文章编号:1000-4734(2011)01-0062-08

中-浅正变质岩锆石 SHRIMP 法与 TIMS 法 测年结果不一致处理

——以滇东南南温河花岗岩为例

谭洪旗¹² 刘玉平^{1*} 徐伟³ 郭利果⁴ 叶霖¹ 李朝阳⁴

(1. 中国科学院 地球化学研究所 矿床地球化学国家重点实验室 ,贵州 贵阳 550002;
2. 中国地质科学院 矿产综合利用研究所 ,四川 成都 610041; 3. 胜利油田股份公司 ,山东 东营 557000;
4. 中国科学院 广州地球化学研究所 ,广东 广州 410640)

摘要: 变质岩中的锆石大多遭受变质热事件的改造,但中-浅变质岩一般不甚发育新生锆石或变质增生边,不易 通过现有的锆石测年技术获得该岩石的变质年龄。中-浅正变质岩的锆石为岩浆锆石与变质增生锆石的混合 物,其 U-Pb 同位素组成可以采用二端元混合模式来表达。利用同位素稀释法(TIMS)可以获得混合锆石 U-Pb 年龄及对应的同位素组成;结合 CL 等内部结构分析,利用离子探针法(SHRIMP)可以获得岩浆锆石 U-Pb 年龄 及对应的同位素组成,进而推算出变质增生锆石 U-Pb 年龄对应的同位素组成。在对滇东南南温河花岗岩锆石 U-Pb 年代学的研究中,我们发现同一样品的 SHRIMP 与 TIMS U-Pb 法测年结果不一致,根据上式推算出后期 主变质年龄约为 230 Ma,与前人利用其它测年方法获得的结果基本一致,符合研究区主变质期为印支期的区 域地质背景。该方法为中-浅正变质岩年代学研究提供了一种新思路。 关键词: 中-浅正变质岩; 锆石; U-Pb 年龄; SHRIMP 法; TIMS 法; 南温河花岗岩; 滇东南

中图分类号: P579; P597; P588. 34 文献标识码: A

作者简介: 谭洪旗,男,1984 年生,硕士研究生,矿物岩石矿床学专业. E-mail: hongqitan@ 163. com

锆石作为一种常见的含铀矿物,具有很高的 物理、化学稳定性,普通铅含量较低,且其中铅的 扩散封闭温度高达900 ℃^[1-2],是确定各种岩浆岩 结晶年龄和高级变质作用峰期年龄的理想对象。 而中-低级变质岩中的锆石及其 U-Pb 同位素体 系,受变质作用的影响较小,不易通过现有的 U-Pb 测年方法获得变质年龄。因此,中-浅变质作 用的年龄一般通过其他方法来获得。

我们在对经历了中-浅变质的滇东南南温河 花岗岩开展锆石 U-Pb 年代学研究中发现 同一样 品的 SHRIMP 与 TIMS 锆石 U-Pb 测年结果不一 致 结合锆石内部结构 CL 图像分析,对发育变质 增生边的岩浆锆石 U-Pb 同位素组成进行了推算, 获得了与前人在该区研究基本一致的变质年龄, 并为中-浅正变质岩年代学研究提供了一种新 思路。

1 原理及方法

变质锆石主要有 2 类,变质过程中新生长的 锆石和对原有锆石的改造(包括变质增生锆石) ^[34]。中高级变质岩中,上述 2 类锆石均较发育。 而中-浅变质锆石由于经历的变质峰期温度较低, 难以形成新生锆石,而以一定程度的变质改造及 增生为主,形成核-边结构,但改造边或增生边的 宽度往往较小。目前,锆石 U-Pb 高精度定年主要 有单颗粒锆石 TIMS 法、离子探针法(SHRIMP)及 激光等离子体质谱法(LA-ICP-MS)等。其中,精 度最高的 TIMS 法难以进行微区原位分析;而能 进行微区原位分析的 SHRIMP 法和 LA-ICP-MS 法,要获得精确同位素组成,束斑直径通常大于 20 μm。因此,通过上述测年技术均难以直接获

收稿日期:2010-04-26

基金项目:973 项目(批准号: G2007CB411408);国家基金项目(批 准号:40302026 40972129);矿床地球化学国家重点实验室自主 选题项目(编号:KCZX20090106)

通讯作者 ,E-mail: liuyuping@ vip. gyig. ac. cn

得中-浅变质岩的年龄。适用于中-高级变质作用 测年的锆石 U-Pb 不一致线,以及在此基础上由陈 能松等^[5]提出的 U-Pb 不一致线多边形准则,均 需要对样品中多期次单颗粒锆石进行仔细分类, 从而避免人为因素的影响。

