第 31 卷第 5 期	环	境	科	学	学	报
2011年5月	Acta	Scier	ntiae	Circu	mstar	ntiae

万国江 吴丰昌 J Zheng 等. 2011.²³⁹⁺²⁴⁰ Pu 作为湖泊沉积物计年时标: 以云南程海为例[J]. 环境科学学报 31(5):979-986 Wan G J, Wu F C, Zheng J, et al. 2011.²³⁹⁺²⁴⁰ Pu as a dating marker in lake sediments: An example from Lake Chenghai, China [J]. Acta Scientiae Circumstantiae 31(5):979-986

Vol. 31 ,No. 5 May , 2011

²³⁹⁺²⁴⁰ Pu 作为湖泊沉积物计年时标: 以云南程海为例

万国江^{1,*} ,吴丰昌² J Zheng³ ,万恩源¹ ,廖海清² ,Y Masatoshi³ ,王长生¹

1. 中国科学院地球化学研究所 环境地球化学国家重点实验室 ,贵阳 550002

2. 中国环境科学研究院 国家环境保护湖泊污染控制重点实验室 北京 100012

3. Nakaminato Laboratory for Marine Radioecology, National Institute of Radiological Sciences, 3609 Isozaki-cho, Hitachinaka, Ibaraki, 311-1202 Japan 收稿日期: 2010-08-09 修回日期: 2010-09-08 录用日期: 2010-09-09

摘要: 在近代沉积作用领域¹³⁷Cs时标与²¹⁰Pb 计年结合 获得了广泛而有效的应用. 然而,¹³⁷Cs经过两个半衰期的衰变已难于辩识. 环境中的 Pu 核素具有相对较长的半衰期,也随全球大气扩散而散落于地球表面,可望作为沉积计年的时间标志. 通过程海沉积物柱芯中²³⁹⁺²⁴⁰Pu 比活度、²⁴⁰Pu/²³⁹Pu 原子比率及校正到沉积年代的¹³⁷Cs比活度的对比研究表明: 二者比活度的垂直剖面基本相似、²³⁹⁺²⁴⁰Pu 比活度与北半球¹³⁷Cs 逐年沉降量之间也具有很好的对应关系,显示出²³⁹⁺²⁴⁰Pu 同样具有湖泊沉积计年的时标价值. 不同层节沉积物中,²³⁹⁺²⁴⁰Pu/¹³⁷Cs的平均值为 0.016; $\Sigma^{239+240}$ Pu/ Σ^{137} Cs = 0.012,与全球大气散落沉降的活度比相近. ²³⁹⁺²⁴⁰Pu /¹³⁷Cs 活度比的垂直变化,寓意出²³⁹⁺²⁴⁰Pu 在沉积物中较 ¹³⁷Cs具有更小的扩散迁移能力. ²⁴⁰Pu/²³⁹Pu 原子比率平均值为 0.195 ± 0.021,显示²⁴⁰⁺²³⁹Pu 主要来自全球大气散落沉降; 沉积物 8 cm 深度出现的异常点,显示出切尔诺贝利核事故影响的痕迹.

关键词: ²³⁹⁺²⁴⁰Pu; ²⁴⁰Pu/²³⁹Pu; ¹³⁷Cs; 湖泊沉积计年时标; 程海

文章编号: 0253-2468(2011) 05-979-08 中图分类号: X142 文献标识码: A

²³⁹⁺²⁴⁰Pu as a dating marker in lake sediments: An example from Lake Chenghai, China

WAN Guojiang^{1,*}, WU Fengchang², ZHENG Jian³, WAN Enyuan¹, LIAO Haiqing², MASATOSHI Yamada³, WANG Changsheng¹

1. State Key Laboratory of Environmental Geochemistry , Institute of Geochemistry , Chinese Academy of Sciences , Guiyang 550002

2. State Environmental Protection Key Laboratory for Lake Pollution Control, Research Center of Lake Environment, Chinese Research Academy of Environment Sciences, Beijing 100012

