第31卷 第1期 2011年3月

文章编号:1000-4734(2011)01-0055-07

滇西澜沧老厂地区玄武岩岩石成因与构造意义

陈觅^{1,2} ,黄智龙^{1*} ,罗泰义¹ ,严再飞¹ ,龙汉生^{1,2}

(1. 中国科学院 地球化学研究所 矿床地球化学国家重点实验室 ,贵州 贵阳 550002;2. 中国科学院 研究生院 北京 100049)

摘要: 对滇西澜沧老厂地区玄武岩进行了系统的主微量元素和 Nd-Pb 同位素地球化学研究 结果表明该玄武岩 为典型的洋岛玄武岩(OIB)。Nd-Pb 同位素研究表明,玄武岩浆含富集地幔组分。老厂地区玄武岩浆活动可 能与地幔热柱有关,玄武岩可能为地幔热柱(软流圈)熔融产生的岩浆与富集的岩石圈地幔岩浆混合的产物。

关键词:洋岛玄武岩;地球化学;Nd-Pb同位素;滇西

中图分类号: P579; P581; P597 文献标识码: A

作者简介:陈觅,男,1982年生,博士,矿物学、岩石学、矿床学专业方向. E-mail: chmhiking@gmail.com

滇西三江地区地处欧亚板块与印度板块的结 合部位,北接青藏高原,南连印支地块,东与华南 板块相连,西邻印度板块,是古特提斯构造域的重 要组成部分^[1,2]。滇西澜沧老厂地区位于我国三 江地区中南段,地处昌宁—孟连构造岩浆带的南 段(图1)。

昌宁一孟连构造火山岩非常发育,北起昌宁, 经澜沧、孟连、曼信延至缅甸,呈一南北向展布的 狭长条带状分布,是重要的含矿岩系^[34]。对于该 地区火山岩的构造性质,存在截然相反的两种观 点:一种认为是滇西陆间裂谷玄武岩^[3,58];另一 种认为是洋中脊、洋岛玄武岩,为古特提斯洋壳的 残迹^[940,1144]。上述争论的焦点在于对老厂地区 火山岩形成时代及构造环境认识不一。鉴于此, 本文将报道滇西澜沧老厂地区玄武岩主微量元素 和 Nd-Pb 同位素地球化学特征,探讨其岩石成 因,为滇西古特提斯演化提供有效的同位素年代 学和岩石地球化学制约。

1 区域地质背景及岩石学特征

澜沧老厂地区位于云南省西部澜沧江流域中 南段,思茅盆地之西缘。区内泥盆系广泛分布,由

收稿日期:2010-08-05

基金项目:中国科学院重要方向项目(KZCX2-YW-111-3);国家 "973"计划项目(2007CB411402)

^{*} 通讯作者 E-mail: huangzhilong@ vip. gyig. ac. cn

1.海西-印支期花岗岩 2.燕山期花岗岩 3.变质 基底 4.金沙江断裂带 5.澜沧江断裂带 6.怒 江断裂带 7.哀牢山断裂带 8.阿墨江断裂带 9.无量山-营盘山断裂带 10.酒房断裂带 11.南 汀河断裂 12.黑河断裂

图1 老厂地区地质简图

Fig. 1. Geological sketch map of Laochang area.

一套夹凝灰岩层的浅变质碎屑岩、火山碎屑岩及 生物灰岩组成。石炭系是本区最发育的地层,分 布范围广,厚度大,层序全,上、中、下统都有。下 统又分为南段组和依柳组。南段组主要由石英砂 岩和千枚状页岩组成,依柳组则主要为偏碱性的 中基性火山岩组合。石炭系中上统主要由灰岩夹 白云岩组成^[2,15]。依柳组火山岩主要由火山碎 屑岩及熔岩组成,玄武岩是区域内最发育的火山 熔岩,约占熔岩的90%以上^[2,15]。另外区内还分 布有二叠系、侏罗系、白垩系和第三系地层。

