第31卷 第3期 2011年9月

文章编号:1000-4734(2011)03-0380-11

辽西建昌碱性粗面岩的年代学及岩石成因研究

冯光英^{1,2},刘燊^{1*}, 仲宏¹,冯彩霞¹,齐有强¹,杨毓红^{1,2},杨朝贵^{1,2}

(1. 中国科学院 地球化学研究所 矿床地球化学国家重点实验室 ,贵州 贵阳 550002; 2. 中国科学院研究生院北京 100039)

摘要:义县组火山岩在辽西分布广泛,研究区碱性粗面岩位于建昌地区义县组火山岩的顶部,详细的年代学及 地球化学研究表明,锆石 U-Pb 年龄为(120.3±1.5) Ma,具有较高的 SiO, 和碱含量,w(SiO,) = 63.52% ~ 65.94% w(Na,0+K,0) = 9.63% ~10.15% w(Na,0) / w(K,0) 为 0.96 ~1.08 属于高钾碱性岩系列 同时具 有较低的 w(MgO)(0.75%~1.05%),稀土配分模式为轻稀土富集,重稀土亏损的右倾型模式((La/Yb)_N= 8.96~12.02) 校弱的正 Eu 异常(δEu=1.07~1.16) 相容元素 Cr(1.46×10⁶~4.15×10⁶)、Co(19.8×10⁶~ 45.9×10⁻⁶) 和 Ni(0.100×10⁻⁶ ~1.55×10⁻⁶) 含量低。微量元素蛛网图显示明显的 Ba 和 Pb 正异常,以及 Sr、Ti 和 Y 负异常,此外,Zr和Hf显示一定的正异常。认为碱性岩形成于拉张的构造环境,且来源深度较大,是壳幔相 互作用的结果,研究区火山岩是经过强烈橄榄石、斜方辉石和单斜辉石结晶分异的富集地幔岩浆上升底侵至下 地壳,并经历同化混染和部分熔融,然后沿着深大断裂喷发至地表。

关键词:辽西建昌;义县组;碱性粗面岩;岩石成因

中图分类号:P588.15; P595; P597 文献标识码:A

作者简介: 冯光英, 女, 1983 年生, 河北邯郸人, 博士研究生, 地球化学专业. E-mail: fengguangying 198@ 163. com

华北克拉通中-新生代以来发生了大规模的 岩石圈减薄和破坏^[16] 同时岩石圈地幔的性质也 发生了显著变化,从古生代富集的古老克拉通大 陆型地幔 转变为同位素亏损的新生代大洋型地 幔^[7]。辽西地区位于华北克拉通的北缘,大量的 研究表明 该区火山岩喷发的时间集中在侏罗纪 到白垩纪^[89],是我国中生代火山岩的主要分布地 区之一 显然这些中生代火山活动是克拉通破坏 过程的直接产物^[10] 对认识华北东部岩石圈演化 具有重要意义。

前人对辽西火山岩的研究主要集中在岩石地 层特征^[11]和岩相古地理特征^[12]等方面。对该区 火山岩年代学的研究 20 世纪 80 年代以前基本 上运用传统地层学方法 之后 对中生代火山岩的 同位素年代学研究逐步展开^[13],目前对义县组时 代归属的研究已取得重要进展^[89,14] 分布在不同

收稿日期:2011-03-20

盆地中的义县组火山岩基本都有高精度年代学数 据的制约 这些资料显示 北票-义县地区喷发年 龄主要集中于 132~119 Ma^[8] ,阜新地区为 112~ 117 Ma^[1546] 凌源地区目前只有义县组下部层位 的年龄^[17](125~122 Ma),虽然不同地区义县组 火山岩的喷发时限存在一定差异,但明显以125 Ma 为峰值时间^[18]。对义县组火山岩的岩石成因 (如岩浆来源及其演化过程等问题)仍然存在激 烈争论 争论的焦点主要是这套义县组火山岩是 下地壳拆沉作用的产物还是岩浆混合作用的产 物^[10] 进一步的地球化学研究是解决这一问题的 关键所在。

目前对于义县组火山岩地球化学特征的研究 程度相对较低,已有的研究主要集中在辽西北部, 如阜新县^[16]、北票四合屯^[19]、凌源市^[20]和义 县^[21]。岩性涉及面较广,包括高镁安山岩、波基 方辉安山岩、粗面岩、玄武安山岩、橄榄玄武岩、凝 灰岩、玄武岩以及玄武岩捕虏晶等,值得注意的是 上述研究对象大多具有高镁的特征^[22]。本文对 辽西南部葫芦岛市建昌县碱性粗面岩进行了详细 的年代学和地球化学研究,研究表明该区义县组 火山岩与其他地区有明显的地球化学差异,对于

^{*} 通讯作者 ,E-mail: liushen@ vip. gyig. ac. cn

基金项目:国家自然科学基金(批准号:40773020;40972071; 40634020);西北大学大陆动力学国家重点实验室开放课题基金 (08LCD08) 21994-2018 China Academic Journal Electronic Publ

确定岩浆的源区特征、岩石的形成环境以及华北 克拉通北缘壳幔演化过程具有重要意义。

1 区域地质背景和样品采集

辽西地区位于华北克拉通北缘,燕山中生代 板内造山带东段^[23],北邻兴蒙造山带,东至下辽 河断陷之西缘,西到赤峰-平泉一线^[24],是在前寒 武纪克拉通基础上发育起来的。前中生代经历了 太古宙-古元古代结晶基底形成、中新元古代拗拉 槽和古生代克拉通稳定盖层发育3个阶段。中生 代开始地壳活化,构造运动和岩浆活动强烈,进入 板内造山作用阶段。早期构造演化属于古亚洲构 造域,中生代中晚期属于太平洋构造域;在中生代 早期近东西向的构造-岩浆岩带之上叠加了中生 代晚期新生的北北东向构造-岩浆岩带,又叠加了 许多以结晶基底和中酸性侵入岩为核的垂向隆升 构造,构成了辽西地区中生代构造基本格局^[24]。

