文章编号:1000-4734(2004)03-0261-05

# 云南宾川雄鲁摩铜多金属矿床的成矿流体

何明勤<sup>1,2</sup>,刘家军<sup>3</sup>,杨世瑜<sup>2</sup>,李朝阳<sup>1</sup>

(1.中国科学院 地球化学研究所 矿床地球化学开放研究实验室,贵州 贵阳 550002;2.昆明理工大学 国土资源工程学院,云南 昆明 650093; 3.中国地质大学,北京 100083)

摘要:雄鲁摩铜多金属矿床产于沉积岩中,生成工业意义矿床主体的改造期石英中的流体包裹体显微测温、成 分分析以及氢氧同位素研究结果表明,雄鲁摩铜多金属矿床的流体为具有中低温、中低盐度和中低密度特征 的富钠氯化物型热卤水,成矿流体水来源于与围岩发生了同位素交换的演化大气降水,形成于浅成低压的较 酸性还原环境。

关键词:流体包裹体;成矿流体;氢氧同位素;雄鲁摩铜多金属矿床;云南宾川

**中图分类号**:P618.4101 文献标识码:A

作者简介:何明勤,男,1966年生,博士后,副教授,矿床学、地球化学专业.

雄鲁摩铜多金属矿床位于云南省宾川县境 内,发现于1959年,是以铜为主的多种金属共生 矿床。一些研究者经过调查后将其归为小型规模 的热液矿床,但未进行深入的地质研究工作,地球 化学数据缺乏。事实上,该矿床作为这一地区以 沉积岩为主岩的矿床类型,具有很好的代表性,也 是该地区异于众所周知的斑岩型铜矿床的一种新 类型。本文通过流体包裹体研究来阐述形成矿床 的成矿流体特征,并结合氢氧同位素分析数据对 流体来源进行了探讨,这对于揭示其成矿作用本 质,掌握成矿规律,进行矿产预测和指导矿产勘查 工作都具重要意义。

### 1 矿床地质

雄鲁摩铜多金属矿床地处滇西大理段,挟持 于洱海—红河断裂与程海—宾川断裂之间的三角 形地带,属于扬子准地台西缘丽江台缘褶皱带的 南部。区内岩浆活动微弱,仅在矿区西部一侧见 有一条黑云母正长斑岩脉,脉体呈北北西向延伸, 长约500 m,宽5~10 m,同围岩呈侵入接触,接触 界线清楚,据野外观察,该脉体与矿体的空间产出 关系不大。矿区地层有第四系残坡积物和三叠系 碎屑岩(图 1),包括上三叠统白土田组和罗家大 黄色页岩中,与构造破碎带关系明显,呈脉状或细 脉状,主要受控于北东向断裂。矿石矿物以黄铜 矿、黄铁矿、闪锌矿、方铅矿为主,少量斑铜矿、孔 雀石、蓝铜矿等,矿石构造以脉状、网脉状和块状 为主,矿石结构则以它形粒状结构、交代结构等占 重要。结合该区地质发展史,综观成矿作用全过 程,矿床的形成经历了改造(成矿)期和表生氧化 (成矿)期,并以前者为主<sup>[1]</sup>,因为工业意义矿床由 该成矿期所形成,因此这里主要研究改造(成矿) 期的成矿流体。改造(成矿)期可进一步划分为铜 硫化物阶段和铅锌硫化物阶段。

山组。矿体产于罗家大山组灰紫色砂岩与灰、灰

# 2 流体包裹体一般特征

根据对野外采集的改造(成矿)期样品的初步 观察,选取适合包裹体研究的脉状矿石样品(属铜 硫化物阶段),通过对样品中与黄铜矿等金属矿物 共生的透明脉石磨制成的光薄片的显微镜下详细 观察,矿物中的包裹体以原生包裹体<sup>[2]</sup>为主且较 发育。基于室温下的相态关系这一最有用的包裹 体分类方案<sup>[3]</sup>,主要有纯液体包裹体、液体包裹体 和气体包裹体三类(表 1),并以液体包裹体为主, 同改造矿床的流体包裹体特征<sup>[4]</sup>相似。

2

基金项目:95 国家科技攻关项目(96-914-03-04);原有色金属工业 总公司95 重点区带项目(96-D-42);国家重点基础研究发展规划 项目(Gl999043208);云南省教育厅基金项目(0142104)



### 图 1 雄鲁摩地区地质简图

Fig. 1. Geological sketch map of the Xionglumo area.