经历了中-浅变质改造(包括增生)的锆石颗 粒,为原岩锆石与变质锆石两类结晶域的混合。 对于正变质岩而言,假定岩浆锆石、变质锆石和混 合锆石对应的²⁰⁶ Pb/²³⁸ U、²⁰⁷ Pb/²³⁵ U 和²⁰⁷ Pb/²⁰⁶ Pb 比值,分别为 A_1 、 A_2 、 A_3 , B_1 、 B_2 、 B_3 和 C_1 、 C_2 、 C_3 。 再假定 A_1 、 A_2 、 A_3 在 C_1 、 C_2 、 C_3 中所占的比例为 X, B_1 、 B_2 、 B_3 在 C_1 、 C_2 、 C_3 中所占的比例为(1 – X)则混合锆石的同位素组成可以表示为:

C_m = *A_mX* + *B_m*(1 − *X*) ······ ① 由上式可以推导出变质锆石的 U-Pb 同位素 组成及其误差分别为:

 $B_m = (C_m - A_m X) / (1 - X) \cdots (2)$ $\Delta B_m = (\Delta C_m + X \Delta C_m - X \Delta A_m - \Delta X A_m - \Delta X C_m) / (1 - X) \cdots (3)$

式中 m = 1 2 3

利用阴极发光(CL) 图像分析,可以获得岩浆 锆石在混合锆石中所占的体积比例 X 及误差 ΔX ;结合阴极发光(CL)等内部结构分析,利用锆 石 SHRIMP 法(或 LA-ICP-MS 法) 可直接获得岩 浆锆石的同位素组成 (A_m) 及其误差 (ΔA_m) ;利用 TIMS 法可以获得混合锆石的同位素组成(C_m)及 其误差(ΔC_m);根据上述方程式②和③,可以推算 出变质锆石的同位素组成 (B_m) 及其误差 (ΔB_m) 。 虽然 TIMS 和 SHRIMP U-Pb 定年的锆石不是同一 颗粒 但通过比较系统的镜下观察统计 表明同一 样品中发育变质增生边的岩浆锆石,岩浆成因域 与变质成因域这两部分的比例仅在很小范围内波 动(即岩浆成因域和变质成因域两个端元的比例 对于不同颗粒是基本一致的。本文所研究的样 品 岩浆成因域的体积比例变化范围为 83% ~ 85%)。因此,可以认为所测样品中这一类型锆 石的 U-Pb 同位素组成在误差范围内是一致的。 同时 在 TIMS 和 SHRIMP U-Pb 定年之前,可以通 过镜下观测、CL 观测等手段,将含有古老继承核 的锆石予以剔除,以保证通过计算获得精确的变 质锆石年龄。

值得注意的是 副变质岩的锆石组成复杂,虽 然从理论上也可以通过本方法获得变质年龄,但 需要测定足够多的锆石 TIMS 法和 SHRIMP 法数 据点 且需保证锆石 TIMS 法测定颗粒具有代表性, 但这些在实际操作中难以实现。因此 本文中的推 算方法限于正变质岩中 对副变质岩不一定适用。

2 滇东南南温河花岗岩年代学研究

滇东南地区位于华南褶皱带西端与扬子地 块、印支地块的接合部位,是研究华南大陆形成与 演化及特提斯构造域时空发展的重要地区之一。 南温河花岗岩位于文山-麻栗坡断裂与红河断裂 带之间的滇东南老君山变形-变质穹隆的内核部 位,并向南延入越南境内,国内出露面积约350 km²(图1)。

样品 LJS-2 和 LJS-3 同时用 SHRIMP 法和 TIMS 法进行了锆石 U-Pb 测年。其中样品 LJS-2 采于保良街,为浅灰色斑状-片麻状中细粒花岗 岩,片麻状构造,具变余似斑状结构,基质为变余 中细粒结构、鳞片状变晶结构;样品 LJS-3 采于南 温河,为浅灰色片麻状细粒花岗岩,具变余细粒粒 状结构、鳞片粒状变晶镶嵌结构,片麻状构造。两 件样品的矿物组成极为相似,主要矿物为微斜长 石、斜长石、石英、白云母及黑云母,次要矿物及副 矿物为锆石、磷灰石、电气石等。两者之间的主要 差异为长石斑晶含量不同,前者 > 20%,而后者 < 5%。研究表明,南温河花岗岩经历了高绿片岩 相-低角闪岩相动力变质^[940]。

2.1 分析方法

锆石的处理、光学显微镜照相和 SHRIMP 测 试在中国地质科学院北京离子探针中心完成,阴 极发光(CL) 图像分析在中国科学院地质与地球 物理研究所电子探针实验室完成。SHRIMP 锆石 U-Pb 同位素测年所用的标准锆石为 CZ3 和 TE--MORA,前者用于标定 U、Th 和 Pb 的含量,后者用 于校正年龄。束斑直径约为 25 μm。数据处理同 Williams^[11],利用 Ludwig 编写的 SQUID 1.0 和 ISOPLOT 程序^[12]。