义县组为辽西地区广泛分布的晚中生代陆相 火山-沉积地层^[13] 根据刑德和^[25]的研究, 辽西地 区义县组是一套中生代陆相火山-沉积岩系, 主 要由中-基性火山熔岩、火山碎屑岩及湖泊相(包 含少量的河流相)沉积岩构成。依据火山活动的 规律性,将义县组划分为4个岩性段,自下而上 为:底砾岩+基性-中基性火山岩段; 湖相沉积(或 称珍稀化石层)岩+中酸性火山岩段; 基性、中基 性-酸性、偏碱性火山岩段和砾岩(包括沉火山角 砾岩)+中酸性、偏碱性火山岩段。

研究区属于建昌盆地(图1),该区出露的中

生代火山岩主要由髫髻山组(Jt) 玄武安山岩,粗 安岩及同成分火山碎屑岩; 要路沟组(Jy²) 安山 岩、砾岩和砂砾岩; 义县组一段(Ky¹) 流纹岩、粗 面岩及同成分火山碎屑岩; 义县组二段(Ky²) 砂 砾岩、粉砂质页岩、流纹岩及同成分火山碎屑岩 等。本文的样品采于义县组二段(Ky²),样品为 碱性粗安岩,深灰色块状构造,未见明显的气孔以 及杏仁构造,斑状结构,斑晶粒度为2~3 mm,主 要由碱性长石(如,透长石,正长石和歪长石等) 和少量碱性暗色矿物(如,霓石、霓辉石、钠闪石 和钠铁闪石等)组成,此外,还含少量似长石(霞 石、白榴石、方钠石、蓝方石和黝方石等)。基质 主要为细粒状斜长石(0.1~0.5 mm,约占50%) 和长英质玻璃 副矿物有磁铁矿、锆石和磷灰石等。

2 测试方法

样品均为新鲜火山岩,破碎和锆石挑选工作 由河北廊坊区调院完成。锆石阴极发光图像处理 在西北大学大陆动力学国家重点实验室完成; 锆 石 U-Pb 同位素定年在中国地质大学(武汉) 地质 过程与矿产资源国家重点实验室(GPMR) 利用 LA-ICP-MS 同时分析完成。激光剥蚀系统为 GeoLas 2005 JCP-MS 为 Agilent 7500a。对分析数 据的离线处理(包括对样品和空白信号的选择、 仪器灵敏度漂移校正、元素含量及 U-Th-Pb 同位 素比值和年龄计算)采用软件 ICPMSDataCal^[26]完 成。详细的仪器操作条件和数据处理方法同 Liu 等^[26]。

?1994-2018 China Academic Journal 图 Cripter Conce 中國 Proving Fig. 1. Geological map of Jianchang , western Liaoning Province.

U-Pb 同位素定年采用锆石标准 91500 作外标进行同位素分馏校正,每分析 5 个样品点,分析 2 次 91500。对于与分析时间有关的 U-Th-Pb 同位素比值漂移,利用 91500 的变化采用线性内插的方式进行了校正^[26]。锆石标准 91500 的 U-Th-Pb 同位素比值推荐值据文献 [27]。锆石样品的U-Pb 年龄谐和图绘制和年龄权重平均计算均采用 Isoplot/Ex_ver3^[28]完成。测试结果见表1。

主微量元素测试在中国科学院地球化学研究 所矿床地球化学国家重点实验室完成。主元素测 试采用 Axios PW4400 型 X 荧光光谱仪,分析精度 优于 3%;微量元素分析采用 Perkin-Elmer ELAN DRC-e ICP-MS 完成,分析精度优于 5%。

3 分析结果

3.1 锆石 U-Pb 年龄

从火山岩样品中挑选出足够的(>500 粒) 锆 石。挑选出的锆石均为自形无色透明状(图 2), 大多数锆石直径接近或大于 100 μm。阴极发光 下具有清晰的震荡环带,所测试锆石的 w(Th) / w(U) 均大于 0.7(0.73~1.26 之间)(表 1) 具有 岩浆锆石的特征。所有分析点均位于 U-Pb 谐和 线上,²⁰⁶ Pb/²³⁸ U 加权平均年龄为(120.3±1.5) Ma 代表了碱性粗面岩的形成年龄。此年龄与辽 西北票--义县地区义县组顶部黄花山角砾岩层或 流纹岩的形成时期(122~119 Ma)一致^[8]。

图 2 建昌义县组火山岩锆石 CL 图像 及 LA-ICP-MS U-Pb 谐和年龄

Fig. 2. Zircon cathodoluminescence images and LA-ICP-MS zircon U-Pb Concordia diagram for the Yixian formation volcanic rocks in Jianchang.

3.2 主微量元素组成

建昌义县组碱性粗面岩主量元素分析结果见 表 2 µ(SiO₂)较高,变化在63.52%~65.94%之

表1 建昌义县组火山岩锆石 U-Pb 年龄

Table 1. LA-JCP-MS U-Pb isotopic data for the Yixian Formation volcanic rocks in Jianchang

NJG01		$w_{\rm B}/10^{-6}$		···· (Th) (··· (II)	同位素比值							
测点	Th	U	Pb	-w(1h) / w(0)	$^{207}{\rm Pb}/^{206}{\rm Pb}$	1σ	$^{207}{\rm Pb}/^{235}{\rm U}$	1σ	$^{206}\mathrm{Pb}/^{238}\mathrm{U}$	1σ		
1	61.1	75.14	4.68	0.81	0.0509	0.0050	0.1300	0.0125	0.0185	0.0003		
2	310	334	18.9	0.93	0.0517	0.0023	0.1362	0.0060	0.0192	0.0002		
3	129	153	8.40	0.85	0.0503	0.0042	0. 1313	0.0108	0.0189	0.0003		
4	294	234	17.4	1.26	0.0503	0.0057	0.1265	0.0141	0.0183	0.0003		
5	101	135	6.23	0.75	0.0533	0.0031	0. 1391	0.0080	0.0191	0.0003		
6	63.1	86.94	4.51	0.73	0.0511	0.0032	0.1337	0.0104	0.0189	0.0004		
7	250	224	14.6	1.12	0.0467	0.0036	0.1260	0.0125	0.0190	0.0003		
8	88.8	113	5.78	0.78	0.0521	0.0038	0.1366	0.0103	0.0191	0.0004		
9	2591	1675	140	1.55	0.0500	0.0027	0.1346	0.0105	0.0188	0.0002		
NJO	G01				白	≡齿令/Ma						
测	点	²⁰⁷ Pb / ²⁰⁶	Pb	1σ	$^{207}{\rm Pb}/^{235}{\rm U}$		1σ	$^{206}{ m Pb}/^{238}{ m U}$		1σ		
1	l	238		222	124		11	118		2		
2	2	272		79	130		5	122		1		
3	3	210		190	125		10			2		
4	4 207		254	121		13	117	2				
5	5 342		103	132		7	122		2			
6	6 644		302	145		18	116		2			
7 31			190	120		11	121		2			
?1994	-2018 C	497 hina Acad	lemic Jo	258 urnal Electron	ic Publishir	ig House	18 . ₉ All rights	reserved.	http://w	3 ww.cnki.		