#### 表1 雄鲁摩矿区改造期石英的包裹体发育特征

Table 1. Characteristics of fluid inclusions hosted in quartz formed in the reworked mineralization period from the Xionglumo ore field

| 样号                                     | 包裹体类型                   | 数量比/% | 气液比/%   | 大小/µm | 相态组合形 | 形态及分布及    |
|----------------------------------------|-------------------------|-------|---------|-------|-------|-----------|
|                                        | I.液体包裹体                 | 70    | 10 ~ 25 | 5~10  | L + V | 周形 椭圆形    |
| $\mathbf{X} \mathbf{L}_1 \mathbf{B}_1$ | I <sub>A</sub> . 纯液体包裹体 | 20    | 0       | 1~ 8  | L     |           |
|                                        | Ⅱ. 气体包裹体                | 10    | 60 ~ 90 | 5~10  | V + L | 个规则状,成群分布 |
| VГР                                    | I.液体包裹体                 | 70    | 5~10    | 1~8   | L + V | 浑圆形、圆形,   |
| AL2D1                                  | I <sub>A</sub> . 纯液体包裹体 | 30    | 0       | 1~5   | L     | 成群密集分布    |

纯液体包裹体:由单一的液相(L)组成,占
各类包裹体总数的20%~30%,个体较小,为1
8µm,以圆形、椭圆形为主,成群分布。

液体包裹体:是该区包裹体中最为发育的 一种,占各类包裹体总数的70%,相态组合为 L+V,气液比5%~25%,大小为1~10µm,成 群密集分布,常呈圆形、椭圆形或不规则状。

气体包裹体:常呈圆形密集分布,占包裹体 总数的10%,是数量最少的一种包裹体,相态 组合为V+L,气液比60%~90%,大小 5~10μm。

# 3 流体包裹体均一温度、盐度、密度 与压力

从包裹体的上述特征及镜下总体观察来看, 矿床改造期所形成的包裹体捕获自单一均匀<sup>[2]</sup>的 NaC+H<sub>2</sub>O为主的流体相,因而可以用均一法测 温。结果显示,改造期石英中数量最多的液体包 裹体全部均一为液相,均一温度从190~287, 平均值215~261,总平均238;冷冻法盐度 从5.6%~11% NaCl,主要为7.6%~8% NaCl, 较接近,具中低温和中低盐度特点(表2)。

| 表2 な | 售鲁摩矿 | 区包裹体均 | 一温度、 | 盐度、压 | 力与深度 |
|------|------|-------|------|------|------|
|------|------|-------|------|------|------|

Table 2. Homogenization temperature, salinity, pressure and depth of fluid inclusions from the Xionglumo ore field

| t¥므       | 句审休米刑 | (気) () () () () () () () () () () () () () | + 1)/11       | 测定 | 均一温度      | 夏/  | 盐度/     | %   | 密度/        | 成矿压力/         | 成功资度/1      |
|-----------|-------|--------------------------------------------|---------------|----|-----------|-----|---------|-----|------------|---------------|-------------|
| 作巧        | 已委仲关空 | <u></u> 1/1×LL/ %                          | <b>火小 h</b> m | 个数 | 范围        | 平均  | 范围      | 平均  | $(g/cm^3)$ | $(10^{5} Pa)$ | 风10/木皮/KIII |
| $XL_1B_1$ | 液体包裹体 | 15 ~ 25                                    | 10~20         | 10 | 230 ~ 287 | 261 | 5.6~9.5 | 8   | 0.846      | 249.92        | 0.833       |
| $XL_2B_1$ | 液体包裹体 | 5~15                                       | 6~8           | 11 | 190~241   | 215 | 5.7~11  | 7.6 | 0.890      | 202.51        | 0.675       |