3. Nakaminato Laboratory for Marine Radioecology, National Institute of Radiological Sciences, 3609 Isozaki-cho, Hitachinaka, Ibaraki, 311–1202 Japan Received 9 August 2010; received in revised form 8 September 2010; accepted 9 September 2010

Abstract: ¹³⁷Cs time mark combined with²¹⁰Pb dating has been widely applied to recent sedimentation. The ¹³⁷Cs specific activity is , however , hard to detect after decay for two half-lifes. Due to its comparatively long – term half – life , plutonium from global fallout is expected to provide a dating mark for sedimentation. In the present work , we discuss the vertical distribution of ²³⁹⁺²⁴⁰Pu and ¹³⁷Cs specific activities , and the ²⁴⁰Pu/²³⁹Pu atom ratio in a sediment core of Lake Chenghai. The distribution pattern of ²³⁹⁺²⁴⁰Pu was similar to those of ¹³⁷Cs specific activities (decay corrected to deposition time) in the sediment core , and also corresponded well with the annual deposition of ¹³⁷Cs in the northern hemisphere. These results demonstrate that the ²³⁹⁺²⁴⁰Pu specific activity is available to construct recent chronology for lacustrine sediment. In the examined sediment core , the values of 0.016 for average ²³⁹⁺²⁴⁰Pu/¹³⁷Cs activity ratio and 0.012 for $\sum^{239+240} Pu/\sum^{137}Cs$, are close to that of global fallout. The vertical variation of $^{239+240}Pu/^{137}Cs$ activity ratio indicated that the postdepositional transport of plutonium is much less than radiocesium. The average ²⁴⁰Pu/²³⁹Pu atom ratio is 0.195 ± 0.021, which means plutonium in Lake Chenghai originated from global fallout. The abnormal distribution of ²³⁹⁺²⁴⁰Pu and ¹³⁷Cs at 8 cm in the sediment core may be explained by the influence of Chernobyl-source radionuclides.

Keywords: ^{239 + 240} Pu; ²⁴⁰ Pu; ²⁴⁰ Pu; ¹³⁷ Cs; dating marker for lake sedimentation; Lake Chenghai

Supported by the National Natural Science Foundation of China(No. 40873086 40773071)

基金项目: 国家自然科学基金(No. 40873086 40773071)

作者简介: 万国江(1940—) , 用 研究员 E-mail: wanguojiang@ vip. skleg. cn; * 通讯作者(责任作者)

Biography: WAN Guojiang(1940-), male, professor E-mail: wanguojiang@vip. skleg. cn; * Corresponding author

1 引言(Introduction)

湖泊沉积物是挽近时期区域及全球环境变化 的档案馆.确定湖泊沉积速率对于揭示和利用这些 信息是一个关键环节.自20世纪70年代以来,全球 核试验大气散落核素¹³⁷Cs(半衰期30.3 a)在近代 沉积作用领域与²¹⁰Pb计年相结合,获得了广泛而有 效的应用.北半球的湖泊和海湾沉积物中,¹³⁷Cs在 1954年和1964年两个时间标志被广泛用作为沉积 计年.然而,¹³⁷Cs在1954年沉积层中的比活度低, 仅1964年沉积层节具有实际意义(万国江等,1985; 万国江,1999).它们经过近两个半衰期的衰变,至 今已难于辩识,需探寻可供比较的新时标.

环境中的²³⁹ Pu 和²⁴⁰ Pu 主要源自核爆炸的感生 产物(半衰期分别为 2.41×10⁴ a、6.56×10³ a).与 ¹³⁷ Cs相似,它们也随大气放射尘而散落于地球表面. 1964 年美国一颗人造卫星的核辅助动力装置 (SNAP-9A)在地球上空烧毁,致使 17 千居里的 ²³⁸ Pu(半衰期为 87.7 a)进入到大气并散落于地表. 基于²³⁸ Pu、²³⁹ Pu 及²⁴⁰ Pu 具有相对较长的半衰期,可 望作为沉积计年的有效时间标志.