玄武岩样品采自澜沧老厂铅锌矿区依柳组。 岩石多为青灰-灰绿色,斑状结构,基质为间隐结 构(图2),块状构造。斑晶主要为斜长石,辉石, 不含或含极少量橄榄石。斑晶斜长石为半自形板 状 粒度为2~5 mm,聚片双晶发育,绿帘石化及 绢云母化明显。辉石斑晶主要为普通辉石,常呈 短柱状或等轴状,其含量比斜长石少。橄榄石斑 晶呈自形粒状,裂理发育,蛇纹石化明显。基质主 要由斜长石微晶,普通辉石及磁铁矿组成,局部可 见有玄武质玻璃。斜长石微晶呈半自形长条状排 列,基质中的辉石的粒度要比斑晶中小,磁铁矿常 呈浸染状,与普通辉石一起充填在斜长石微晶构 成的孔隙中。

图 2 老厂地区玄武岩镜下图片 Fig. 2. Microscope photo of basalt from Laochang area.

2 分析方法

全岩主量元素在中国科学院地球化学研究所 矿床地球化学国家重点实验室采用 Axios 型波长 色散 X 射线荧光光谱仪测定,分析精度优于 5%。 微量元素在中国地质科学院国家地质实验测试中 心利用美国 ELAN6100DRC 型电感耦合等离子质 谱仪(ICP-MS) 测定,分析精度优于 5%^[16]。SmNd 的化学分离采用阳离子树脂 AG50W(REE 和 其他元素分离) 和阴离子树脂 LN(Sm,Nd 分离) 方法 化学分离在中国地质大学(武汉) 地质过程 与矿产资源国家重点实验室同位素超净实验室完 成。同位素比值在中国地质大学(武汉) 地质过 程与矿产资源国家重点实验室采用 Triton 表面热 电离质谱仪测定。

3 结 果

3.1 元素地球化学

7 个玄武岩样品的主量和微量元素分析结果 列于表1。在手标本和薄片上看,这些样品均有 不同程度的蚀变,样品的烧失量LOI(>2.64%) 也证实了这一点。由于 K, Na 和低场强元素 (LFSE: Cs ,Rb Sr ,Ba) 在蚀变过程中可能发生了 迁移,因此我们将主要依据高场强元素(HFSE: Ti Zr, Y Nb, Ta, Hf), Th 和稀土元素(REE) 等不 活泼元素对样品进行岩石学分类和成因讨论。老 厂地区玄武岩的 TiO₂ 含量较高(≥2%),碱含量 变化范围大, Na, O+K, O为2.57%~6.48%。 Fe₂O₃^T 为 7.00% ~11.96% Mg[#]值为 0.55 ~0.73 (表1)。在Nb/Y-Zr/TiO,岩石分类图^[17](图3) 上,所有样品 Nb/Y 比值 > 1.7,均落入碱性玄武 岩范围。在以 MgO 为横坐标的 Harker 图解(图 4) 上 $Fe_2O_3^T$ 和 TiO₂ 含量随着 MgO 的降低而降 低 表明发生了橄榄石和磁/钛铁矿的分离结晶。 Al₂O₃ 的相关关系不明显,可能表明斜长石的分 离结晶作用不明显。

图 4 老厂地区玄武岩 MgO 的 Harker 图解

w(MgO)/%

球粒陨石标准化数据据文献[18];初始地幔、E-MORB、N-MORB和 OIB数据据文献[19];三江 OIB 数据据文献[11]

图 5 老厂地区玄武岩稀土元素球粒陨石标准化配分曲线(a) 和微量元素原始地幔标准化蛛网图(b) Fig. 5. Chondrite-normalized REE pattern (a) and primitive mantle-normalized trace elements variation diagram (b) of the Laochang basalt.

玄武岩样品具有较一致的 REE 分布形式(表 1 图 5a),与侯增谦^[11]得到的三江地区洋岛玄武 岩(OIB)有相似的分布形式。玄武岩样品相对富 集 LREE [$La_N = 147 \sim 308$, (La/Yb)_N = 11.75 ~ 22.94], 具弱的 Eu 异常($Eu/Eu^* = 0.75 \sim$ 1.30),出现弱的 Eu 负异常可能与极少量的斜长 石分离结晶有关。在微量元素蛛网图(图 5b)上, 所有样品具右倾的分布形式,不相容元素富集,无 Nb-Ta 亏损,非常类似于洋岛玄武岩(OIB)^[20](图 5b)。