表2 建昌义县组火山岩主量元素分析结果 $(w_{\rm B}/\%)$

Table 2. Major elements of the Yixian Formation volcanic rocks in Jianchang

样品	SiO_2	TiO_2	Al_2O_3	$\mathrm{Fe}_2\mathrm{O}_3$	MgO	CaO	Na_2O	K_2O	MnO	P_2O_5	LOI	Total	$I_{\rm Mg}$	Na_2O+K_2O	K_2O/Na_2O	$t_{\rm Zr}/^{\circ}{ m C}$
NJG-01	64.98	0.78	16.40	4.26	0.89	1.33	4.86	4.93	0.10	0.29	1.36	100.18	31	9.79	1.01	895
NJG-02	65.13	0.81	15.94	4.17	0.77	0.97	4.96	5.10	0.10	0.30	1.46	99.72	29	10.07	1.03	894
NJG-03	64.83	0.80	15.89	3.99	0.76	1.14	5.02	4.93	0.08	0.30	1.90	99.64	30	9.95	0.98	894
NJG-04	64.60	0.80	15.92	4.09	0.80	1.09	4.95	5.17	0.09	0.30	1.85	99.67	30	10.12	1.04	891
NJG-05	64.93	0.81	16.20	4.20	0.82	1.21	4.98	5.10	0.09	0.30	1.31	99.96	30	10.08	1.03	892
NJG-06	64.91	0.80	15.77	4.17	0.80	1.31	5.04	4.89	0.10	0.30	1.69	99.78	30	9.94	0.97	890
NJG-07	65.94	0.81	16.00	4.24	0.75	0.99	5.05	5.10	0.10	0.31	1.20	100.48	28	10.15	1.01	893
NJG-08	64.68	0.79	15.61	4.03	0.78	1.22	4.99	4.82	0.10	0.30	2.03	99.35	30	9.81	0.97	888
NJG-09	65.19	0.80	15.69	4.25	0.78	1.18	5.08	4.79	0.11	0.30	1.65	99.81	29	9.87	0.94	892
NJG-10	64.88	0.81	15.75	4.04	0.78	1.06	5.11	4.73	0.10	0.30	1.93	99.49	30	9.84	0.93	889
NJG-11	64.67	0.79	15.49	4.12	0.80	1.06	4.97	4.67	0.11	0.29	2.26	99.24	30	9.64	0.94	887
NJG-12	63.88	0.77	15.61	4.10	0.88	1.42	4.82	4.90	0.10	0.29	2.60	99.36	32	9.71	1.02	886
NJG-13	64.16	0.78	15.52	4.10	0.90	1.34	4.76	4.94	0.09	0.29	2.35	99.22	33	9.70	1.04	888
NJG-14	63.52	0.77	15.41	4.00	0.87	1.37	4.75	4.88	0.10	0.29	2.86	98.81	32	9.63	1.03	886
NJG-15	64.93	0.79	15.65	3.93	0.83	1.23	4.88	4.94	0.09	0.30	2.06	99.62	32	9.82	1.01	885
NJG-16	64.03	0.78	15.52	4.17	1.05	1.63	4.84	4.85	0.10	0. 29	2.31	99. 59	36	9.69	1.00	886

间,同时具有较高的碱含量, $w(Na_2O) = 4.75\% ~$ 5.11% $w(K_2O) = 4.67\% ~ 5.15\%$, $w(Na_2O + K_2O)$ 变化于 9.63% ~ 10.15% 之间, $w(Na_2O) / w(K_2O)$ 为 0.96 ~ 1.08, TAS 图解中落于碱性岩 序列(图3),在 K_2O -Na₂O 图解中位于高钾系列,属于高钾碱性岩(图4)。另外,样品具有较低的w(MgO)(0.75% ~ 1.05%),相应的 I_{Mg} 较低(28 ~ 36), Harker 图解中(图5), Al_2O_3 、 Na_2O 和 TiO₂ 与 SiO₂ 具有明显的正相关关系,而 CaO、MgO 与 SiO₂ 具有明显的负相关关系, Sh SiO₂ 与 Zr 存 在一定的正相关性,其它元素相关性不明显。 微量元素分析结果见表 3 ,碱性粗面岩 Σ REE 含量在 94×10⁶~148×10⁶之间变化 ,所有样品表 现出一致的稀土配分模式(图6) ,轻稀土富集 ,重 稀土亏损 ,轻重稀土分异明显 ,(La/Yb) $_{\rm N}$ 变化于 8.96~12.02 ,Eu 显示弱正异常(δ Eu = 1.07~ 1.16) ,所有样品都具有较低的 Cr、Co 和 Ni 含量 , w(Cr) = 1.46×10⁶~4.15×10⁶ ,w(Co) = 19.8× 10⁶~45.9×10⁶ ,w(Ni) = 0.100×10⁶~1.55× 10⁶。微量元素蛛网图(图6)中,Ba 和 Pb 具有 明显正异常 ,Sr、Ti 和 Y 负异常 ,此外 Zr 和 Hf 显 示一定的正异常。

?1994-formation velcanic areks in Jianchang lectronic Publishing House Ain releasing sector in Jianchang w

图 4 建昌义县组火山岩 K₂O-Na₂O 图解 Fig. 4. K₂O vs. Na₂O of the Yixian

383

图 5 建昌义县组火山岩 Harker 图解 Fig. 5. Variation diagrams for major and trace elements vs. SiO₂ content of the Yianxian formation volcanic rocks in Jianchang.