利用流体包裹体 NaC-H<sub>2</sub>O 体系的均一温度 和盐度能够较容易地估计捕获流体的密度、计算 其形成压力。根据各样品均一温度和盐度平均值 由 Bodnar (1983) *T*-- 图<sup>[5]</sup>得到均一为液体的液体相密度分别为 0.850 g/ cm<sup>3</sup> 和 0.889 g/ cm<sup>3</sup>,在 Bischoff 等(1991)的 *T*-- 图<sup>[5]</sup>上得到密度则为

262

0.842 g/ cm<sup>3</sup>和0.891 g/ cm<sup>3</sup>,两者图解结果十分相 近, 取均值得各自的密度为0.846 g/ cm<sup>3</sup> 与 0.890 g/cm<sup>3</sup>(表 2),总平均得到矿床改造期成矿 流体的密度为0.868 g/ cm<sup>3</sup>,属中低密度;通过流 体包裹体进行成矿压力和深度的估算方法较多、 常用的有含 CO2包裹体的等值线(等比容)法、含 O2包裹体浓度法以及气体包裹体压力测定法 等<sup>[6]</sup>.分别适用干含 CO<sub>2</sub>包裹体、气成或沸腾的条 件,具有一定的局限性。采用邵洁莲(1983)提出 的经验公式<sup>[7]</sup>,由初始温度  $t_0 = 374 + 9.20N(N)$ 为盐度,以 NaCl 的质量百分数来表示,下同)、初 始压力  $p_0/0.1$  MPa = 219 + 26.20N 可经验计算成 矿压力 p 和成矿深度 h。其中 ,  $p = p_0 \cdot t / t_0 (t)$ 为 包裹体均一温度),h/km = p/300。计算得到各样 品的成矿压力为249.92 ×10<sup>5</sup> Pa和202.51 ×10<sup>5</sup> Pa (表 2), 平均 226.21 ×10<sup>5</sup> Pa。成矿深度为 0.833 km和0.675 km,平均0.754 km,是一种十分 浅成低压的环境。

4 流体包裹体成分

由于改造期矿石样品的石英中的包裹体以原 生包裹体为主,因此其单矿物液气相成分基本能代 表形成矿床的流体化学成分。液相成分(表 3)表

明: 改造期成矿溶液是含  $Na^+$ 、 $K^+$ 、 $Mg^{2+}$ 、F、 $Q^-$ 、 SO4 等离子的较复杂成分溶液,阳离子的相对含量 关系是 Na<sup>+</sup> >  $K^+$  >  $Mg^{2+}$ ,阴离子的相对含量关系 是  $O^{-} > F > SO_{4}^{2}$ ,但阴阳离子中各以  $O^{-}$ 和 Na<sup>+</sup>占 绝对优势,分别占阴离子和阳离子摩尔总数的96% 和 94 %,因而可近似地看作为 NaCl-HoO 体系,这与 包裹体的镜下观察与研究得到的结果一致; 流体 包裹体的冷冻法测盐表明成矿溶液为 7.6%~8% NaCl,属卤水范围(含盐度或总矿化度>5%)<sup>[8,9]</sup>, 均一温度 215 ~ 261 , 系热卤水 (温度 50 ~ 300)<sup>[10]</sup>: 与富含重金属的现代卤水溶液<sup>[9]</sup>相 比、离子含量普遍仅为其数十、数百分之一或更低、 甚至低于海水; Na<sup>+</sup>/K<sup>+</sup>质量比平均为 15.78, Na<sup>+</sup>大于 K<sup>+</sup>, Na<sup>+</sup>/K<sup>+</sup>原子比为 25.88 和 27.62, 平 均 26.75,相近于其他一些矿床如密西西比河谷型 等矿床流体包裹体中的 Na<sup>+</sup>/ K<sup>+</sup> 原子比<sup>[11]</sup>; C<sup>-</sup>/ SO4 原子比平均 26.82,也与密西西比河谷型等矿 床流体包裹体中的  $C^{1}/SO_{4}^{2}$  原子比接近<sup>[11]</sup>;  $SO_4^2/C^1$ 质量比为 0.066 和 0.209,平均值等于 0.138.小干硫酸盐型热卤水的下限.是富钠的氯化 物型热卤水; F/O 质量比或原子比均低,平均为 0.007 和 0.014,如此低的 F/O 比值也反应矿床属 地下热卤水成因[12]。