3.2 Nd-Pb 同位素

5 个样品的 Nd-Pb 同位素分析结果见表 2。 所有样品的 Nd 同位素组成变化范围不大: 147 Sm/ 144 Nd = 0.1103 ~ 0.1287 , 143 Nd/ 144 Nd = 0.512606 ~ 0.512640 ,以 t = 324 Ma 计算得到的 $\varepsilon_{Nd}(t)$ 值为 0.28 ~ 0.94;老厂地区玄武岩的 206 Pb/ 204 Pb = 18.5945 ~ 18.6845 , 207 Pb/ 204 Pb = 15.5972 ~ 15.6722 , 208 Pb/ 204 Pb = 38.8403 ~ 38.9044。

w(MgO)/%

4 讨 论

4.1 岩石成因

澜沧老厂地区玄武岩富集不相容元素,微量 元素初始地幔标准化曲线分布呈"大隆起"型,与 典型的洋岛玄武岩(OIB)相似(图 5b)。在 Hf-Th-Ta 判别图^[21](图 6a)上,所有样品均投入板内 碱性玄武岩范围内。在 Vermeesch^[22]提出的 TiSm-V 判别图^[23,24](图 6b)上,老厂地区玄武岩均 投入洋岛玄武岩(OIB)范围内。另外所有样品的 Ti/V > 50(表 1),符合洋岛玄武岩(OIB)的一般 特征^[25]。老厂玄武岩中夹硅质条带,且玄武岩上 的中上石炭统沉积物中缺少陆源物质^[10,26],也表 明玄武岩形成于大洋环境。因此,澜沧老厂地区 玄武岩为典型的洋岛玄武岩,这与前人研究得到 的结论^[10,11,13,14]一致。