TIMS 锆石 U-Pb 同位素年代学在中国地质调 查局天津地质调查中心分析测试室完成,锆石溶 解和 U-Pb 分离的化学流程是在 Krogh 方法基础 上改进的颗粒锆石方法^[13]。在 VG354 型热电离 质谱仪上用高灵敏度 Daly 检测器进行 U、Pb 同位 素测定,所有 U、Pb 同位素数据均对质量歧视效 应进行校正。实验室全流程 Pb 空白在 0.05 ng 以内,U 空白为 0.002 ng,数据处理使用美国地质 调查所 Ludwig 编写的 PBDAT 和 ISOPLOT 软件^[12]。

2.2 分析结果

CL 图像分析显示,两件样品的大多数锆石颗 粒内部具有典型的振荡环带结构,而少量锆石具 有冷杉叶状、斑块状、面状分带等结构,结合结晶 形态可以分为岩浆锆石和继承锆石2类。同时, 所有的锆石颗粒均发育厚度不大的增生边或蜕晶 边(图2)。上述特征表明样品中锆石颗粒以岩浆 锆石为主,并遭受一定程度的后期变质作用 改造^[14]。

9-平移断层 10-脆韧性剪切带及主断面 11-不整合界线 12-平行不整合界线 13-片理化带 14-劈理化带 15-构造角砾岩带 16-花岗岩脉 17-片麻状花岗岩 18-主剥离断层 19-剥离断层 20-国界 21-居民点 22-研究区

Fig. 1. Geological sketch map of Laojunshan area , Southeastern Yunnan Province , China.

LJS-2、LJS-3 锆石 SHRIMP 分析结果见表 1。 当 SHRIMP 测点的 U 含量 > 2500 × 10⁻⁶时,需要 对²⁰⁶ Pb/²³⁸ U、²⁰⁷ Pb/²³⁵ U 比值进行校正^[15-47],经过 校正后的测试结果见表 1 及图 3。

样品 LJS-2 的 Th、U 含量变化范围分别为 60 ×10⁻⁶~1963×10⁻⁶和 355×10⁻⁶~4836×10⁻⁶, 放射性成因 Pb 含量变化范围为 20.9 × 10⁻⁶ ~ 309 × 10⁻⁶, Th/U 比值变化范围为 0.04 ~ 0.77, ²⁰⁶ Pb/²³⁸ U表面年龄变化范围为 413.5 ± 10 ~ 1051 ± 24 Ma。LJS-2-7 号测点²⁰⁷ Pb/²⁰⁶ Pb 表面年龄为 1162 ± 26 Ma,结合其呈亮白色、无振荡分带的 CL 图象特点,判别为继承锆石或捕获锆石,表明源

LJS-3

图 2 锆石阴极发光图像

Fig. 2. CL images of zircon from LJS-2 (left) and LJS-3 (right) samples.

Fig. 3. SHRIMP and TIMS Zircon U-Pb Concordia plots of the Nanwenhe Granites.