表 3 雄鲁摩矿区包裹体液相成分与参数 Table 3. Aqueous phase composition of and parameters for fluid inclusions from the Xionglumo ore field

| +¥ - E    |                 |                |                  |           |      |       | → + ( ~ <sup>2</sup> + → + <sup>2</sup> +) | ao <sup>2</sup> - / a <sup>-</sup> |                            | a-100 <sup>2-</sup>  |       |                     |
|-----------|-----------------|----------------|------------------|-----------|------|-------|--------------------------------------------|------------------------------------|----------------------------|----------------------|-------|---------------------|
| 件亏        | Na <sup>+</sup> | $\mathbf{K}^+$ | Ca <sup>2+</sup> | $Mg^{2+}$ | F    | CI-   | $SO_4^{2-}$                                | Na '/ K'                           | $Na^{+}/(Ca^{2+}+Mg^{2+})$ | SO <sub>4</sub> / Cl | F/ Cl | 0 / SO <sub>4</sub> |
| $XL_1B_1$ | 17.4            | 1.14           | 痕                | 0.03      | 0.27 | 23.66 | 4.94                                       | 15.26                              | 580                        | 0.209                | 0.011 | 12.952              |
| $XL_2B_1$ | 30.30           | 1.86           | 痕                | 0.05      | 0.14 | 44.54 | 2.96                                       | 16.29                              | 606                        | 0.066                | 0.003 | 40.691              |

注:原地质科学院矿床地质研究所分析.

包裹体气相成分主要是 H<sub>2</sub>O 和 CO<sub>2</sub>,并含一 定量的 N<sub>2</sub>(表 4),且以 H<sub>2</sub>O 含量最高,达 97 %或 98 %以上。根据气相成分可以计算出一些重要 的、控制成矿作用过程的物理化学参数,但在利用 流体包裹体气体成分数据进行物理化学参数计算 时,通常都假定包裹体被捕获时各气体之间达到 了化学平衡,而且包裹体形成时为单相气体,这样 就可以根据气体间的一些平衡反应求出包裹体的 pH、Eh 等参数<sup>[12]</sup>。计算出的 pH 介于 4.44 与 4.64 之间(表 4),均值为 4.54,是一种比较酸性的 溶液;以计算出的 pH 为依据,采用图解法<sup>[13]</sup>得出 成矿流体的 Eh、f(O<sub>2</sub>)、f(CO<sub>2</sub>)值,也列于表 4。其 中,lg f(O<sub>2</sub>)为-37.8~-33.4,Eh 变化于-0.68至 -0.64之间,属于较还原的环境。

| 农4 继首序》 凸已表件飞怕成刀 弓诊药 |
|----------------------|
|----------------------|

Table 4. Gaseous phase composition of and parameters for fluid inclusions from the Xionglumo ore field

|       |                  |        |                 |       |       | 0.100         |      | n     | $1 \cdot (0)$         | 1. ((00))              |
|-------|------------------|--------|-----------------|-------|-------|---------------|------|-------|-----------------------|------------------------|
| 件互    | H <sub>2</sub> O | $CO_2$ | CH <sub>4</sub> | CO    | $N_2$ | $0_{2}/0_{2}$ | рН   | En    | $\lg f(\mathbf{O}_2)$ | $\lg f(\mathbf{CO}_2)$ |
| XL1B1 | 49.558           | 2.020  | 0.000           | 0.000 | 0.517 | 24.53         | 4.64 | -0.68 | -37.8                 | 2.26                   |
| XL2B1 | 95.883           | 2.715  | 0.000           | 0.000 | 0.382 | 35.32         | 4.44 | -0.64 | -33.4                 | 2.30                   |

注:原地质科学院矿床地质研究所分析.