全球核试验总共向环境中释放了大于 10^3 kg 的 Pu 但是自然环境中 Pu 的活度浓度很低. 在湖水中 约为(0.37~1.85) × 10^{-5} Bq·L⁻¹ ,湖泊沉积物中约 为 3.7 Bq·kg⁻¹; 海水中约为 3.7 × 10^{-5} Bq·L⁻¹ ,海 洋沉积物中约为 1.85 × 10^{-1} Bq·kg⁻¹. Kelley 等综 合报道了上世纪 70 年代美国环境测量实验室 (EML) 采自全球 54 个地区的土壤样品中确定的 Pu 同位素组成和累计值(Kelley *et al.*,1999).

此外,因来源不同而异,环境中²³⁹⁺²⁴⁰Pu /¹³⁷Cs 的活度比值不尽相同(UNSCEAR,1982),²⁴⁰Pu/²³⁹Pu 原子比率的变化范围也较大(Oughton *et al.*, 2004). Zheng 等通过日本 Sagami 海湾沉积物中 ²⁴⁰Pu/²³⁹Pu比值测量,判断大约有44%~59%的Pu 是来自 Enewetak 和 Bikini 核试验基地(Zheng and Yamada 2004).一些文献中曾报道湖泊沉积物中核 素 Pu 的分布(万国江等,1986; Wan *et al.*,1987; 林 瑞芬等,1992).为认识大气散落于地表环境的核素 Pu 作为湖泊现代沉积计年时标的可能性,需要考 察:①Pu 在湖泊沉积物中的垂直分布特征; ②Pu 在 湖泊沉积和沉积后的迁移行为; ③²⁴⁰Pu/²³⁹Pu 原子 比率在湖泊沉积物中的来源指示; 基于上述目的, 我们以云南程海沉积物柱芯(CH970608-1)中²¹⁰Pb 和¹³⁷Cs环境行为的研究为基础(万国江等,2004; Wan *et al.*,2005),进一步考察该沉积物柱芯 中²³⁹⁺²⁴⁰Pu比活度及²⁴⁰Pu/²³⁹Pu原子比率.

程海位于云南省西北部永胜县城西南约 20 km 处(N 26.459°~26.631°, E 100.638°~100.692°), 形成于更新世早期构造断陷作用 ,是一个中度富营 养湖泊. 前文中(万国江等 2004; Wan et al. 2005), 笔者以²¹⁰Pb 和¹³⁷Cs结合的计年为基础 报道了程海 水体因营养盐积累或其它生态环境条件变化而导 致湖泊初级生产力突发增高时,出现藻类残骸沉积 通量的增大,相应地增大水体²¹⁰Pbex被清洗而转入 沉积物的通量.这种突发性的清洗效应,导致沉积 物中²¹⁰Pb_{ex}比活度垂直剖面的变异;²¹⁰Pb_{ex}沉积通量 的增大指示湖泊水体初级生产力的明显变化,对湖 泊水体富营养状态具有重要示踪价值. 尔后 Zheng 等根据该沉积物柱芯样品中²³⁹⁺²⁴⁰ Pu 比活度及 ²⁴⁰Pu/²³⁹Pu 原子比率的测定,已经进行了初步讨论 (Zheng et al. 2008). 然而,作为湖泊沉积物中纪录 的¹³⁷Cs 因其仅仅具有数十年的半衰期 需要恢复其 沉降年代的比活度,方可与²³⁹⁺²⁴⁰Pu进行对比讨论. 本文就校正到沉积年代的¹³⁷Cs比活度,并进一步结 合瑞士 Greifensee 沉积物柱芯(GR-8311) 资料(万 国江等 1985; 1986; Wan et al. ,1987) ,认识湖泊沉 积物中²³⁹⁺²⁴⁰Pu 与¹³⁷Cs的关系、²⁴⁰Pu/²³⁹Pu 原子比率 变化 以讨论 Pu 作为湖泊现代沉积计年时标的可 能性.

