第31卷第9期

2005 年 9 月

Vol.31 No.9

硫酸盐还原菌混合菌群胞外聚合物对 Cu²⁺ 的吸附和机理

潘响亮 12, 王建龙 1, 张道勇 3

(1.中国科学院地球化学研究所,贵州 贵阳 550002; 2.清华大学核能与新能源技术设计研究院环境技术研究 室 北京 100084; 3. 吉林建筑工程学院交通工程系 吉林 长春 130021)

摘 要:生物吸附法是处理含重金属废水的一种新兴的处理技术。微生物所分泌的胞外聚合物(EPS)在微生物吸 附重金属中起重要作用。硫酸盐还原菌(SRB)混合菌群分泌的EPS能有效的吸附水溶液中的Cu2+, Langmuir等温 方程和 Freundlich 等温方程都能拟合实验所得吸附数据, 最大吸附容量达到 478.47mg/g EPS。 水溶液的初始 pH 值对 EPS 吸附 Cu2+ 影响明显, 在 pH 为 7 时, 吸附效率最高, pH 增减, 吸附效率明显下降。 SRB 混合菌群分泌的 EPS 的 FT-IR 分析表明, EPS 对 Cu2+ 的吸附主要在于 EPS 中的蛋白质的酰胺()、羧基、多聚糖的 C-O-C、-OH 和 脂类等基团对 Cu²⁺ 的强络合能力。

关键词:硫酸盐还原菌(SRB); 胞外聚合物(EPS); Cu2+; 吸附

中图分类号: 0647.3 文献标识码:A 文章编号:1000-3770(2005)09-0025-04

在含重金属废水的处理技术中 生物吸附法是一 种新兴的、颇具应用前景的技术。与传统处理技术相 比,生物吸附法具有去除效率高和运行成本低等优 点[1-3]。生物吸附法去除重金属的机理主要有细胞外 积累/沉淀、细胞表面吸附/沉淀和细胞内积累19。一 些研究表明 .胞外聚合物(EPS)在去除水溶液中的 重金属中起重要作用[59]。虽然已有大量的文献报道 了细菌、真菌等微生物吸附重金属 但是关于微生物 分泌的 EPS 吸附重金属的行为和机理方面的研究 还相对较少。本文目的是研究硫酸盐还原菌(SRB) 分泌的 EPS 对 Cu²+ 的吸附行为及其机理。

1 材料与方法

1.1 混合 SRB 菌群驯化、培养和富集

实验用的厌氧污泥取自亚运村北小河污水厂厌 氧消解池,每升污泥加入5g无水硫酸钠,35 振荡 培养(120r/min)驯化一周。然后用 Postgate B 培养 基[10]进一步驯化培养,每周更换新鲜培养基一次。培 养 8 周后获得实验用混合 SRB 菌液 ,VSS 为 2g/L。

用总挥发性固体(VSS ,单位 g/L)代表生物量 , 取一定浓度的菌液 ,10000g 离心 1min , 弃去上清 液 用去离子水冲洗 1~2次 离心弃去上清液 转移 到烘烤至恒重的蒸发皿内,再放到550~600 的马 福炉内灼烧至恒重,放到干燥器内,待温度冷却到 100 以下, 转移到干燥器内冷却 30min 后称重, 得 到挥发性固体重量。

12 胞外聚合物的制备

取 1000mL 经富集培养 8 周后 VSS 为 2g/L 的菌 液 在菌液中加入 8.5gNaCl 轻轻搅拌 使菌液的 NaCl 浓度为 0.85% 80 水浴加热 2h 20000g 离心 20min, 转蒸发仪浓缩至 100mL 测定 EPS的组成和浓度。