### 5 流体氢氧同位素与流体来源讨论

选纯石英脉型铜硫化物矿石样品中的石英脉 石单矿物,作矿物氧同位素和包裹体水氢同位素 分析,数据列于表 5。石英<sup>18</sup>O从13.7‰~ 17.6‰,平均15.65‰,流体 D从-105‰到 -117‰,平均-111‰,一般地,岩石、矿物包裹体中 的氢、氧同位素组成可用来确定成岩成矿流体水 的来源<sup>[14]</sup>,但却难以真实地反映成岩成矿流体中 的氢、氧同位素组成,因为包裹体的液体往往与矿 物或岩石发生后期同位素交换,从而偏离其原始 同位素组成,同时也是诸多矿床的共同特点。对于主要由石英等非含氢矿物组成的岩矿石,尤其 是在水岩比较大时,这种交换作用对流体氢同位 素的影响可能很小,可以不予考虑或者忽略不计; 而对于氧同位素的影响,则可以根据矿物氧同位 素组成,利用福尔<sup>[15]</sup>的公式 1000ln [( $^{18}O_{A}$  + 1000)] = 3.38 ×10<sup>6</sup>  $T^{-2}$  - 3.40 计 算出与石英呈同位素交换达到平衡的流体的氧同 位素组成,也列于表 5,能真实地反映原始成矿溶 液的性质,其中的 *T*采用包裹体均一温度平均值 换算获得。

| 表5 雄鲁摩矿区 | 氢、氧问位系组成 |
|----------|----------|
|----------|----------|

Table 5. Hydrogen and oxygen isotopic compositions of fluid inclusions from the Xionglumo ore field

| +* 🗖              | <sup>+</sup> * ㅁ <del>米</del> 피 |         | 测空计分   | 分析组                   | 180 ( 0)                |                             |
|-------------------|---------------------------------|---------|--------|-----------------------|-------------------------|-----------------------------|
| 件亏                | 样品尖型                            | 反义 创 书月 | 测正刈家   | $^{18}O_{(SMOW)}$ / ‰ | D <sub>(SMOW)</sub> / ‰ | "O <sub>H2O</sub> (SMOW)/ % |
| XL <sub>1</sub> O |                                 | 7614    | 石英     | 13.7                  | -105                    | 5.25                        |
| $XL_2O$           | 脉状如白                            | 以這      | 石英     | 17.6                  | -117                    | 6.81                        |
|                   |                                 |         | $\cap$ |                       |                         |                             |

分析者:原地质科学院矿床地质研究所

与我国沉积改造型层控矿床流体的 D 和 <sup>18</sup>O<sub>H,0</sub>值<sup>[16]</sup>相比,雄鲁摩铜金属矿床的 <sup>18</sup>O<sub>H,0</sub>较

大、而 D值偏低,但矿床成矿流体较低的 D值与 滇西温泉水的 D值(-113%至-80.8%)<sup>[17]</sup>却较相 近,反映成矿流体水应来源于大气降水,这与矿区 没有发生变质作用、岩浆活动不强烈且与矿体空 间产出关系不大等宏观地质事实相吻合。如果取 流体 D的平均值-111%作为成矿时矿区大气降 水的 D值,按照 Craig<sup>[18]</sup>的雨水线方程 D=8<sup>-18</sup>O +10 计算出的大气降水<sup>-18</sup>O为-15.1%。

可见,成矿流体的<sup>18</sup>O<sub>HO</sub>(5.25‰~6.81%) 远远大于成矿时大气降水的<sup>18</sup>O值,显示<sup>18</sup>O的 严重"漂移",是与围岩发生水岩反应导致同位素 交换的结果,而且同位素交换时的水岩比应该比 较小才会造成这种<sup>18</sup>O的严重"漂移"。

## 6 结 论

(1) 成矿流体是 Na<sup>+</sup>-K<sup>+</sup>-Mg<sup>2+</sup>- Cl<sup>-</sup>SO4<sup>2</sup>-F 的
 溶液,但以 Cl<sup>-</sup>和 Na<sup>+</sup>占绝对优势,可近似地看作
 为 NaCl-H<sub>2</sub>O 体系。

(2) 流体具中低温、中低盐度和中低密度特征。

(3)成矿作用发生于浅成低压、较酸性的还原 环境。

(4) 与成矿时原始大气降水<sup>18</sup>O = -15.1 %相 比,成矿流体水<sup>18</sup>O 为 5.25 ‰ ~ 6.81 %,明显偏 高,可能是来源于演化了的大气降水。