2 样品及实验方法(Samples and experimental methods)

沉积物柱芯(CH970608-1)系利用湖泊沉积物-水界面装置于 1997 年 6 月在程海深水湖区采集,覆 水深度约 30 m. 有关采样条件、样品处理及沉积物 中²¹⁰Pb 和¹³⁷Cs比活度测定等情况已在前文(万国江 等 2004; Wan *et al.* 2005)中详细说明. 其中¹³⁷Cs的 比活度是用 S-100 多道能谱仪进行 γ-谱测定 经效 率曲线校准所得. 沉积物中²³⁹⁺²⁰⁴ Pu 比活度和 ²⁴⁰Pu/²³⁹Pu 原子比率的测定是在日本国立放射科学 研究所海洋辐射生态实验室(Nakaminato Laboratory for Marine Radioecology, National Institute of Radiological Sciences, Japan)完成. 沉积物样品以 8 mol·L⁻¹硝酸 萃取出 Pu 然后用 AG 1-X8 阴离子交换柱(10 cm × 0.7 cm) 纯化萃取溶液,采用 Element 2 高分辨率 ICP-MS 仪器测定(Zheng *et al.* 2008).

3 结果与讨论(Results and discussion)

沉积物柱芯(CH970608-1)中¹³⁷Cs及²³⁹⁺²⁴⁰Pu等 分析结果列于表1中,其中¹³⁷Cs的比活度数据源自 我们先前的工作(万国江等,2004; Wan *et al.*, 2005),并已经校正到沉积年代.现就有关资料进行 如下讨论.

3.1 沉积物柱芯中²³⁹⁺²⁴⁰Pu 与¹³⁷Cs比活度垂直剖 面具同步分布特征

由程海沉积物柱芯(CH970608-1)中²³⁹⁺²⁴⁰Pu 及¹³⁷Cs比活度垂直剖面(图1)可见,它们具有基本 相似的分布图示,主蓄积峰值同时存在于质量深度 14.3 g•cm⁻²(几何深度35 cm);其比活度分别为 (0.469 ±0.046) Bq•kg⁻¹和(45.6 ±2.9) Bq•kg⁻¹. 如果以1963 年作为全球散落高峰,以1年作为沉积 滞后期,则该峰值位置标记了1964年的沉积层位, 同时还标记了该柱芯沉积物的平均堆积速率为 (0.433 ±0.006) g•cm⁻²•a⁻¹.其它辅助蓄积峰值也 具有相应的较好对应关系.

图1 程海沉积物柱芯(CH970608-1)中²³⁹⁺²⁴⁰Pu与¹³⁷Cs比活 度垂直剖面比较

Fig. 1 Vertical profiles of $^{239\,+\,240}\,Pu$ and $^{137}\,Cs$ specific activities in sediment core (CH970608–1) of Lake Chenghai

由程海沉积物柱芯(CH970608-1)中²³⁹⁺²⁴⁰Pu 比活度与北半球¹³⁷Cs逐年沉降量(Agudo ,1998)对 比(图2)可见,它们之间也具有很好的对应关系.因为1986年前苏联切尔诺贝利核反应堆的核泄漏事故主要影响北欧地区的¹³⁷Cs年度沉降通量,自然地不可能在程海沉积物柱芯中形成定量的对应关系.

图 2 程海沉积物柱芯(CH970608-1)中²³⁹⁺²⁴⁰Pu比活度与北 半球¹³⁷Cs逐年沉降量(据 Agudo 1998 资料绘出)比较

Fig. 2 Annual deposition of ¹³⁷Cs in the northern hemisphere (by Agudo ,1998) with vertical profiles of ²³⁹⁺²⁴⁰Pu specific activities in sediment core (CH970608–1) of Lake Chenghai

在瑞士 Greifensee 也同样存在²³⁹⁺²⁴⁰ Pu 与¹³⁷Cs 比活度主蓄积峰在同一沉积层位并存的现象. GR-8311 柱芯中,²³⁹⁺²⁴⁰ Pu 与¹³⁷Cs比活度主蓄积峰同时 存在于质量深度 3.13 g·cm⁻²(几何深度 12 cm);二 者的峰值位置同样标记了沉积物平均堆积速率为 (0.17 ± 0.02) g·cm⁻²·a⁻¹(万国江等,1985,1986; Wan *et al.*,1987).