矿物学报

表1 南温河花岗岩 SHRIMP 锆石 U-Pb 定年结果

Table 1. Zircon SHRIMP U-Pb isotopic data of the Nanwenhe granites

				232ть	206pl.*	207pl.*		206 pl. *		207 pl.*					
测点	²⁰⁶ Pb _c /%	U/10 ⁻⁶	Th/10 ⁻⁶			rb	$\sigma / \%$	10	$\sigma / \%$		$\sigma / \%$	err-corr	207 238	年龄/ Ma	207 207
				²³⁸ U	10-6	²³⁵ U		²³⁸ U		206pb*			²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²⁵⁵ U	²⁰⁷ Pb/ ²⁰⁶ Pb
2-3.1	0.44	724	102	0.15	43.8	0.550	4.3	0.0701	2.4	. 0568	3.6	0.566	437 ± 10	445 ± 15	439 ± 79
2-3.2	0.59	744	70	0.10	44. 5	0.537	5.8	0.0691	2.5	. 0564	5.3	0.424	431 ± 10	436 ± 21	468 ±120
2-4	0.63	1705	1265	0.77	107	0.564	3.4	0.0731	2.4	. 0560	2.3	0.721	455 ± 11	454 ± 12	452 ± 51
2-6	0.42	1675	1224	0.76	104	0.555	2.8	0.0720	2.4	. 0559	1.5	0.846	448 ± 10	448 ± 10	449 ± 33
2-7	0.79	651	249	0.39	99.2	1.92	2.8	0.1771	2.5	. 0786	1.3	0.888	1051 ± 24	1088 ± 19	1162 ± 26
2-7.1	0.22	1707	112	0.07	103	0. 538	5.8	0.0702	5.7	. 0555	1.3	0.973	437 ± 24	437 ± 21	433 ± 29
<u>2-8</u>	0.02	2814	961	0.35	173	0.555	2.7	0.0713	2.4	. 0565	1.2	0.901	444 ± 10	448 ± 10	472 ± 27
<u>2-9</u>	0.21	4836	1716	0.37	309	0.539	2.5	0.0708	2.4	. 0551	0.73	0.956	441 ±11	439 ± 9	417 ± 16
2-10	0.17	3033	1247	0.42	198	0. 585	2.8	0.0750	2.4	. 0565	1.5	0.846	466 ± 11	468 ± 11	473 ± 33
2-11	0.03	3650	1963	0.56	228	0.532	3.4	0.0710	2.4	. 0544	2.4	0.697	442 ± 11	433 ± 12	388 ± 54
2-12	0.20	1399	60	0.04	85.0	0.529	3.2	0.0706	2.4	. 0544	2.0	0.765	440 ± 10	431 ± 11	388 ± 45
2-13	0.08	1112	237	0.22	63.7	0.510	3.1	0.0665	2.5	. 0556	1.8	0.805	414 ± 10	418 ± 11	436 ± 40
2-14	1.20	593	285	0.50	37.0	0.613	3.8	0.0721	2.5	. 0617	2.8	0.663	449 ± 11	486 ± 15	466 ± 60
2-17	0.90	355	107	0.31	20.9	0.516	9.3	0.0678	2.7	. 0552	8.9	0.286	423 ± 11	423 ± 32	422 ± 200
2-25	0.12	2428	785	0.33	152	0.567	2.8	0.0728	2.5	. 0566	1.2	0.904	453 ± 11	456 ± 10	474 ± 27
3-1	0.05	1199	418	0.36	74.0	0.554	3.3	0.0718	3.1	. 0559	0.96	0.96	447 ± 13	448 ± 12	450 ± 21
3-2	0.11	417	189	0.47	23.3	0.486	3.6	0.0651	3.2	. 0542	1.7	0.88	407 ± 13	402 ± 12	377 ± 38
3-3	0.10	871	419	0.50	46.9	0.486	3.4	0.0626	3.1	. 0563	1.2	0.94	391 ± 12	402 ± 11	466 ± 27
3-4	0.03	1625	512	0.33	93.0	0.512	3.3	0.0666	3.2	. 0558	0.80	0.97	416 ± 13	420 ± 11	443 ± 18
3-4-1	0.00	1497	459	0.32	92.2	0.550	3.2	0.0717	3.1	. 0557	0.79	0.97	446 ± 13	445 ± 12	441 ± 18
3-5	0.04	2041	924	0.47	124	0.548	3.2	0.0709	3.1	. 0561	0.79	0.97	442 ± 13	444 ± 12	455 ± 18
3-6	0.04	1527	576	0.39	89.1	0.515	3.3	0.0679	3.2	. 0551	0.90	0.96	424 ± 13	422 ± 11	415 ± 20
<u>3-7</u>	0.06	2848	2147	0.78	187	0.581	3.2	0.0757	3.1	. 0557	0.65	0.98	470 ± 14	465 ± 12	439 ± 14
3-8	0.07	1053	453	0.44	65.5	0.546	3.3	0.0724	3.1	. 0548	1.0	0.95	451 ± 13	442 ± 12	402 ± 22
3-8-1	0.02	2428	2692	1.15	147	0.536	3.2	0.0707	3.1	. 0550	0.74	0.97	440 ± 13	436 ± 11	411 ± 17
3-9	0.06	1544	540	0.36	99.7	0.574	3.3	0.0751	3.1	. 0554	0.93	0.96	467 ± 14	461 ± 12	429 ± 21
3-10	0.01	108	89	0.85	27.2	4.56	3.4	0.2930	3.3	. 1129	1.1	0.95	1657 ± 48	1742 ± 28	1846 ± 20
3-12	0.04	688	245	0.37	40.2	0.518	3.4	0.0679	3.2	. 0553	1.3	0.93	424 ± 13	424 ± 12	425 ± 29
3-13	0.22	154	88	0.59	15.5	1.026	4.0	0.1164	3.3	. 0639	2.3	0.82	710 ± 22	717 ± 21	738 ± 49
<u>3-14</u>	0.00	3760	608	0.17	240	0. 583	3.2	0.0724	3.1	. 0584	0.84	0.97	451 ± 14	466 ± 12	545 ± 18
3-15	0.02	2362	3433	1.50	148	0.552	3.2	0.0731	3.1	. 0548	0.65	0.98	455 ± 14	446 ± 12	404 ± 15
3-15-1	0.00	3776	3498	0.96	228	0.529	3.3	0.0685	3.2	. 0561	0.58	0.98	427 ± 3	4317 ± 12	456 ± 13
3-16	0.02	872	258	0.31	54.9	0.568	3.3	0.0733	3.2	. 0562	1.1	0.94	456 ± 14	457 ± 12	460 ± 24
3-17	0.12	2052	776	0.39	119	0.516	3.3	0.0674	3.2	. 0556	1.0	0.95	421 ± 13	423 ± 11	436 ± 22
3-18	0.03	2384	635	0.28	147	0.553	3.2	0.0719	3.1	. 0557	0.72	0.97	448 ± 13	447 ± 12	441 ± 16
3-19	0.16	708	220	0.32	45.1	0.585	3.6	0.0743	3.2	. 0571	1.6	0.89	462 ± 14	468 ± 13	494 ± 35
3-20	0.04	2188	765	0.36	141	0.577	3.2	0.0752	3.1	. 0557	0.73	0.97	467 ± 14	463 ± 12	440 ± 16
3-21	0.03	2248	1220	0.56	134	0.523	3.2	0.0695	3.1	. 0546	0.71	0. 98	433 ± 13	427 ± 11	397 ± 16
3-22	0.01	1921	704	0.38	118	0.556	3.3	0.0716	3.2	. 0563	0.81	0.97	446 ± 14	449 ± 12	464 ± 18
3-23	0.06	1660	357	0.22	106	0.569	3.3	0.0740	3.1	. 0558	0.91	0.96	460 ± 14	457 ± 12	443 ± 20

