distribution of beryllium isotopic in deep ocean water as derived from Fe-Mn crusts [J]. Earth Planet Sci Lett, 1996, 141: 213-226.
- [53] 刘英俊. 元素地球化学 [M]. 北京: 科学出版社, 1984. 80~85.
- [54] DE CARLO E H, MCMURTRY G M, KIM K H. Geochemistry of ferromanganese crusts from the Hawaiian Archipelago-I. Northern survey areas [J]. Deep-Sea Research, 1987, 34: 441-467.
- [55] KOSCHINSKY A, STASCHEIT A, BAU M, et al. Effects of phosphatization on the geochemical and mineralogical composition of marine ferromanganese crusts [J]. Geochim Cosmochim Acta, 1997, 61: 4 079-4 094.
- [56] O'NIONS R K, CARTER S R, COHEN R S, et al. Pb, Nd and Sr isotope in oceanic ferromanganese deposits and ocean floor basalts
 [J]. Nature, 1978, 273: 435-438.
- [57] THOMPSON G. Hydrothermal fluxes in the ocean [A]. RILEY J P, CHESTER R. Chemical Oceanography [M]. New York: Academic Press, 1983. 271-337.
- [58] BANAKAR V K, PATTAN J N, MUDHOLKAR A V. Palaeoceanographic conditions during the formation of a ferromanganese crust from the Afanasiy-Nikitin Seamount, north central Indian Ocean: geochemical evidence [J]. Mar Geol, 1997,136, 299-315.
- [59] 邱家骧.应用岩浆岩岩石学 [M]. 武汉:中国地质大学出版社,1991. 155-224.

Low-temperature alteration of oceanic island basalts and their contribution to transition metal cycle of the ocean

BU Wen-rui^{1,2,3}, SHI Xue-fa², PENG Jian-tang⁴, LIU Ji-hua², ZHANG Ming-jie⁵, QI Liang⁴

(1. Institute of Oceanography, Chinese Academy of Sciences, Qingdao 266071, China; 2. Key Laboratory of Marine Sedimentology & Environmental Geology of State Oceanic Administration, First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China; 3. Graduate College, Chinese Academy of Sciences, Beijing 100039, China; 4. Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China; 5. College of Resource and Environmental School, Lanzhou University, Lanzhou 730000, China)

Abstract: The major elements, rare earth elements (REE) and trace elements of 4 basalt samples from the central and western Pacific ferromanganese crust provinces have been analyzed using chemical methods and ICP-MS, respectively. The results indicate that the samples have been extensively altered and that the contents of their major elements have changed significantly, with the samples losing the characteristics of the original rocks. However, the similarity of REE partition patterns and trace element contents of basalt samples to those of fresh oceanic island basalts(OIB) indicate that the basalt samples originated as oceanic island basalts(OIB). Because of low-temperature alteration, the contents of Al₂O₃, Fe₂O₃, MnO, K₂O, and P_2O_5 increased relative to fresh oceanic island basalts, while MgO and FeO decreased. Active components, such as magnesium and iron, were leached from OIB resulting in the relative enrichment of SiO2 of the samples than fresh OIB(appeare in standard mineral quartz), although the samples having lower SiO2 contents $(40.4\% \sim 41.4\%)$ than the lower limit(43%) of fresh basalt. The leaching of active components can cause the relative enrichment of REE of altered basalts, while the precipitation of REE-rich ferromanganese oxides in vesicles and fissures of altered basalts not only causes an increase of REE contents, but also induces fractionation of LREE and HREE, thereby increasing of $\sum c(Ce) / \sum c(Yb)$ ratios of the samples. Based on the enrichment mechanism of REE contents of altered basalts, the theoretical quantities of precipitated ferromanganese oxides and the depleted quantities of active components were calculated for per unit mass of fresh basalt. As a result of low-temperatrue alteration, the depleted quantities of active components for per unit mass of fresh basalts vary in the range of 0. $150 \sim 0.657$, and the precipitated quantities of ferromanganese oxides for per unit mass of fresh basalts vary in the range of 0.006 \sim 0.042. Of the major elements, the two most depleted are iron, and magnesium, with 18. 28%~70. 95% of iron and 44. 50~93. 94% of magnesium in the fresh basalts was leached out. This exceeded the depletion ratios of bulk samples (15.0% \sim 65.7%), and as a result the samples are depleted in iron and magnesium relative to fresh basalts. The negative depletion quantities of aluminium, potassium, and phosphorus for some samples resulted from the precipitation of zeolite in vesicles of samples and phosphatisation of the basalts. Theoretical calculation and geochemistry results both indicate that low-temperature alteration of basalts can supply abundant among of metals to seawater, and may play an important role in metal cycle of the ocean.

Key words: oceanic island basalts; low-temperature alteration; metal cycle of the ocean; theoretical calculation; cobalt-rich ferromanganese crusts