1.3 EPS 对 Cu²⁺ 的吸附

移取 2mL 浓缩 EPS(含 3mg EPS)于透析袋 中 扎紧 放入有 98mL 含 Cu²⁺ 溶液的 150mL 三角 瓶中 ,Cu2+ 的最终浓度范围为 10~500mg/L。25 , 静置吸附 24h 后采集 5mL 水溶液测定 Cu2+ 含量。 含 Cu2+ 溶液用分析纯 CuCl2+6H2O 和去离子水配

收稿日期 2004-08-29

基金项目 国家自然科学基金资助项目(50278045)

作者简介: 潘响亮(1972-),男,博士: 主要从事受污染环境生物修复技术和地下水污染生态学的研究: E-mail:xiangliangpan@163.com。

置。所有实验用玻璃器皿用 0.1mol HNO₃ 浸泡 48h, 然后用去离子水彻底冲洗, 烘干备用。

1.4 pH 对 EPS 吸附 Cu²⁺ 的影响

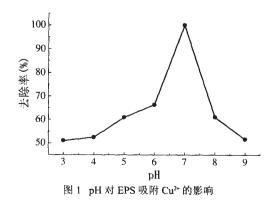
移取 2mL 浓缩 EPS (含 3mg EPS) 于透析袋中 扎紧 ,放入有 98mL 含 Cu²+溶液的 150mL 三角瓶中 ,Cu²+的浓度为 50mg/L ,事先用 0.5mol 的 HCl 和 NaOH 溶液调节为设计的 pH 值。25 静置吸附 24h 后采集 5mL 水溶液测定 Cu²+含量。含 Cu²+溶液用分析纯 CuCl₂·6H₂O 和去离子水配置。

2 分析方法

EPS的蛋白质用 Bradford 染色法测定¹¹¹。称取 100 mg 考马斯亮蓝 G-250 溶于 50 mL 95%乙醇 ,再 加 100 mL 85% (W/V)磷酸 ,用水稀释到 200 mL ,将 该溶液与去离子水按 1:5 稀释 ,用滤纸过滤。取 0.1 mL 样品加到 5.0 mL 染色液中 , 轻轻混和 ,于 595 nm 比色测定蛋白质含量。EPS 的多聚糖用苯酚 - 硫酸比色法测定¹¹¹。取 1mL 浓缩 EPS 溶液放入清洁试管内 ,加入 1mL 50g/L 的苯酚溶液 经 10~20s 的振荡混合 ,加入 5mL95%的硫酸溶液 ,在黑暗中反应 10min。反应结束后 ,再振荡 10s ,置试管于 20~30 水浴中 10min ,在 490nm 处比色。

水溶液中 Cu²+ 浓度用原子吸收分光光度计火焰原子化法测定。仪器为 Vario 6 AAS。

pH 用 526 pH-mv 计测定。


EPS 的基团用 Perkin Elmer Spectrum GX 红外光谱仪分析。EPS 的浓度用 TOC 仪测定。

3 结果与讨论

3.1 SRB 混合菌群 EPS 的组成

在 pH 为 7 时 ,SRB 混合菌群的 EPS 为 29.33 mg/gVSS ,其中蛋白质占 46.74% ,多糖占 53.26% ,蛋白质 / 多糖为 1.14。

32 pH 对 EPS 吸附 Cu²⁺ 的影响

溶液的初始 pH 对 EPS 吸附 Cu²+ 有明显的影响(图 1)。当溶液为中性时 EPS 对 Cu²+ 的吸附效率最佳 ,去除率达 99.94% pH 升高或降低 ,吸附效率都明显下降 pH 为 3 和 9 时的去除率分别为51.04%和51.78%。说明改变溶液的酸碱度会明显的影响 EPS 的化学性质 ,从而影响 EPS 的吸附性能。3.3 EPS 对 Cu²+ 的吸附效率