注: 当锆石中 U 含量高于 2500 × 10⁻⁶ 参见文献 [15-17] 校正²⁰⁶ Pb /²³⁸ U 和²⁰⁷ Pb /²³⁵ U 年龄; 测点号有下划线的数据为根据此方法校 正后数据: Pb_e 代表普通铅在总铅中的百分比,^{*} 代表普通 Pb 校正 *e*rr-corr 代表数据采集误差.

区可能存在中元古代结晶岩石。不谐和度 < 5% 的其余 11 个测点 ,²⁰⁶ Pb /²³⁸ U 表面年龄加权平均 值为 442.0 ± 6.3 Ma(MSWD = 0.0075) (图 3)。

样品 LJS-3 的 Th、U 含量变化范围分别为 88 ×10⁻⁶~3498×10⁻⁶和 108×10⁻⁶~3776×10⁻⁶, 放射性成因 Pb 含量变化范围为 15.5×10⁻⁶~ 240×10⁻⁶,Th/U 比值变化范围为 0.22~1.50。 LJS-3-10 号和 LJS-3-13 号两个测点的²⁰⁷ Pb/²⁰⁶ Pb 表面年龄分别为 1846 ± 20 Ma 和 738 ± 49 Ma,结 合 CL 图像呈亮白色、无振荡分带的特点,应为继 承锆石或捕获锆石,表明岩浆源区可能存在元古 代结晶岩石(图 2); LJS-3-7、LJS-3-14 的 CL 图像 也显示出锆石颗粒中存在继承核,因而这 2 个测 点实际上为继承锆石与岩浆锆石的混合,表现为 ²⁰⁶ Pb/²³⁸ U、²⁰⁷ Pb/²³⁵ U 和²⁰⁷ Pb/²⁰⁶ Pb 等 3 组年龄不一致。其余 21 个测点均具有细密、清晰的振荡环带 CL 图像,属于岩浆锆石,其中不谐和度 < 5%的 18 个测点的²⁰⁶ Pb/²³⁸ U 表面年龄加权平均值为441.5 ± 7.5 Ma(MSWD = 1.06)(图 3)。

TIMS 法锆石 U-Pb 定年结果见表 2 和图 3。 LJS-2 及 LJS-3 的锆石具较高的²⁰⁶ Pb /²⁰⁴ Pb 原子比 率,分别为 167 ~ 3339 和 1155 ~ 3008; 普通铅含量 较低,分别为 0. 056 ~ 0. 610 ng、0. 072 ~ 0. 270 ng。 从图 3 可知,LJS-2 的 TIMS 法锆石谐和年龄为 410. 3 ± 3. 5 Ma(MSWD = 2. 1); LJS-3 的 TIMS 法 锆石谐和年龄为 405. 2 ± 2. 5 Ma(MSWD = 2. 4)。

值得注意的是,SHRIMP 锆石 U-Pb 定年的 2-13、3-2、3-3 和 3-4 等4 个测点的结果,与 TIMS 法 测定结果具有一定相似性,结合 CL 图像特征,这 4 个测点位于岩浆振荡环带与变质边的交接部 位,应代表了混合锆石的年龄。