Fig. 6. Chondrite-normalized rare-earth element patterns and primitive-mantle-normalized spider diagrams for the Yixian formation volcanic rocks in Jianchang.

表 3 建昌义县组火山岩微量元素分	術结果	$(w_{\rm B}/10^{-6})$	1
-------------------	-----	-----------------------	---

m 11 2	TT 1 .	•	C .1	x7· ·	c	1 .	1 .	T· 1
Lable 5.	Trace elements	concentration	tor the	Y ixian	formation	volcanic	rocks in	lianchang
10010 01	rideo oronionito	concontinue	101 1110		rormanion	rorounio	100110 111	Junionany

							-	
样品	NJG-01	NJG-02	NJG-03	NJG-04	NJG-05	NJG-06	NJG-07	NJG-08
Sc	7.21	7.46	7.98	7.44	7.23	6.69	6.94	6. 57
V	10.7	10.5	10.5	10.3	10.4	10.0	9.95	9.70
Cr	2.40	2.15	3.50	2.88	2.38	2.78	4.15	1.46
Со	24.6	24.0	22.8	19.8	21.0	27.5	45.9	22.7
Ni	0.17	0.90	0.10	0.07	1.50	0.66	0.88	1.11
Cu	0.97	0.89	0.78	0.70	1.15	0.72	0.93	0.47
Zn	98.9	100	98.8	104	101	97.2	100	93.6
Ga	18.1	18.1	18.2	18.2	18.1	18.1	17.8	17.3
Rb	38.1	42.3	48.2	37.5	36.5	38.8	37.3	36.6
Sr	127	128	148	118	125	125	139	141
Y	18.6	16.7	19.1	13.1	15.8	15.0	16.3	15.5
Zr	322	321	328	320	320	321	317	314
Nb	26.1	26.5	26.7	26.8	26.7	26.2	26.1	26.2
Ba	1830	1900	1870	2020	1920	1850	1830	1750
La	30.6	28.8	34.3	21.6	28.1	26.9	26.3	27.4
Ce	51.2	52.1	59.0	39.3	51.0	50.7	46.7	48.8
21994-20	18 Chiħa Ac	caderfri89Jour	rnal Electron	nic P &B fishir	ng Hõuse. A	11 right§7rese	rved ^{6.71} http:	//www.cnki.i
Nd	20.3	27.8	32.9	23.2	27.8	27.4	26.3	26.6

续表3

样品	NJG-01	NJG-02	NJG-03	NJG-04	NJG-05	NJG-06	NJG-07	NJG-08
Sm	5.35	5.28	6.15	4.39	5.30	5.02	4.83	5.08
Eu	1.90	1.81	2.11	1.61	1.76	1.80	1.77	1.73
Gd	4, 80	4, 49	5, 30	4,01	4, 45	4, 35	4, 48	4.44
Th	0.78	0.72	0.85	0.63	0.71	0.69	0.69	0.70
Dr	4.05	3.70	4 21	3 37	3 75	3.76	3.70	3.66
Dy	4.05	5.70	4. 21	5.57	5.75	5.70	5.70	5.00
Но	0.85	0.75	0.93	0.00	0. //	0.75	0. 77	0.80
Er	2.23	1.96	2.26	1.83	2.10	1.96	2.12	2.09
Tm	0.30	0.27	0.34	0.26	0.29	0.27	0.28	0.28
Yb	2.08	1.79	2.09	1.73	1.87	1.89	1.99	1.95
Lu	0.30	0.28	0.31	0.26	0.27	0.26	0.30	0.29
Hf	7.32	7.41	7.40	7.59	7.47	7.58	7.08	7.45
Та	1.71	1.66	1.72	1.65	1.64	1.76	1.62	1.64
Pb	15.9	15.0	15.1	16.1	16.2	14.6	16.1	16.2
Th	3 47	3 30	3 74	2.84	3 20	3 12	3 15	3 24
I	0.03	0.90	0.00	0.02	0.02	0.85	0.00	0.04
U S'DEE	0.95	127	150	100	125	122	127	121
ZALL	141	137	139	109	155	152	127	151
LKEE/HKEE	8.18	8.80	8. /0	/. 51	8.52	8.51	/. 80	8. 19
La_N / Yb_N	10.6	11.5	11.8	9.0	10.8	10. 2	9.5	10. 1
δEu	1.12	1.11	1.10	1.15	1.08	1.15	1.15	1.09
样品	NJG-09	NJG-10	NJG-11	NJG-12	NJG-13	NJG-14	NJG-15	NJG-16
\mathbf{Sc}	7.31	7.32	7.60	6.74	6.96	7.47	7.45	7.36
V	10.3	10.1	11.1	10.0	10.5	10.0	9.75	10.1
Cr	1.96	2.35	2.10	1.99	2.24	3. 51	1.99	1.61
Co	24.5	27.3	33.6	20.7	27.8	21.6	19.8	20.7
Ni	0.55	0. 79	1.83	0.74	0.33	0.48	0.78	0. 79
Cu	0.95	0.94	0.82	0.62	0.82	0.90	0.63	0.58
Zn	102	99.7	102	97.5	101	98.0	98.1	301
Ga	18.3	18.0	18.6	17.8	18.5	18.0	17.3	18.0
Rb	39.3	40.8	45.6	39.3	41.5	41.7	39.6	41.2
Sr	149	161	161	127	133	133	121	145
Y	17.8	16.8	19.8	16.8	17.4	17.3	15.5	19.8
Zr	323	311	304	315	318	316	304	322
Nb	26.5	25.8	25.8	25.4	26.4	27.1	25.4	26.6
Ba	1740	1660	1600	1820	1920	1860	1790	1930
La	30.8	31.0	34.4	27.0	29.5	28.2	26.0	33.0
Ce	54.9	56.1	58.8	46.4	50.6	48.4	44.6	59.7
Pr	7.37	7.55	8.23	6.85	7.29	7.00	6.55	8.01
Nd	29.8	29.3	32.4	28.0	28.9	28.0	26.5	31.7
Sm	5.32	5.28	5.84	5.27	5.57	5.23	4.89	5.74
Eu	1.94	1.84	2.05	1.76	1.85	1.81	1.68	1.96
Gd	4.73	4.46	5.01	4.46	4.61	4.54	4.35	5.25
Tb	0.71	0.73	0.81	0.73	0.76	0.70	0.69	0.86
Dy	3.92	3.77	4.31	3.95	4.02	3.90	3.55	4.31
Ho	0.83	0.78	0.92	0.84	0.83	0.82	0.76	0.85
Er	2.16	2.02	2.29	2.10	2.32	2.04	2.01	2.27
Tm	0.30	0.29	0.32	0.31	0.32	0.29	0.29	0.34
Yb	1.99	1.85	2.14	2.00	1.98	1.96	1.84	2.15
Lu	0.31	0.25	0.34	0.31	0.31	0.31	0.29	0.32
Hf	7.53	7.03	7.14	7.30	7.52	7.27	7.14	7.56
Та	1.67	1.61	1.62	1.63	1.68	1.66	1.57	1.68
Pb	16.3	19.3	16.3	15.6	16.3	15. 98	15.41	17.01
Th	3, 50	3. 47	3.69	3.06	3, 34	3. 22	2.99	3.78
U	0.96	0. 91	0.95	0.89	0.96	0.86	0. 92	0.93
ΣREE	145	145	158	130	139	133	124	156
LREE/HREE	8.70	9. 27	8.79	7.84	8.16	8.15	8.00	8. 57
La_N/Yb_N	11.1	12.0	11.5	9.7	10.7	10.3	10 1	11.0
A SELL A A		1 1.13-	1.13	1.08	TT 1. 08	1.11	1.09	1.07
	8 China A	eademic Jour	nal Electror	ue Püblishin	ig House. /	All rights rese	rved: **http:	//www.cnki .i