从图 2 和图 3 看出 EPS 对 Cu²+ 具有良好的吸附性能。总体上,在一定的浓度范围内,随溶液中Cu²+ 的初始浓度的增加 吸附率下降 ,平衡吸附量增加。在初始 Cu²+ 浓度为 10~500mg/L 的范围内 ,随初始 Cu²+ 浓度的增加 ,EPS 对 Cu²+ 的平衡吸附量也增加。在初始 Cu²+ 浓度为 10mg/L 时 ,EPS 对 Cu²+ 的平衡吸附量为 22mg/g EPS , 而在 Cu²+ 初始浓度为500mg/L 时 ,EPS 对 Cu²+ 的 平衡 吸附量为341.33mg/g EPS。

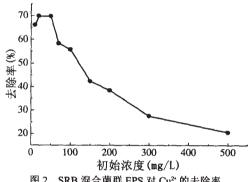


图 2 SRB 混合菌群 EPS 对 Cu^{2*} 的去除率
350
300
(S 250
100
50
100
200
300
400
500
初始浓度 (mg/L)

图 3 SRB 混合菌群 EPS 吸附Cu2*的平衡吸附量

3.4 SRB 混合菌群 EPS 的等温吸附行为

在正常情况下,一种吸附剂的吸附容量取决于被吸附金属的平衡浓度。等温吸附方程通常也就是对这两类参数之间的相关性进行拟合。最常用的等温吸附方程是 Freundlich 等温吸附方程(1)和 Langmuir 等温吸附方程(2)。

$$q_e = kC_e^{1/n}$$
 (1)

$$q_e = q_m b C_e / (1 + b C_e)$$
 (2)

式中 q_a 为吸附容量(mg/g 吸附剂) p_m 为最大吸附容量 p_a 为被吸附物质的平衡浓度 p_a p_a 和 p_a 为常数。

表 1 是 SRB 混合菌群分泌的 EPS 吸附重金属的等温方程常数。结果表明 Langmuir 等温方程比Freudlich 等温方程能更好地拟合 EPS 吸附 Cu²+ 的数据(图 4) 相关系数 R²分别为 0.9062 和 0.9813。其中最大吸附容量 q_m 为 478.47mg/g EPS ,说明 EPS对 Cu²+ 具有强的吸附能力。Freudlich 等温方程能能拟合实验数据说明在 EPS 吸附 Cu²+ 的过程是个物理化学吸附过程 Cu^2+ 和 EPS 的基团之间存在某些化学反应。

表 1 Freund lich 方程和 Langm u ir 方程常数

表 1 Freundlich 万桂和 Langm ulf 万桂帛数								
Freudlich等温吸附			Langmuir等温吸附					
K	1 /n	R ²	q _m (mg/g EPS)	b(1/mg)	R ²			
18.4381	0 5347	0.90616	478.47	0.01503	0.98131			
	350	•						
· /								
300								
ဖွဲ့ ²⁵⁰ ု								
200								
80 150								
© 250 © 200 © 150 © 100								
50								
0 100 200 300 400								
	0	100	200 300 C _s (mg/L)	400				
			图 4(a)					
0	.05 _C		E 7(a)					
·	.05			•				
0	.04							
P0								
© 0.03 0.02 0.002								
5000								
70	.02							
	0.1							

图 4(b) 图 4 EPS 吸附 Cu^{2*} 的等温方程模拟 (图 4 (a) Freundlich 等温方程,图 4(b)Langmuir 等温方程)

0.15

1/C (L/mg)

0.20

0.25

0.30

3.5 EPS 吸附 Cu2+ 的机理

0.05

0.10

0.00

图 5 为 EPS 吸附 Cu²+ 前后的 IR 谱图。IR 光谱 分析表明 吸附 Cu²+ 之前的 EPS 存在许多基团 有特征明显的蛋白质和多聚糖的一些基团对应的强的频段。还有一些强度较弱的基团表明存在以酸性或碱性 盐存在的羧基 当与其它一些频段相结合表明存在糖醛酸(糖类的显著频段)和腐殖酸(CH₂和酚)。在 EPS 中的一些其它含量低的组分 如脂类或核酸 在 IR 光谱中一般难以检测到。在指纹区的一些频段可能指示