另外 E^{208} Pb^{*} / 206 Pb^{*} - 143 Nd / 144 Nd 图解^[27] 上,

													M#								
17700		SiO_2	TiO ₂	Al ₂	03 1	$\operatorname{Fe}_2 \operatorname{O}_3^{\mathrm{T}}$	MgC) /	InO	CaO	Na ₂	0	K ₂ 0	P_2O_5	烧失	量	总量	Na ₂	$0 + K_2$	0	Mg
1650-15		47.45	2.00) 15.	80	7.82	5.05	5 0	. 22	14.73	1.4	1 2	2.15	0.46	3.2	25 1	00.33	3	3. 55		0.60
1650-17		47.03	2.87	16.	69	9.70	7.25	5 0	. 07	7.19	2.9	8 3	3.60	0.81	3.2	25 1	01.43	(5. 48		0. 64
1650-19		46. 90	4.27	16.	57	11.96	10.6	7 0	. 08	1.86	1.9	2 2	2.18	0.51	4.6	55 1	01.57	4	4. 03		0. 68
1650-32		44. 81	4. 52	2 12.	73	7.00	3.70) 0	. 12	15.41	0.9	7 4	4. 90	1.25	4.8	31 1	00. 21	4	5.86		0. 55
1700-23		42.12	3.25	5 13.	96	13.01	12.2	3 0	. 10	4.52	1.5	4 1	1.63	0.32	8.7	74 1	01.42	3	3.13		0. 69
1725-27		39. 99	2.96	5 12.	86	8.37	9.62	7 0	. 20	18.46	0.4	6 2	2.12	1.29	4. (00 1	00.37	2	2. 57		0. 73
06LC60		45.23	3.20) 15.	95	11. 19	8.98	3 0	. 11	6.25	2.6	9 3	3.40	1.15	2.6	54 1	00.78	(5. 04		0.65
样只		w _B /10 ⁻⁶																			
1+44	V	Cr	Ni	Rb	Sr	Ba	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Y
1650-15	152	98.8	40.2	84.9	533	51.5	53.3	108	11.7	44.3	8.44	2.75	7.45	1.01	5.48	1.02	2.72	0.37	2.34	0.33	28.0
1650-17	234	82.9	50.6	260	398	153	60.2	123	14.0	55.8	11.0	3.44	10.2	1.40	7.67	1.40	3. 59	0.46	2.90	0.40	35.2
1650-19	288	153	67.6	148	126	42.4	45.5	101	11.5	48.0	9.80	2.93	9.50	1.31	7.18	1.30	3.31	0.41	2.61	0.35	30.4
1650-32	211	365	57.5	138	193	222	61.8	144	16.8	68.8	12.7	5.05	11.0	1.41	7.05	1.21	2.98	0.35	2.13	0.29	29.5
1700-23	36.4	23.3	12.8	199	134	73.6	95.5	176	19.0	68.7	11.8	2.74	10.5	1.59	8.85	1.69	4.68	0.65	4.20	0.60	43.2
1725-27	197	376	68.2	170	275	119	72.2	149	16.3	65.9	12.0	4.21	10.4	1.32	6.53	1.13	2.88	0.36	2.12	0.31	28.4
06LC60	267	79.5	41.5	176	334	166	62.1	130	15.5	63.8	12.7	4.40	12.1	1.65	8.71	1.58	3.97	0.50	3.10	0.42	39.8
样品。		w _B /10 ⁻⁶					La.,		(Ia/Yb)		F., /F.,*		T; /V		Nh/Lo Nh/V		(Th/Ta) (I		(La/	a/Nh)	
1+44	Zr	Hf	Nb	Та	Th	u U		Bay	(Eu	12) N	Eu/1	Su	117	•	1107 LC		1107 1	(11	, 1 0, p	M(Ear)	
1650-15	440	7.75	76.1	4.19	10.	3 3.0)3	172	15	. 37	1.(06	69		1.43		2.72	1	. 19	0.	73
1650-17	387	7.79	74.9	4.06	8.6	6 2.2	25	194	13	. 97	0.9	99	71		1.25		2.13	1	. 03	0.	83
1650-19	347	6.98	56.0	3.34	5.9	4 1.0)1	147	11	. 75	0.9	93	79		1.23		1.84	C	. 86	0.	84
1650-32	335	6.48	94.1	4.72	8.3	8 5.3	39	199	19	. 55	1.3	30	67		1.52		3. 19	0	. 86	0.	68
1700-23	697	13.2	137	6.66	14.	9 3.2	28	308	15	. 35	0. 7	75	49		1.43		3.17	1	. 08	0.	72
1725-27	312	5.57	89.0	4.44	9.0	2 2.9	98 2	233	22	2. 94	1.	15	50		1.23		3.13	0	. 98	0.	84
06LC60	380	7.18	69.7	3.85	7.3	2 2.5	59	200	13	. 51	1. (08	80		1.12		1.75	C	. 92	0.	92

注: $Mg^{\#} = (MgO/40.31) / (MgO/40.31 + Fe_2O_3^T \times 0.8998 \times 0.85/71.85) Eu/Eu^* = Eu_N / [(Sm_N \times Gd_N)^{1/2}].$

表 2	滇西澜沧老厂	「地区玄武岩	Nd Pb	同位素组	成

Table 2.	Nd	and	Pb	isotope	of	the	Laochang	basal
----------	----	-----	----	---------	----	-----	----------	-------

	样品	147 Sm / 144 Nd	143 Nd / 144 Nd	2σ	$\varepsilon_{\rm Nd}(t)$	²⁰⁸ Pb / ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb [*] / ²⁰⁶ Pb [*]	$^{*} \delta^{208} \text{Pb} / ^{204} \text{Pl}$	b δ ²⁰⁷ Pb / ²⁰⁴ Pb
-	1650-17	0, 1189	0.512636	0. 000009	0.32	38, 9044	15.6418	18, 6635	1.008	33.87	20.34
	1650-19	0. 1238	0. 512669	0.000010	0.94	38, 9008	15, 6565	18. 6121	1.013	33.77	21.30
	1700-23	0. 1287	0. 512667	0.000010	0.88	38, 8521	15. 5972	18, 6676	1.002	32, 48	17.43
	1725-27	0.1103	0. 512632	0.000010	0.28	38, 8671	15.6722	18, 5945	1.011	32.88	22. 32
	06LC60	0. 1207	0. 512655	0. 000009	0.68	38.8403	15.6398	18. 6845	0. 999	32.16	20. 21
-											

注: δ^{208} Pb/ 204 Pb = [(208 Pb/ 204 Pb)/ $c_0 - 1$] × 1000, 208 Pb/ 204 Pb 为测试值, $c_0 = 37.63$; δ^{207} Pb/ 204 Pb = [(207 Pb/ 204 Pb)/ $b_0 - 1$] × $c_0 = 1$ × 1000, $c_0 = 1$ × 100, $c_$

1000 $_{\prime}^{207}$ Pb / 204 Pb 为测试值 $b_0 = 15.33$.