4 讨 论

4.1 岩石成因

4.1.1 结晶分异

碱性粗面岩具有较低的 w(MgO)(0.75% ~ 1.05%)和 $I_{Mg}(28~36)$,同时相容元素 Cr、Co 和 Ni 含量均较低 表明其来源于分异程度较高的岩 浆^[29],碱性粗面岩 Al₂O₃、Na₂O 与 SiO₂ 具有明显 的正相关,暗示斜长石的结晶分异不明显,其稀土 配分图解中 Eu 的正异常也表明不存在斜长石的 结晶分异作用。而 CaO、MgO 与 SiO₂ 具有明显的 负相关,暗示存在斜方辉石和单斜辉石的分异结晶。TiO₂ 与 SiO₂ 具有明显的正相关,暗示含 Ti 矿物(如,金红石,钛铁矿和榍石)的结晶分异不 明显,这与微量元素蛛网图中之r 和 Hf 的正异常 一致,因为金红石是 Nb、Ta、Zr、Hf 和 Ti 的主要载 体^[30],但微量元素蛛网图中却存在明显的 Ti 负异常,所以我们认为源区存在除金红石以外的其 它含 Ti 矿物(如,钛铁矿和榍石)的分离结晶。

碱性粗面岩的 Zr 和 SiO₂ 具有一定相关性, 表明岩浆中锆石是饱和的,同时受到结晶分异的 控制^[31],锆石饱和温度计提供了一个简单而又有 效的估算长英质岩浆温度的方法^[32],计算得出碱 性粗面岩的锆石饱和温度(t_{Zr})在 885~895 °C 之 间变化。

4.1.2 地幔源区性质

地壳岩石的熔融实验表明,碱性岩浆通常不能由地壳岩石的熔融作用直接形成^[33]。目前,对于包括碱性粗面岩在内的碱性岩浆起源有很多模式:

(1)一个地区在长期处于挤压环境并产生大量S型、I型花岗岩之后,主要由地幔上拱,形成拉张条件和区域性大断裂。上地幔部分熔融产生富碱岩浆顺大断裂上升,与硅铝层混染较小时形成碱性岩,混染较多时形成碱性花岗岩^[34];

(2)碱性岩形成于软流圈,而且可以把下地 幔、上地幔以及洋壳、陆壳和地幔再循环的物质组 分带到地球浅部^[35];

(3)碱性岩系列火山岩形成于岩石圈拉张环境,其物质来源较深,一般来自上地幔^[36];

(4) 镁铁质岩浆的底侵引起地壳的熔融产生碱性岩浆^[37];

(5)碱性岩浆由幔源玄武质岩浆和壳源花岗 质岩浆混合产生^[38]。

但不论何种起源方式,粗面岩浆的起源必定 有地幔物质组分的参与^[39]。

碱性粗面岩微量元素蛛网图中显示强烈的 Y 亏损(图6) 研究表明 ,尽管 Y 和 Yb 具有相似的 地球化学性质 ,但 Y 在 HREE 中位于 Ho 和 Er 之 间 接近 MREE 的位置; 而 Yb 在 HREE 的末端 , 是 HREE 的典型代表 石榴石强烈富集 HREE ,而 角闪石强烈富集 MREE ,因此研究区火山岩强烈

图 7 建昌义县组火山岩 Zr/Nb-Zr/Y-Y/Yb 图解和 Ba/Nb-La/Nb

Fig. 7. Zr/Nb-Zr/Y-Y/Yb and Ba/Nb-La/Nb diagram for Yixian

?1994-2018 China Academic Journ for Farmer with an Bublicking in gille hang. All rights reserved. http://www.cnki.ne

亏损 Y 表明源区存在角闪石。此外,碱性粗面岩 w (Yb) 在 1.73 ~ 2.15 × 10⁻⁶ 之间。按照张旗 等^[40] 划分标准, w (Yb) > 2.0 × 10⁻⁶ 为高 Yb, w (Yb) <2.0×10⁻⁶ 为低 Yb,与源区存在石榴子石 有关。本区样品可能位于石榴子石稳定区附近, 而且前文已经讨论过源区不存在斜长石和金红石 的分离结晶,因此我们认为,碱性粗面岩源区可能 为角闪石+石榴石区域,而且此时的压力 p> 1.2 $\text{GPa}^{[40]}$ 。