林瑞芬等对新疆博斯腾湖沉积物拄芯(B-2)研 究中发现²³⁹⁺²⁴⁰Pu分布峰值出现在(1963±2)年(按 照²¹⁰Pb计年结果),与20世纪60年代核试验高峰 期相当吻合(林瑞芬等,1992).

上述结果说明²³⁹⁺²⁴⁰Pu 同样具有湖泊现代沉积 计年的时标价值,并且可能弥补¹³⁷Cs因半衰期较短 而用于地表地球化学环境过程示踪剂的不足.

表1 程	建海沉积物柱芯(CH970608-1) 中散落核素 ²³⁹⁺²⁴⁰]	Pu 与 ¹³⁷ Cs比较 [*]
------	--------------------	------------------------------	---------------------------------------

le I Comparisons between Pu and Cs in sediment core (CH9/0008-I) of Lake Che	e 1	Comparisons between ²³⁹	⁺²⁴⁰ Pu and	¹³⁷ Cs in	sediment co	ore(CH970608-1) of Lake Che	nghai
--	-----	------------------------------------	------------------------	----------------------	-------------	-----------------	---------------	-------

	Т	able 1 C	omparisons betw	een ^{239 + 240} Pu and	d ¹³⁷ Cs in sedimen	t core(CH970608-1)	of Lake Chenghai [*]	
几何深度/ cm	质量深度/ /(g•cm ⁻²)	年代 (AD)	¹³⁷ Cs** /(Bq•kg ⁻¹)	¹³⁷ Cs 累计值 ** /(Bq•m ⁻²)	^{239 + 240} Pu /(Bq•kg ⁻¹)	^{239 + 240} Pu 累计值 /(Bq•m ⁻²)	²³⁹⁺²⁴⁰ Pu/ ¹³⁷ Cs 活度比值	²⁴⁰ Pu/ ²³⁹ Pu 原子比率
1	0.25	1996.9	5.1 ±0.6	12.9 ± 1.4	0.114 ± 0.007	0.29 ± 0.04	0.022 ± 0.003	0.182 ± 0.017
2	0.53	1996.3	5.3 ± 0.6	14.8 ± 1.8	0.143 ± 0.016	0.40 ± 0.03	0.027 ± 0.004	0.206 ± 0.019
3	0.78	1995.7	4.4 ± 0.6	10.9±1.6	0.172 ± 0.012	0.43 ± 0.09	0.039 ± 0.006	0.197 ± 0.020
4	1.24	1994.6	6.2 ± 0.8	28.5 ± 3.7	0.134 ± 0.019	0.62 ± 0.07	0.022 ± 0.004	0.165 ± 0.020
5	1.73	1993.5	6.2 ± 0.6	30.3 ± 3.1	0.131 ± 0.014	0.64 ± 0.07	0.021 ± 0.003	0.201 ± 0.019
6	2.11	1992.6	7.3 ± 0.7	27.9 ± 2.8	0.212 ± 0.019	0.81 ± 0.10	0.029 ± 0.004	0.195 ± 0.011
7	2.55	1991.6	11.2 ± 0.8	49.1 ± 3.7	0.199 ± 0.022	0.88 ± 0.09	0.018 ± 0.002	0.223 ± 0.016
8	2.98	1990.6	11.6 ± 0.9	49.8 ± 4.0	0.231 ± 0.020	0.99 ± 0.06	0.020 ± 0.002	0.271 ± 0.011
9	3.36	1989.8	9.5 ± 1.0	35.9±3.7	0.138 ± 0.017	0.52 ± 0.02	0.015 ± 0.002	0.171 ± 0.024
10	3.69	1989.0	3.5 ± 0.6	11.7±1.9	0.106 ± 0.007	0.35 ± 0.06	0.030 ± 0.005	0.203 ± 0.021
11	4.15	1987.9	3.3 ± 0.7	15.3 ± 3.4	0.103 ± 0.013	0.47 ± 0.03	0.031 ± 0.008	0.202 ± 0.019
12	4.65	1986.8	4.9 ± 0.5	24.5 ± 2.7	0.095 ± 0.006	0.48 ± 0.04	0.019 ± 0.002	0.164 ± 0.018
13	5.00	1986.0	5.9 ± 0.6	20.5 ± 2.0	0.145 ± 0.011	0.51 ± 0.05	0.025 ± 0.003	0.192 ± 0.018
14	5.38	1985.1	6.5 ± 0.6	24.6 ± 2.3	0.096 ± 0.012	0.36 ± 0.03	0.015 ± 0.002	0.195 ± 0.011
15	5.77	1984.2	7.2 ± 0.8	28.0 ± 3.0	0.124 ± 0.008	0.48 ± 0.07	0.017 ± 0.002	0.188 ± 0.026