玄武岩样品均投入 OIB 范围内(图 7a)。所有样 品的 $ε_{Nd}(t)$ 值均为较低的正值(0.28~0.94),且 其²⁰⁶ Pb/²⁰⁴ Pb、²⁰⁷ Pb/²⁰⁴ Pb 和²⁰⁸ Pb/²⁰⁴ Pb 同位素比 值明显高于原始地幔的 Pb 同位素相应比值(分 别为 17.51、15.33 和 37.63)^[28] 表现出富集放射 成因 Pb 的特征。由于洋岛玄武岩一般产出于地 壳较薄的洋盆中,基本不存在地壳物质的同化混 染作用,且老厂地区玄武岩无明显的 Nb-Ta 异常, 因此玄武岩岩浆很可能包含富集地幔组分。所有 玄武岩样品的 Nb/La 值(1.12~1.52)均远高于 大陆地壳的平均值^[29](约为 0.7)也证实了这一 点。进一步的示踪研究显示,老厂地区玄武岩样 品在 δ²⁰⁷ Pb/²⁰⁴ Pb-δ²⁰⁸ Pb/²⁰⁴ Pb 图^[30](图 7b)上, 均投入陆源沉积物范围内,并且靠近 EM II,暗示 玄武岩浆源区可能与陆源沉积物有密切关系,表现为一个前期交代富集的地幔源。老厂地区玄武岩的源区特征与西准噶尔克拉玛依OIB型枕状玄武岩的源区特征^[31]极为相似。

4.2 构造意义

在澜沧江缝合带北段的西藏左贡县扎玉地区 以及南段的昌宁-孟连一带均发育有蛇绿岩 带^[32,33] ,处于澜沧江流域(缝合带)南段的老厂 地区发育典型的蛇绿岩-蛇绿混杂岩和洋岛玄武 岩(OIB) 组合且交互产出^[11,12]。尽管 OIB 可以 是上地幔多个端元熔融的产物 ,但 OIB 来自软流 圈或下地幔是毫无疑问的^[34,35]。侯增谦^[11,12]等 认为澜沧江缝合带的 MORB 与 OIB 的形成均与

(a) Th-Hf-Ta 判别图(A 区是 N 型 MORB; B 区为 E 型 MORB 和板内拉斑玄武岩; C 区为板内碱性玄武岩; D 区为火山弧玄武岩,其中岛弧拉斑玄武岩的 Hf/Th > 3,而钙碱性玄武岩的 Hf/Th < 3); (b) Ti-Sm-V 判别图

图6 老厂地区玄武岩构造判别图

Fig. 7. Diagrams of 208 Pb^{*} / 206 Pb^{*} vs. 143 Nd/ 144 Nd (a) and δ^{207} Pb/ 204 Pb vs. δ^{208} Pb/ 204 Pb (b) of the Laochang basalt.