**致谢**:野外工作得到钟昆明博士、陈昌勇博士、马德云博 士和原西南有色地质勘查局 310 地质队杨高伟工程师的 帮助与配合,深表感谢!

### 参考文献:

- [1] 何明勤. 滇西小龙潭——马厂箐地区铜金多金属矿床地质地球化学及成因研究[D]. 昆明:昆明理工大学(博士论文),2000.
- [2] Roedder E. 流体包裹体(上册)[M]. 卢焕章, 王卿铎, 等(译). 长沙: 中南工业大学出版社, 1985, 1 ~ 303.
- [3] Bodnar RJ, Beane R E. Temporal and spatial variations in hydrothermal fluid characteristics during vein filling in preore cover overlying deeply buried porphyry copper-type mineralization at Red Mountain, Arizona [J]. Econ Geol, 1980, 75: 876 ~ 893.
- [4] 中国科学院矿床地球化学开放研究实验室.矿床地球化学[M].北京:地质出版社,1997,226~247
- [5] 刘斌,沈昆.流体包裹体热力学[M].北京:地质出版社,1999,1~140.
- [6] 中国科学院地球化学研究所包裹体实验室.科学技术成果报告(矿物中包裹体研究)[M].北京:科学技术文献出版社,1980,1~79.

[7] 张宝琛,覃功炯,王凤阁.辽宁省岫岩县东堡子金矿流体包裹体研究[J].现代地质,2002,16(1):26~30.

- [8] 张宗祥. 卤水成矿的几个基本问题[J]. 地质与勘探, 1980, (7): 19~21.
- [9] 姜齐节,刘东升,陈民扬,冯建良,余大良,黄超,曾骥良.论渗流热卤水成矿作用的意义与成因标志[J].地质与勘探,1980,(1):1~6.
- [10] 孙克祥. 热卤水成矿说[J]. 地质地球化学, 1980, (1):23~37.
- [11] Sawkins F.J. The significance of Na/ K and Cl/SO<sub>4</sub>ratios in fluid inclusions and subsurface waters ,with respect to the genesis of Mississippi valleytype ore deposits[J]. *Econ Geol*, 1968, 63: 935 ~ 942.
- [12] 卢焕章,李秉伦,沈 珪,赵 希,喻铁阶,魏家秀.包裹体地球化学[M].地质出版社,1990,1~161.
- [13] 李秉伦,石岗.矿物中包裹体气体成分的物理化学参数图解[J].地球化学,1986,(2):126~137.
- [14] 魏菊英,王关玉.同位素地球化学[M].北京:地质出版社,1988,112~139.
- [15] 福尔 G.同位素地质学原理[M]. 潘曙兰, 乔广生(译). 北京: 科学出版社, 1986, 281~301.
- [16] 卢焕章,刘丛强.沉积改造层控矿床包裹体研究与矿床形成机理探讨[J].矿床地质,1987,6(2):16~28.
- [17] 刘家军,李朝阳,潘家永,胡瑞忠,刘显凡,张 乾. 兰平—思茅盆地砂页岩中铜矿床同位素地球化学[J]. 矿床地质,2000,19(3):223 ~234.
- [18] Craig H. Isotopic variations in meteoric waters[J]. Science ,1961, 133: 1702 ~ 1703.

# ORE FORMING FLUID OF XIONGLUMO COPPER POLYMETALLIC ORE DEPOSIT IN BINCHUAN, YUNNAN

HE Ming-qin<sup>1,2</sup>, LIU Jia-jun<sup>3</sup>, YANG Shi-yu<sup>2</sup>, LI Chao-yang<sup>1</sup>

Open Lab. of One Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China;
 Land Resources Engineering Faculty of Kunning University of Science and Technology, Kunning 650093, China;
 Geology University of China, Beijing 100083, China)

Abstract :The results of microthermometrical measurement, composition analysis of fluid inclusions, and oxygen and hydrogen isotopes in quartz formed in the reworked mineralization period indicate that the ore-forming fluid of the Xionglumo copper polymetallic ore deposit is a sodium-rich chloride-type hot brine which is characterized by low to medium temperature, salinity and density. The fluid water was formed in a hypergene, low pressure, acidic, reductive environment and derived from evolved meteoric water because of a significant oxygen isotope exchange during water/ rock reaction.

**Key words :** fluid inclusion ; ore-forming fluid ; hydrogen and oxygen isotopes ; Xionglumo copper polymetallic ore deposit ; Binchuan , Yunnan