16	6.16	1983.3	8.7 ± 0.7	33.7 ± 2.8	0.097 ± 0.018	0.38 ± 0.05	0.011 ± 0.002	0.202 ± 0.027
17	6.55	1982.4	8.3 ± 0.9	32.3 ± 3.3	0.111 ± 0.013	0.43 ± 0.06	0.013 ± 0.002	0.195 ± 0.025
18	6.95	1981.5	10.5 ± 0.9	41.8 ± 3.5	0.126 ± 0.014	0.50 ± 0.09	0.012 ± 0.002	0.199 ± 0.020
19	7.38	1980.5	11.1 ± 0.9	47.9 ± 3.8	0.147 ± 0.021	0.63 ± 0.07	0.013 ± 0.002	0.192 ± 0.022
20	7.83	1979.5	11.7 ± 1.0	52.5 ± 4.5	0.134 ± 0.015	0.60 ± 0.11	0.011 ± 0.002	0.203 ± 0.019
21	8.25	1978.5	12.7 ± 0.9	53.3 ± 3.9	0.169 ± 0.025	0.71 ± 0.05	0.013 ± 0.002	0.178 ± 0.021
22	8.67	1977.5	15.4 ± 1.2	64.8 ± 5.0	0.166 ± 0.012	0.70 ± 0.15	0.011 ± 0.001	0.181 ± 0.029
23	9.10	1976.5	16.8 ± 1.2	72.4 ± 5.1	0.206 ± 0.035	0.89 ± 0.12	0.012 ± 0.002	0.188 ± 0.012
24	9.56	1975.5	19.6 ± 1.4	90.3 ± 6.3	0.232 ± 0.027	1.07 ± 0.06	0.012 ± 0.002	0.210 ± 0.011
25	10.00	1974.5	16.8 ± 1.3	73.7 ± 5.5	0.168 ± 0.014	0.74 ± 0.09	0.010 ± 0.001	0.210 ± 0.014
26	10.37	1973.6	7.6 ± 1.0	28.1 ± 3.6	0.092 ± 0.023	0.34 ± 0.06	0.012 ± 0.003	数据丢失
27	10.72	1972.8	7.5 ± 0.9	26.1 ± 3.2	0.104 ± 0.018	0.36 ± 0.05	0.014 ± 0.003	数据丢失
28	11.07	1972.0	9.7 ± 1.0	33.8 ± 3.5	0.093 ± 0.015	0.33 ± 0.07	0.010 ± 0.002	0.184 ± 0.014
29	11.45	1971.1	15.4 ± 1.4	58.6 ± 5.3	0.150 ± 0.018	0.57 ± 0.09	0.010 ± 0.001	0.199 ± 0.021
30	11.91	1970.1	19.6 ± 1.4	90.2 ± 6.3	0.192 ± 0.019	0.88 ± 0.17	0.010 ± 0.001	0.195 ± 0.022
31	12.40	1968.9	25.3 ± 1.6	123.8 ± 8.0	0.247 ± 0.034	1.21 ± 0.07	0.010 ± 0.001	0.219 ± 0.027
32	12.88	1967.8	33.3 ± 2.2	159.9 ± 10.7	0.283 ± 0.015	1.36 ± 0.13	0.008 ± 0.001	0.193 ± 0.022
33	13.37	1966.7	34.8 ± 2.4	170.7 ± 12.0	0.310 ± 0.027	1.52 ± 0.08	0.009 ± 0.001	0.189 ± 0.019
34	13.84	1965.6	35.6 ± 2.1	167.5 ± 9.9	0.405 ± 0.016	1.90 ± 0.21	0.011 ± 0.001	0.175 ± 0.016
35	14.30	1964.6	45.6 ± 2.9	209.9 ± 13.4	0.469 ± 0.046	2.16 ± 0.17	0.010 ± 0.001	0.198 ± 0.017
36	14.73	1963.6	42.9 ± 2.6	184.5 ±11.3	0.395 ± 0.039	1.70 ± 0.13	0.009 ± 0.001	0.186 ± 0.019
37	15.18	1962.5	35.8 ± 2.5	161.0 ± 11.4	0.378 ± 0.029	1.70 ± 0.12	0.011 ± 0.001	0.193 ± 0.021
38	15.64	1961.5	33.1 ± 2.7	152.1 ± 12.3	0.386 ± 0.025	1.78 ± 0.31	0.012 ± 0.001	0.174 ± 0.023
39	16.62	1959.2	34.9 ± 2.4	342.1 ± 23.6	0.391 ± 0.032	3.83 ± 0.12	0.011 ± 0.001	0.179 ± 0.017
40	17.23	1957.8	13.5 ±2.1	82.0 ± 12.8	0.141 ± 0.019	0.86	0.010 ± 0.002	0.202 ± 0.026
				累计值 2937		累计值 35.4	平均0.016	平均0.195