Zr/Nb-Zr/Y-Y/Yb 图解中(图 7a),所有的样 品都位于富集地幔源区,表明岩浆的物质来源与 富集地幔储库有密切关系,而在 Ba/Nb-La/Nb 图 解中(图 7b) 除样品 NJG-03 外,其它样品都落到 岛弧火山岩区,另外 Nb、Sr 和 Ti 的负异常,也与 岛弧型火山岩配分模式相似,表明属造山带火山 岩组合^[41]。

4.1.3 地壳混染

地幔橄榄岩部分熔融产生的岩浆 $w(SiO_2)$ 不 可能高于 55%^[42],因此,碱性粗面岩 w(SiO₂) = 63.52%~65.19%不可能由地幔橄榄岩直接熔融 产生 必定有地壳物质的加入。另外 样品明显的 Pb 和 Ba 正异常也显示有地壳物质的参与。前文 的讨论提到岩浆形成过程中不存在斜长石的分离 结晶作用,但是微量元素蛛网图中显示 Sr 明显亏 损(121×10⁶~161×10⁶),这可能与 Sr 的活动性 有关 由于其较强的活动性 容易受到流体交代作 用的影响,下地壳物质主要由麻粒岩相岩石组成, Sr 含量在 46×10⁻⁶~840×10⁻⁶之间^[43] 不排除可能 受到下地壳物质混染,虽然上地壳角闪透辉石岩 Sr 含量更低(36.38×10⁻⁶~40.58×10⁻⁶)^[44],可能 影响更明显,但微量元素蛛网图中 Th 和 U 显示 微弱的亏损 因此 推断可能主要受到了下地壳的 混染 因为目前大量针对华北克拉通高温高压麻 粒岩的研究工作表明,华北克拉通麻粒岩具有非 常低的 Th 和 U 含量,如 Gao 等^[45]报道的代表华 北下地壳的麻粒岩平均具有 $w(Th) = 2.8 \times 10^{6}$, w(U) = 0.46×10⁻⁶,刘勇胜等^[46]报道的基性麻粒 岩平均具有 $w(Th) = 1.80 \times 10^{-6}$, $w(U) = 0.70 \times 10^{-6}$ 10⁻⁶,中性麻粒岩平均w(Th) = 1.20×10⁻⁶,w(U) = 0.40×10⁶ 远远低于世界上其它地区同类麻粒岩 平均值 在微量元素原始地幔蛛网图上 基性、中 性和酸性麻粒岩都表现明显的.Th、U.负异常^[72] 并认为这一 Th 和 U 强烈亏损特征可能不仅仅与

麻粒岩相变质作用中流体活动有关,而一定程度 上反映了华北克拉通太古宙下地壳的原始特征。

4.1.4 成岩机制

研究区地处华北克拉通北缘,中生代以来受 到北部蒙古-鄂霍次克海板块俯冲和东部古太平 洋板块的斜向俯冲的综合影响,燕山地区发生了 强烈的岩浆活动、构造变形和地壳运动,形成特殊 的燕山板内造山带^[21]。碱性岩是深部地球动力 学过程,即壳-幔相互作用与地幔柱活动在地壳浅 部或地表的直接表现和历史记录^[47],由于碱性岩 来源深度较大,因此,常形成于拉张的构造背景, 本区碱性岩的出现表明华北克拉通北缘此时已经 处于造山后的伸展拉张阶段。

根据前文的论述,建昌义县组碱性粗面岩的 源区可能混入了麻粒岩相下地壳物质,发生壳幔 相互作用可能有2种方式^[48],一种是拆沉下地壳 与上升的地幔物质混染,并发生部分熔融;另一种 是地幔物质减压熔融,上升至壳幔边界,同下地壳 物质发生了同化混染。由于麻粒岩相下地壳的密 度较低,因此发生拆沉进入地幔的可能性不大。 由此我们推测建昌碱性粗面岩是由于岩石圈拉 张,软流圈地幔上涌导致岩石圈地幔部分熔融产 生富碱岩浆,岩浆经过强烈的橄榄石、斜方辉石、 单斜辉石以及钛铁矿和榍石的结晶分异,上升底 侵至麻粒岩下地壳,同下地壳发生一定程度的同 化混染,并诱发下地壳发生部分熔融,沿着断裂带 喷发至地表,从而形成高 SiO₂、高碱、低 MgO (*I*_{Mg})、Cr、Co、Ni、Sr 和 Ti 的碱性粗面岩。

5 结 论

(1) 建昌义县组碱性粗面岩 LA-ICP-MS 锆石
U-Pb 年代学数据显示其形成于(120.3 ± 1.5) Ma;

(2) 主元素和微量元素研究表明,研究区碱 性粗面岩属于高钾碱性系列岩石,具有较低的 MgO 以及相容元素(Cr、Co 和 Ni) 含量,Eu 显示 弱正异常,微量元素蛛网图显示富集 Ba 和 Pb,亏 损 Sr、Ti 和 Y。综合研究表明,其源区为富集地 幔,上升过程同麻粒岩下地壳发生了同化混染;

(3)建昌义县组碱性粗面岩的出现表明此时 华北克拉通北缘已经处于造山后的伸展拉张阶段。由于岩石圈拉张软流圈地幔上涌,导致岩石 圈地幔部分熔融并上升底侵至麻粒岩下地壳,两 者发生一定程度的同化混染后沿着拉张断裂喷发 至地表,最终形成义县组碱性粗面岩。 帮助 同时中国地质大学(武汉)刘勇胜和胡兆初博士及 西北大学弓虎军博士在锆石 U-Pb 定年和锆石阴极发光 图像处理中分别给予了帮助 在此表示感谢!