可以认为在早石炭世,澜沧江洋岩石圈下存在地

幔热柱,地幔热柱作用驱动大洋的开启与扩

张^[17,18],并导致了老厂地区 OIB 等"热点"火山

活动 老厂地区洋岛玄武岩(OIB) 很可能是地幔

热柱(软流圈)熔融产生的岩浆与富集的岩石圈

致谢:野外地质考察、取样过程中得到云南澜沧铅矿有限

公司的领导和矿山地质工作者的大力支持和帮助,中国

科学院地球化学研究所 X 荧光测试室在主量元素测试中 提供了帮助,中国地质科学院地质实验测试中心在微量

元素测试中给予了帮助,中国地质大学(武汉)地质过程

与矿产资源国家重点实验室同位素超净实验室在岩石 Nd-Pb 同位素测试中给予了热情帮助 在此一并表示衷心

地幔岩浆混合的产物。

地幔热柱有关,地幔热柱的尾柱区高热物质熔融 产生的岩浆与冠形头部周围地幔的混杂而形成 OIB。张旗等^[6]也认为昌宁一孟连带内的泥盆纪-晚石炭世的洋脊-洋岛火山岩浆作用与下地幔的 活动有关。Neal等^[36]认为,起源于地幔热柱的玄 武岩其(Th/Ta)_{РМ}、(La/Nb)_{РМ}比值均小于1。老 厂地区玄武岩的(Th/Ta)_{РМ} 值为 0.86 ~ 1.19, (La/Nb)_{РМ}值为 0.68 ~ 0.92(表 1),部分较高的 (Th/Ta)_{РМ}值可能与富集地幔组分参与有关。

5 结 论

(1) 澜沧老厂地区玄武岩为典型的洋岛玄武 岩 地幔源区为具有 EM Ⅱ 特征的交代富集地幔。

(2)综合老厂地区玄武岩的地球化学特征,

参考文献:

- [1] 李峰,段嘉瑞. 滇西地区板块-地体构造[J]. 昆明理工大学学报(理工版), 1999, 24(1): 29-35.
- [2] 彭头平. 澜沧江南带三叠纪碰撞后岩浆作用岩石成因及其构造意义[D]. 广州: 中国科学院广州地球化学研究所, 2006.

地感谢!

- [3] 胡祥昭 陈惜华. 昌宁-孟连火山岩带玄岩的岩石学及地球化学[J]. 中南矿冶学院学报,1994,25(5):560-564.
- [4] 冯庆来,刘本培. 滇西南昌宁-孟连构造带火山岩地层学研究[J]. 现代地质,1993,7(4):402-409.
- [5] 彭省临 杨牧. 滇西老厂银铅矿床地质地球化学特征[J]. 中南工业大学学报, 1996, 27(5): 507-510.
- [6] 陈惜华 胡洋昭. 滇西澜沧-孟连火山岩带火山岩特征与成因[J]. 中南矿冶学院学报, 1992, 23(1): 1-7.
- [7] 刘友梅 杨蔚华. 澜沧老厂银多金属矿床火山岩地球化学特征及环境识别[J]. 矿物学报,2001,21(4):699-704.
- [8] 龙云生.老厂地区火山岩的特征及其与成矿的关系[D].硕士学位论文.湖南:中南工业大学,2001.
- [9] 王增润,吴延之. 滇西澜沧裂谷成矿作用兼论老厂大型铜铅银矿床成因[J]. 有色金属矿产与勘查,1992,1(4):207-215.
- [10] 张旗 彭兴阶. 滇西古特提斯造山带的威尔逊旋回: 岩浆活动记录和深部过程讨论[J]. 岩石学报, 1996, 12(1): 17-28.
- [11] 侯增谦 莫宣学."三江"古特提斯地幔热柱——洋岛玄武岩证据[J].地球学报:中国地质科学院院报,1996,17(4):343-361.
- [12] 侯增谦 莫宣学."三江"古特提斯地幔热柱──洋中脊玄武岩证据[J].地球学报:中国地质科学院院报,1996,17(4): 362-375.
- [13] 王震.云南澜沧江火山-侵入岩带的区域成岩成矿地质地球化学[D].博士学位论文.合肥:合肥工业大学,2004.
- [14] 朱勤文 涨双全. 南澜沧江结合带火山岩岩浆成因:洋脊-洋岛与弧岩浆作用的性质[J]. 现代地质,1999,13(2):137-142.
- [15] 陈百友, 张映旭, 等. 澜沧老厂银铅锌铜多金属矿床成因探讨[J]. 云南地质, 2002, 21(2): 134-144.
- [16] Gao S , Ling W L , Qiu Y M , et al. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze Craton: Evidence for cratonic evolution and redistribution of REE during crustal anatexis [J]. Geochimica et Cosmochimica Acta , 1999 , 63(13-14): 2071-2088.
- [17] Winchester J A, Floyd P A. Geochemical magma type discrimination: Application to altered and metamorphosed basic igneous rocks [J]. Earth and Planetary Science Letters, 1976, 28(3): 459-469.
- [18] Boynton W V. Geochemistry of the rare-earth elements: Meteorite studies [J]. Geochem , 1984 , 2: 63-114.
- [19] Mcdonough W F, Sun S-S, Ringwood A E, et al. Potassium, rubidium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth [J]. Geochimica et Cosmochimica Acta, 1992, 56(3): 1001-1012.
- [20] Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes [J]. Geological Society Special Publications, 1989, 42: 313-345.
- [21] Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province [J]. *Earth and Planetary Science Letters*, 1980, 50(1): 11-30.
- [22] Vermeesch P. Tectonic discrimination diagrams revisited [J]. An electronic journal of the Earth Sciences, 2006, 7(6), 155. Direction web: http://www.agu.org/journals/gc/.
- [23] Li X H, Li W X, Li Z X, et al. 850 ~ 790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China: A major episode of continental rift magmatism during the breakup of Rodinia [J]. Lithos, 2008, 102(1-2): 341-357.
- [24] 李献华,王选策,李武显,等.华南新元古代玄武质岩石成因与构造意义:从造山运动到陆内裂谷[J].地球化学,2008,37(4):