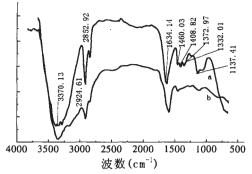


图 5 EPS 的 IR 谱图 (a 吸附 Cu2+ 之前; b 吸附 Cu2+ 之后)

着核酸组成基团之一磷酸盐的存在。CH₂ 和羧基的存在指示着脂类的存在。表 2 列出 IR 观察到的 EPS 的主要基团。从吸附了 Cu²+ 后的 IR 可以看出 表征多聚糖的 1150~1030cm¹ 的 C-O-C 基团、脂类的 CH₂ 和羧基以及蛋白质和多聚糖中的 -OH 都参与了 Cu²+ 的结合。位于 1455~1000cm¹ 间的基团基本上消失,表明 EPS 多聚糖中的 C-O-C 基团、脂类的 CH₂ 和羧基与 Cu²+ 有强的结合能力。 EPS 吸附 Cu²+ 起主要贡献的官能团是 -OH, C-O-C 和羧基。

表 2 IR 观察到的 EPS 的主要基团

	峰位(cm ⁻¹)	振动类型	基团类型			
	3750 ~ 3000	O-H伸缩振动	多聚糖和蛋白质的 -OH			
	2926 ± 10	CH ₂ 不对称收缩振动				
	2853 ± 10	CH ₂ 不对称收缩振动				
	1680 ~ 1630	C=O 收缩振动	酰胺	(蛋白质肽键)		
	1630 ~ 1580	C- N 伸缩振动,	酰胺	(蛋白质肽键)		
		N- H弯曲振动	酰胺	(蛋白质肽键)		
	1455	CH ₂ 的弯曲振动				
	1240	C= O弯曲振动,	羧酸			
		OH 伸缩振动	酚			
	1120 ~ 950	CH 面内弯曲振动	苯环			
	1150 ~ 1030	I50~1030 C-O-C 伸缩振动		多聚糖		
	<1000	指纹区	含硫、磷基团			

4 结 论

SRB 混合菌群分泌的 EPS 在微生物吸附 Cu²+中起非常重要的作用 Am 可达到 478.47mg/gEPS。用 Langmuir 方程和 Freundlich 方程都可描述 EPS 吸附 Cu²+的等温吸附行为 这说明 EPS 吸附重金属是个复杂的物理化学过程 JR 分析证实了这一点。EPS中的蛋白质的酰胺 ()、羧基、多聚糖的 C-O-C、-OH 和脂类等基团都有强的络合 Cu²+的能力。

参考文献:

- [1] 王建龙 , 韩英健 , 钱易. 微生物吸附金属离子的研究进展[J]. 微生物学通报 2000 27(6):449-452.
- [2] Su M C,Cha D K and Aderson P R.Influence of selector technology on heavy metal removal by activated sludge: secondary effects of selector technology[J]. Wat Res., 1995,29(3),971-976.
- [3] Chang W C,Quyang C F,Su M C,et al. Heavy metal adsorption by activated sludge from a biological nutrient removal process [C]. Proceedings of the 7th IAWQ Asia-Pacific Regional Conference, 1999, 1:167-172.
- [4] Veglio F, Beolchini. Removal of metals by biosorption: a review [J]. Hydrometallurgy, 1997,44:301-316.
- [5] Geesey GG, Jang L.Interactions between metal ions and capsular polymers, 1989, In: Beveridge TJ, Doyle RJ (eds) Metal ions an

bacteria. John Wiley and Sons, New York, 325-358.