2.3 主变质期年龄的推算

样品 LJS-2 和 LJS-3 的 SHRIMP 锆石 ²⁰⁶ Pb/²³⁸ U表面年龄加权平均值分别为 442.0 ± 6.3 Ma 和 441.5 ± 7.5 Ma ,TIMS 法锆石 U-Pb 谐 和年龄分别为 410.3 ± 3.5 Ma 和 405.2 ± 2.5 Ma。 结合 CL 图像分析 ,可知这两件样品均具有比较 细密清晰的岩浆振荡环带 ,但大部分锆石颗粒的 环带边缘有一薄层亮白色的改造边或增生边(< 10 μ m) 表明加里东期的岩浆锆石在后期发生过 改造或增生 ,因此造成了两种方法测年结果的差 异。TIMS 锆石 U-Pb 法获得的年龄应代表受后期 热事件影响的混合年龄 ,不能代表该地区的花岗 岩的成岩年龄。所测样品锆石的变质年龄可以采 用前述的公式进行计算 ,结果见表 3。从表 3 可 知样品 LJS-2 和 LJS-3 的主变质年龄分别为 232 ±15 Ma 和 228 ± 13 Ma(本文仅列出²⁰⁶ Pb/²³⁸ U 表

	表2	南温河花岗岩 TIMS 锆石 U-Pb 定年结果
Table 2.	TIMS	U-Pb isotopic data of zircon from Nanwenhe granites

样品		$w_{\rm B}$	/10-6	$\mathit{m}(~\mathrm{Pb}_{c})$ /	²⁰⁶ Pb	²⁰⁸ Pb	²⁰⁶ Pb	²⁰⁷ Pb	²⁰⁷ Pb		表面年龄/Ma	
	mi μg	U	Pb	ng	²⁰⁴ Pb	²⁰⁶ Pb	²³⁸ U	²³⁵ U	²⁰⁶ Pb	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁷ Pb/ ²⁰⁶ Pb
LJS-2-T1	15	2334	157	0.13	1100	0.05659	0.06620(53)	0. 4996(53)	0.05473(35)	413. 2 ± 3. 2	411.4 ± 3.6	401. 2 ± 14
LJS-2-T2	20	1815	114	0.06	2693	0.03509	0.06550(44)	0.4990(48)	0.05525(34)	409.0 ± 2.7	411.0 ± 3.3	422. 4 ± 14
LJS-2-T3	30	1915	119	0.07	3339	0.02806	0.06534(27)	0. 4939(28)	0.05482(20)	408.0 ± 1.6	407.6±1.9	404.9 ± 8.2
LJS-2-T4	30	1937	126	0.15	1596	0.03649	0.06625(25)	0. 5063(28)	0.05543(20)	413.5 ± 1.5	416.0±1.9	429.6 ± 8.0
LJS-2-T5	20	1096	98	0. 61	167	0.03811	0.06573(61)	0. 4998(69)	0.05515(52)	410.4 ± 3.7	411.6±4.7	418.3 ± 2.1
LJS-3-T1	20	2531	164	0.07	2876	0.08746	0.06455(33)	0.4856(34)	0.05456(23)	403. 2 \pm 2. 0	401.9 ± 2.3	394. 2 ± 9. 5
LJS-3-T2	30	2465	164	0. 27	1155	0.06806	0.06513(42)	0. 4915(36)	0.05473(17)	406.7 ± 2.5	405.9 ± 2.5	401. 2 ± 16
LJS-3-T3	20	1988	133	0.14	1219	0.08311	0.06504(43)	0.4910(50)	0.05475(39)	406. 2 ± 2. 6	405.6 ± 3.4	402. 0 ± 16

注: ²⁰⁶ Pb / ²⁰⁴ Pb 已对实验空白(Pb = 0.050 ng, U = 0.002 ng) 及稀释剂作了校正; 其他比率中的铅同位素均为放射成因铅同位素; 括 号内的数字为 2σ 绝对误差,例如 0.06455(33) 表示 0.06455 ± 0.00033(2σ).

Table 3. Parameters of estimated metamorphic age									
样品	SHRIMP ²⁰⁶ Pb/ ²³⁸ U 表面年龄/Ma	样品	TIMS ²⁰⁶ Pb/ ²³⁸ U 表面年龄/Ma	岩浆锆石体积比/%	推算 ²⁰⁶ Pb/ ²³⁸ U表面年龄值/Ma				
		LJS-2-T1	①413. 2 ± 3. 2		①247.7±15				
		LJS-2-T2	(2)409. 0 ± 2. 7		(2)218. 7 ± 19				
TIC	442 ± 6. 3	LJS-2-T3	$(3)408.0 \pm 1.6$	85	$(3)212.0 \pm 26$				
LJ5-2	2	LJS-2-T4	(4)413. 5 ± 1. 5		④249. 8 ± 27				
		LJS-2-T5	(5)410. 4 ± 3. 7		(5)228. 2 ± 12				
				加权平均	232 ± 15 (MSWD = 0.68)				
LJS-3		LJS-3-T1	1403.2 ± 2.0		①213. 3 ± 26				
	441.5 ± 7.5	LJS-3-T2	(2)406. 7 ± 2. 5	83	(2)234. 6 ± 23				
	·	LJS-3-T3	(3)406. 2 ± 2. 6		③231. 3 ± 22				
				加权平均	228 ± 13 (MSWD = 0.85)				