382-398.

- [25] Shervais J W. Ti-V plots and the petrogenesis of modern and ophiolitic lavas [J]. Earth and Planetary Science Letters, 1982, 59(1): 101– 118.
- [26] 李雷 赵斌. 云南澜沧老厂多金属矿区遥感影像特征及其找矿意义[J]. 矿产与勘查, 1989(1): 50-56.
- [27] Allegre C J , Turcotte D L. Implications of a two-component marble-cake mantle [J]. Nature , 1986 , 323 (6084) : 123-127.
- [28] Zindler A, Hart S. Chemical geodynamics [J]. Annual Review of Earth and Planetary Sciences , 1986, 14: 493-571.
- [29] Taylor S R , Mclennan S M. The geochemical evolution of the continental crust [J]. Reviews of Geophysics , 1995 , 33(2): 241-265.
- [30] Hart S R. Heterogeneous mantle domains: Signatures, genesis and mixing chronologies [J]. Earth and Planetary Science Letters, 1988, 90 (3): 273-296.
- [31] 朱永峰 徐新 魏少妮,等.西准噶尔克拉玛依 OIB 型枕状玄武岩地球化学及其地质意义研究[J].岩石学报,2007,23(7): 1739-1748.
- [32] 莫宣学 路风香 沈上越 等. 三江特提斯火山作用与成矿 [M]. 北京: 地质出版社, 1993: 105-157.
- [33] 莫宣学 ,沈上越 朱勤文 ,等. 三江中南段火山岩-蛇绿岩与成矿 [M]. 北京: 地质出版社 ,1998: 86-105.
- [34] Depaolo D J, Daley E E. Neodymium isotopes in basalts of the Southwest Basin and Range and lithospheric thinning during continental extension [J]. Chemical Geology, 2000, 169(1-2): 157-185.
- [35] Xu Y G. Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean Craton in China: Evidence, timing and mechanism [J]. Physics and Chemistry of the Earth. Part A: Solid Earth and Geodesy, 2001, 26(9-10): 747-757.
- [36] Neal C R, Mahoney J J, Chazey W J. Mantle sources and the highly variable role of continental lithosphere in basalt petrogenesis of the Kerguelen Plateau and Broken Ridge LIP: Results from ODP Leg 183 [J]. Journal of Petrology, 2002, 43(7): 1177-1205.

Petrogenesis and Tectonic Significance of the Laochang Basalt in Western Yunnan Province , China

CHEN Mi^{1,2}, HUANG Zhi-long¹, LUO Tai-yi¹, YAN Zai-fei¹, LONG Han-sheng^{1,2}

 State Key Laboratory of Ore Deposits Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China;
Graduate School of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: A systematic investigation on major and trace elements and Nd-Pb isotope geochemistry date of the Laochang basalt in western Yunnan Province shows that the basalt is a typical oceanic island basalt (OIB). Nd-Pb isotope data revealed that basaltic magma contained enriched mantle component. The basaltic magma activity in Laochang may be related to mantle plume , and the basalt may be the mixed products of mantle plume (asthenosphere) melting of the magma and enriched lithospheric mantle magma.

Key words: OIB; geochemistry; Nd-Pb isotope; Western Yunnan Province