- [6] Fukushi K, Kato S, Auntsuki T, et al. Isolation of copper binding proteins from activated sludge culture [J]. Water Sci technol., 2001, 44: 453-459.
- [7] Beech I B, Cheung C W S. Interactions of exopolymers produced by sulphate reducing bacteria with metal ions [J]. International Biodeterioration & Biodegradtion, 1995, 59-72.
- [8] 董德明,康春莉,李忠华,等. 天然水中细菌胞外聚合物对重金属的吸附规律[J]. 吉林大学学报(理学版), 2003, 41(1):94-96.
- [9] 张道勇, 赵勇胜, 潘响亮. 胞外聚合物(EPS)在藻菌生物膜去除污水中 Cd 的作用[J]. 环境科学研究, 2004, 5.
- [10] Postgate J R. The Sulfate Reducing Bacteria (2nd Edition)[M]. Cambridge University Press, Cambridge 1984.
- [11] 刘雨, 赵庆良, 郑兴灿编著.生物膜法污水处理技术[M].北京: 中国建筑工业出版社 2000.

COPPER () SORPTION BY EPS OF M IXED SRB POPULATION AND M ECHANISM

Pan Xiang-liang^{1,2}, Wang Jian-long², Zhang Dao-yong³

(1. In stitute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China; 2. Institute of Nuclear Energy Technology, Tsinghua University, Beijing 100084, China; 3. Jilin Institute of Architecture Engineering, Changchun, Jilin 130021, China)

A bstract: B iosorption is an emerging technology treating wastewater containing heavy metals. The extracellular polymeric substances(RPS) excreted by microbes plays an very important role in biosorption of heavy metals. This study showed that EPS of mixed sulfate-reducing bacteria (SRB) was effective in sorbing Cu²⁺. The Langmuir Isotherm Model and Freundlich Isotherm Model could describe the experiment data and the maximum sorption capacity was up to 478.47mg/gEPS. The initial pH value of solution had apparent influence on Cu²⁺ sorption by EPS. When pH was 7, EPS was most effective in adsorbing Cu²⁺ and as pH increased or decreased, sorption efficiency decreased significantly. FT-IR analysis demonstrated that the groups of hydroxyl, carboxyl and amide() were involved in binding Cu²⁺.

K ey w o rds :sulfate-reducing bacteria (SRB) ;extracellular polymeric substances (EPS) ;Cu2+ ;sorption

简讯

引进德国技术 官厅水库有望成为饮用水源

从有关部门获悉,考虑到北京严重缺水的形势,因严重污染被迫于 1997 年退出饮用水水源的官厅水库正在紧张治污,有望于 2010 年重新纳入北京城市供水系统。

据专家介绍,官厅水库曾经是北京市重要的供水水源地。近年来,由于水库污染加剧,库内的水常年处于四、五类标准,已不能充当城市生活供水水源。

为此, 宫厅水库引进了德国提供的污染水体生态处理技术,并已经应用于官厅水库黑土洼湿地系统示范工程, 这项技术为实现官厅水库恢复饮用水源地功能提供了技术保障, 从而净化被污染的水体, 提高升流入官厅水库的水质标准。

从 2004 年至今, 官厅水库下游的三家店库区水质均保持在三类地表水水质标准, 基本满足饮用水源水质要求。按照治理计划, 到 2010 年将实现官厅水库地表水三类水体标准, 三家店出库水质达到地表水二类水体标准, 实现将官厅水库重新纳入北京城市供水系统, 以保证北京供水安全, 逐步恢复流域的生态环境。

(张 浩)

美国 ITT 拿走北京奥运会污水处理大单

全球最大的水及污水处理系统解决方案供应商美国 ITT 工业公司已经和北京市政府签订了高碑店、清河、小红门污水处理厂的项目工程。 ITT 工业公司将把历届奥运会中积累的成功经验带到 2008 年的北京奥运会 并贡献出先进的水处理系统支持北京的"绿色奥运"。

根据 ITT 工业公司的市场分析 2000 年污水处理设备系统销售额为 12-15 亿美元,预计到 2010 年将增长到 28~30 亿美元,而其中增长的份额主要就是中国市场。

(汪东林)