致谢:感谢漆亮研究员在微量元素测试中给予的指导和

参考文献:

- Xu Y G. Thermo-tectonic destruction of the Archean lithospheric keel beneath the Sino-Korean Craton in China: Evidence, timing and mechanism [J]. Phy Chem Earth (A), 2001, 26: 747-757.
- [2] Wu F Y, Lin J Q, Wilde S A, et al. Nature and significance of the Early Cretaceous giant igneous event in eastern China [J]. *Earth and Planetary Science Letters*, 2005, 233: 103-119.
- [3] 高山,章军锋,许文良,等.拆沉作用与华北克拉通破坏[J].科学通报 2009,54:1962-197.
- [4] 郑建平. 不同时空背景幔源物质对比与华北深部岩石圈破坏和增生置换过程[J]. 科学通报 2009 54:1990-2007.
- [5] 郑永飞,吴福元.克拉通岩石圈的生长和再造[J].科学通报 2009 54(14):1945-1949.
- [6] 刘燊 胡瑞忠 冯光英 ,等.华北克拉通中生代以来基性岩墙群的分布及研究意义[J].地质通报 2010 29(2-3):1-9.
- [7] 周新华. 中国东部中、新生代岩石圈转型与减薄研究的若干问题[J]. 地学前缘 2006,13:50-54.
- [8] 张宏 柳小明 陈文 ,李之彤 ,杨芳林 . 辽西北票 义县地区义县组顶部层位的年龄及其意义 [J]. 中国地质 2005 a ,32 (4): 596-603.
- [9] 张宏 涨旗. 辽西北票四合屯地区义县组高镁火山岩的稀土、微量元素特征及启示[J]. 中国稀土学报 2005b 23(6):736-741.
- [10] 张宏福 邓济安. 辽西义县组火山岩拆沉作用还是岩浆混合作用的产物[J]. 岩石学报 2008 24(1):37-48.
- [11] 邢德和 ,孙春林 ,张立东 ,郭胜哲 ,张长捷 ,彭艳东 ,贾斌 ,陈树旺 ,丁秋红 ,郑月娟 . 辽宁北票地区义县组地层划分与对比 [J]. 吉林大学学报(地球科学版):2004 ,34(3):326-332.
- [12] 韩仁萍 邢德和. 辽西地区义县组岩相古地理特征[J]. 世界地质 2010 29(3):363-372.
- [13] 彭艳东 涨立东 陈文 涨长捷 郭胜哲 /邢德和 ,贾斌 陈树旺 ,丁秋红. 辽西义县组火山岩⁴⁰ Ar-³⁹ Ar、K-Ar 法年龄测定[J]. 地球 化学 2003 3(5):427-435.
- [14] Swisher Ⅲ C C ,汪筱林 ,周忠和 ,王元青 ,金帆 ,张江永 ,徐星 ,张福成 ,王原 . 义县组同位素年代新证据及土城子组⁴⁰ Ar-³⁹ Ar 年龄 测定 [J]. 科学通报 2001 ,46(23): 2009-2012.
- [15] Zhu Rixiang, Shao Ji'an, Pan Yongxin, et al. Paleaomagnetic data from Early Cretaceous volcanic rocks of West Liaoning: Evidence for intracontinental rotation [J]. Chinese Science Bulletin, 2002, 47(21): 1832–1837.
- [16] 邵济安 路凤香 涨履桥. 辽西义县组波基方辉安山岩成因及其构造背景 [J]. 岩石学报 2006b 22(6):1633-1643.
- [17] 张宏 柳小明 袁洪林 胡兆初 第五春荣 · 辽西凌源地区义县组下部层位的 U-Pb 测年及意义 [J]. 地质评论 2006 ,52(1): 63-71.
- [18] 吴福元 杨进辉 张艳斌 柳小明. 辽西东南部中生代花岗岩时代 [J]. 岩石学报 2006, 22(2):315-325.
- [19] 王晓蕊 高山 柳小明 袁洪林 胡兆初 涨宏 汪选策. 辽西四合屯早白垩世义县组高镁安山岩的地球化学: 对下地壳拆沉作用和 Sr/Y 变化的指示[J]. 中国科学 D 辑(地球科学) 2005 35(8):700-709.
- [20] 孟凡雪,高山,柳小明. 辽西凌源地区义县组火山岩锆石 U-Pb 年代学和地球化学特征[J]. 地质通报 2008 27(3):364-373.
- [21] 李伍平 路凤香 李献华 周瑶琪 章大港. 辽西早白垩世义县组火山岩的起源及壳幔相互作用[J]. 矿物岩石 2001 21(4):1-6.
- [22] 邵济安 路凤香 涨履桥 杨进辉. 辽西义县组玄武岩捕虏晶的发现及其意义[J]. 岩石学报 2005 21(6):1547-1558.
- [23] 王根厚 涨长厚, 王果胜, 吴正文. 辽西地区中生代构造格局及其形成演化 [J]. 现代地质 2001, 15(1): 1-7.
- [24] 马强,郑建平. 辽西北票蓝旗组火山岩锆石 U-Pb 年龄和 Hf 同位素组成[J]. 岩石学报 2009 25(12): 3287-3297.
- [25] 邢德和 孙春林 孙跃武 张立东 彭艳东 陈树旺. 义县组研究的新认识[J]. 地球学报 2005 26(1):25-30.
- [26] Liu Y S, Gao S, Hu Z, Gao C, Zong K, Wang D. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths [J]. Journal of Petrology, 2010, 511: 537-571.
- [27] Wiedenbeck M, Alle P, Corfu F, Griffin W L, Meier M, Oberli F, Quadt A V, Roddick J C, Spiegel W. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses [J]. Geostandards and Geoanalytical Research, 1995, 19: 1-23.
- [28] Ludwig K R. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel [M]. Berkeley: Berkeley Geochronology Center, California, 2003.
- [29] Liu Shen , Hu Ruizhong , Gao Shan , Feng Caixia , Feng Guangying , Coulson I M , Li Cai , Wang Tao , Qi Youqiang. Zircon U-Pb age and
 - ?195747241f isotope geochemistry of Permian granodiorite and associated gabbro in the Songlian Block, NE China and implications for growth of juvenile crust [J]. Lithos, 2011, 114: 423-436.