表3 推算变质年龄的参数

面年龄计算结果,同理可计算出²⁰⁷ Pb/²³⁵ U 表面年 龄值),即主变质事件年龄为 230 Ma 左右。

3 讨 论

南温河花岗岩 SHRIMP 锆石年龄分别 442.0 ±6.3 Ma 和 441.5 ±7.5 Ma,代表了南温河花岗 岩成岩年龄为 440 Ma 左右。在越南北部 Song Chay 变质穹窿中,相同岩类变质成因的白云母 Ar-Ar 年龄分别为 234 ±0.8 Ma 和 228 ±0.5 Ma^[18-49]; Yan et al. ^[20]获得了该区变质成因的角 闪石 Ar-Ar 年龄为 237 ±5 Ma。此外 经历了同期 变质的猛硐岩群斜长角闪片麻岩,获得了变质成 因榍石的 TIMS U-Pb 年龄为 236.8 ±1.7 Ma^[21]。 本文通过计算获得的变质年龄约为 230 Ma,与上 述其他测年方法获得的变质年龄在误差范围内一 致 表明借助此方法进行计算中-浅正变质岩的年 龄是可行的。

中-浅变质岩的年龄,一般通过变质成因含钾 矿物的Ar-Ar法(如云母、角闪石等),变质成因的 其他含U、Th矿物的U-Th-Pb法(如独居石、榍 石、金红石等)。但上述分析对象,有的产出分布 有限,或有的封闭温度较低等,均存在一定的局限 性。锆石广泛分布于各类岩石中,通过锆石 U-Pb 法测定中-浅变质作用的年龄,不但拓展了锆石 U-Pb 法测年的应用范围,也为中-浅变质年代学提 供了一种新途径。

应用此方法可以对已有的中-浅变质岩锆石 年代学数据进行再处理,也为今后类似工作提供 一些有效的启示。但是该方法也存在一些局限: ①适用于经历了中-浅变质的正变质岩石;②后期 经历的变质热事件尽可能简单,变质热事件与原 岩岩浆热事件的时间间隔应足够大;③应结合 CL 图像分析等方法开展锆石内部结构研究,并统计 足够多的颗粒,以获得变质成因域和岩浆成因域 的准确比例;④SHRIMP 和 TIMS 锆石 U-Pb 测年 以较多的测年数据为佳,这样通过计算获得的变 质年龄才能更准确、更具地质意义;⑤在区域地质 背景研究基础上,应用本文方法计算的变质年龄, 最好辅以其他测年方法数据的对比和印证。

致谢: TIMS 锆石 U-Pb 测年由天津地质矿产研究所李惠民 研究员完成,SHRIMP 锆石 U-Pb 测年得到北京 SHRIMP 中心刘敦一研究员、宋彪研究员、石玉若博士、陶华工程 师等诸位老师的指导和帮助,在此一并致以诚挚的感谢。

参考文献:

- [1] Lee J, Williams I, Ellis D. Pb, U and Th diffusion in nature zircon [J]. Nature, 1997, 390(13): 159-162.
- [2] Cherniak D J, Watson E B. Pb diffusion in zircon [J]. Chemical Geology, 2000, 172: 5-24.
- [3] 简平,陈裕淇,刘墩一. 变质锆石成因的岩相学研究一高级变质岩 U-Pb 年龄解释的基本依据[J]. 地学前缘,2001,8(3): 183-191.
- [4] 吴元保,郑永飞. 锆石成因矿物学研究及其对 U-Pb 年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604.
- [5] 陈能松,李惠民,何蕾,等. 热离子质谱测定的颗粒级锆石 U-Pb 不一致年龄数据处理的多边形准则一以大别山和东昆仑山深变 质岩为例[J]. 地质科技情报,2002,21(3): 24-29.
- [6] 云南省地矿局第二区域测量大队. 中华人民共和国区域地质报告(1:20万)马关幅[Z]. 1976.
- [7] 云南省地质矿产勘查开发局区域地质调查大队.中华人民共和国地质图及说明书(1:5万)老君山幅、麻栗坡县幅[Z].1999.
- [8] 陈学明,林棕,谢福昌.云南白牛厂超大型银多金属矿床叠加成矿的地质地化特征[J].地质科学,1998,33(1):115-124.
- [9] 张世涛,冯明刚,吕伟. 滇东南南温河变质核杂岩解析[J]. 中国区域地质,1998,17(4): 390-397.
- [10] 徐伟. 滇东南南温河花岗岩年代学和地球化学初步研究[D]. 中国科学院研究生院,硕士学位论文(地球化学研究所),2007.
- [11] Williams I S. U-Th-Pb geochronology by ion microprobe [A]. McKibben M A, Shanks W C, Ridey W I. (eds). Application of Microanalytical Techniques to understand Mineralizing Process [C]. Rev Economic Geol, 1998, 7: 1-35.
- [12] Ludwig K R. Isoplot—A plotting and regression program for radiogenic-isoplot data [J]. USGS open-file Report Version , 1994 , 275: 91-145.
- [13] 陆松年,李惠民.蓟县长城系大红屿组火山岩的单颗粒锆石 U-Pb 法准确定年[J].中国地质科学院院报,1991,22:137-146.
- [14] 刘玉平,叶霖,李朝阳,等. 滇东南发现新元古代岩浆岩: SHRIMP 锆石 U-Pb 年代学和岩石地球化学证据[J]. 岩石学报,2006, 22(4): 916-926.
- [15] McLaren A C, Fitzgerald J D, Williams I S. The microstructure of zircon and its influence on the age determination from Pb/U rations measured by the ion microprobe [J]. Geochimica et Cosmochimica Acta, 1994, 58: 933-1005.
- [16] Williams I S, Hergt J M. U-Pb dating of Tasmanian dolerites: A cautionary tale of SHRIMP analysis of high-U zircon. In: Woodhead J D, Hergt J M, Noble W P. eds. Beyond 2000: New Frontiers in Isotope Geosciences, Lorne, Abstracts and Proceedings [M]. Melbourne: University of Melbourne, 2000: 185-188.
- [17] Butera K M, Williams I S, Blevin P L, et al. Zircon U-Pb dating of Early Palaeozoic monzonitic intrusives from the Goonumbla area, New South Wales [J]. Australian Journal of Earth Sciences, 2001, 48: 457-464.

- [18] Roger F, Leloup P H, Jolivet M, et al. Long and complex thermal history of the Song Chay metamorphic dome (Northern Vietnam) by multi-system geochronology [J]. *Tectonophysics*, 2000, 321: 449-466.
- [19] Maluskia H, Lepvrierb C, Jolivetb L, et al. Ar-Ar and fission-rack ages in the Song Chay massif: Early Triassic and Cenozoic tectonics in northern Vietnam [J]. Journal of Asian Earth Sciences, 2001, 19: 233-248.
- [20] Yan D P, Zhou M F, Wang Y C, et al. Structural and geochronological constraints on the Dulong-Song Chay tectonic dome in SE Yunnan (SW China) and northern Vietnam [J]. Journal of Asian Earth Sciences , 2006, 28(4): 332-353.
- [21] 谭洪旗. 滇东南猛硐岩群变质--变形与地球化学研究[D]. 中国科学院研究生院,硕士学位论文(地球化学研究所),2010.

A Study on SHRIMP and TIMS Zircons Dating on Low-to Medium-Grade Ortho-Metamorphic Rocks: Example on the Nanwenhe Granites , Southeastern Yunnan Province , China

TAN Hong-qi^{1,2}, LIU Yu-ping¹, XU Wei³, GUO Li-guo⁴, YE Lin¹, LI Chao-yang⁴

(1. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China;

2. Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences, Chengdu 610041, China;

3. Department of Project Supervising Shengli Oil Field Stock Ltd. Co. , Dongying 557000 , China;

4. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China)

Abstract: Zircons in metamorphic rocks have generally undergone thermal alteration. As new growth zircons and metamorphic accretional rims are weakly developed in the low-to medium-grade metamorphic rocks , it is difficult to date them by using ordinary zircon U-Pb isochronal techniques. In these rocks , the isotopic compositions of zircons with magmatic core and metamorphic accretional rims represent the mixing of two compounds different genesis , which could be expressed by the mixture model of two isotope end-members. The isotopic composition of mixed zircon could be obtained by TIMS technique , and the isotopic composition of magmatic zircon could be dated by using SHRIMP technique on the basis of the internal fabric analysis such as CL. Thus , the isotopic composition of metamorphic zircon could be calculated. The zircons U-Pb geochronology of the same samples exhibit the discordance between SHRIMP and TIMS U-Pb dating results from the Nanwenhe Granites , Southeastern Yunnan Province , P. R. China. The age of peak metamorphic event(~ 230 Ma) was obtained through the above mentioned calculating method , in accordance with the indosinian metamorphic ages obtained by other dating methods. This study provides a new way to date the low-to medium-grade metamorphic event.

Key words: ortho-metamorphic; zircon; U-Pb dating; SHRIMP; TIMS; Nanwenhe granites; Yunnan Province