- [31] Zhong H, Zhu W G, Hu R Z, Xie L W, He D F, Liu F, Chu Z Y. Zircon U-Pb age and Sr-Nd-Hf isotope geochemistry of the Panzhihua A-type syenitic intrusion in the Emeishan large igneous province, southwest China and implications for growth of juvenile crust [J]. Lithos, 2009, 110: 109-128.
- [32] Watson E B, Harrison T M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types [J]. Earth and Planetary Science Letters, 1983, 64: 295-304.
- [33] Montel J M, Vielzeuf D. Partial melting of grey wackes: Part II. Composition of mineral and melts [J]. Contrib Mineral Petrol, 1997, 128: 176–196.
- [34] 涂光炽.关于富碱侵入岩[J]. 矿产与地质,1989,13:124.
- [35] Menzies M. Alkaline Rocks and Their Inclusions; A Window on the Earth's Interior. From Alkaline Igneous Roks [M]. Oxford, London: Blackwell Sci Publication, 1987.
- [36] 阎国翰,许堡良,牟保磊,等.中国北方中生代富碱侵入岩钕、锶、铅同位素特征及其意义[J]. 矿物岩石地球化学通报 2001 20 (4):234-237.
- [37] Su S G, Niu Y L, Deng J F, et al. Petrology and geochronology of Xuejialiang igneous complex and their genetic link to the lithospheric thinning during the Yanshanian orogenesis in eastern China [J]. Lithos, 2007, 96: 90-107.
- [38] Zhao J X, Shiraishi K, Ellis D J, et al. Geochemical and isotopic studies of syenites from the Yamoto Mountains, East Antartica: Implication for the origin of syenitic magmas [J]. Geochim Cosmochim Acta, 1995, 59: 1363-1385.
- [39] 巫建华,刘飞宇,刘帅. 峡江-广丰和三南-寻乌火山岩带晚中生代粗面岩 SHRIMP 锆石 U-Pb 年龄[J]. 地质评论 2011 57(1): 125-132.
- [40] 张旗,王焰,李承东,王元龙,金惟俊,贾秀勤.花岗岩的Sr-Yb分类及其地质意义[J]. 岩石学报 2006 22(9):2249-2269.
- [41] 白志达 徐德斌 陈梦军,孙立新. 西藏安多地区粗面岩的特征及其锆石 SHRIMP U-Pb 定年[J]. 地质通报,2009,28(9): 1229-1235.
- [42] Baker M B, Hischmann M M, Ghiorso M S, Stolper E M. Compositions of nearsolidus peridotite melt from experiments and thermodynamic calculations [J]. Nature, 1995, 375: 308-311.
- [43] Jahn B , Zhang Z Q. Archean granulite gneisses from eastern Hebei Province , China: rare earth geochemistry and tectonic implications [J]. Contrib Mineral Petrol , 1984 , 85: 224-243.
- [44] 梁树能 李光辉 孙景贵 陈冬 逄伟 常艳. 黑龙江五星铜镍、铂钯矿床镁铁质杂岩的元素地球化学特征与岩石成因[J]. 世界地 质 2009 28(1):28-36.
- [45] Gao Shan, Luo Tingchuan, Zhang Benren. Chemical composition of the continental crust as revealed by studies in Eastern China [J]. Geochinica et Cosmochimica Acta, 1998, 62(11): 1959-1975.
- [46] 刘勇胜 高山 骆庭川. 华北克拉通麻粒岩的地球化学特征及其对太古宙下地壳组成的指示意义[J]. 地质地球化学,1999 27 (3):40-46.
- [47] 任康绪.碱性岩研究进展述评[J].化工矿产地质 2003 25(3):151-163.
- [48] 杨蔚. 辽西中生代火山岩年代学及地球化学研究: 对华北克拉通岩石圈减薄机制的制约[D]. 博士论文 2007.

Zricon U-Pb Age , Geochemical Characteristics and Petrogenesis of the Yixian Formation Volcanic Rocks in Jianchang , Western Liaoning Province

FENG Guang-ying^{1,2}, LIU Shen¹, ZHONG Hong¹, FENG Cai-xia¹, QI You-qiang¹, YANG Yu-hong^{1,2}, YANG Chao-gui^{1,2}

State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China;
 Graduate University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: Volcanic rocks are widespread in western Liaoning province. The studied alkaline trachytes are located at the top of the Yixian Formation volcanic rocks in Jianchang. Systemic studies on chronology and geochemistry indicate that the volcanic rocks were formed in 120. 3 ± 1.5 Ma (zircon LA-ICP-MS U-Pb age). In addition, the volcanic rocks have relatively high SiO₂(63.52% ~ 65.94%) and(Na₂O+K₂O) (9.63% ~ 10.15%), and Na₂O/K₂O is between 0.96 and 1.08, with the feature of high-K alkaline magmas. In contrast, the volcanic rocks have lower MgO (0.75% ~ 1.05%), Cr ($1.46 \times 10^{6} \sim 4.15 \times 10^{6}$), Co ($19.8 \times 10^{6} \sim 45.9 \times 10^{6}$) and Ni ($0.100 \times 10^{6} \sim 1.55 \times 10^{6}$) contents. In the chondrite-normalized patterns and primitive-mantle normalized diagrams, the volcanic rocks are characterized by enrichment in LREE and depletion in HREE [(La/Yb)_N = 8.96 ~ 12.02], and weak positive Eu anomalies (δ Eu = 1.07 ~ 1.16), otherwise, the volcanic rocks have evident positive anomalies of Ba , Pb , Zr and Hf , and negative anomalies of Sr , Ti and Y. The alkaline rocks are formed in extend tectonic setting; they are formed due to the interaction of crust-mantle in deep source. Based on the above evidence , we propose that the volcanic rocks were derived by underplating of mantle-derived magma , contamination of lower crust , partial mantling and then erupt to the earth along the deep and big fracture. At the same time , the volcanic rocks underwent intensive olivine , orthopyroxene and clinopyxene fractional crystallization before crystallization. Key words: Jianchang; Yixian Formation; alkaline trachyte; petrogenesis

?1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.nd