注:* 采样日期:1997-06-08;¹³⁷Cs测量时间:1997-12—1998-06;²³⁹⁺²⁴⁰Pu测量时间:2006-02.

* * ¹³⁷Cs已校正到沉积年代.

3.2 沉积物柱芯中²³⁹⁺²⁴⁰ Pu/¹³⁷Cs活度比值的垂直 分布特征

不同来源的²³⁹⁺²⁴⁰ Pu/¹³⁷ Cs 活度比率不尽相同. 由表 1 可知 ,程海沉积物柱芯(CH970608–1) 中 ,校 正到沉积年代的¹³⁷ Cs比活度为 3.3~45.6 Bq•kg⁻¹、 总累计值(Σ^{137} Cs)为 2 937 Bq•m⁻² 较贵州红枫湖 沉积物柱芯(HF8801)中¹³⁷ Cs的大气散落累计值 (0.37 ± 0.01 Bq•cm⁻²)(白占国等 ,2004)略低;而 较联合国原子能辐射效应科学委员会(UNSCEAR) ¹³⁷ Cs全球扩散散落累计值的区域分布给出的模拟图 示中 ,相同区域¹³⁷ Cs全球扩散散落累计值(Agudo, 1998)略高.²³⁹⁺²⁴⁰ Pu 比活度为 0.092~0.469 Bq•kg⁻¹ ,总累计值($\Sigma^{239+240}$ Pu)为 35.4 Bq•m⁻² ,相 近于北半球 20°~30°范围内大气散落沉降的平均值 36 MBq•km⁻²(UNSCEAR 2000).²³⁹⁺²⁴⁰ Pu 与¹³⁷ Cs总累 计值之比 $\Sigma^{239+240}$ Pu/ Σ^{137} Cs = 0.012.

由表 1 和 图 3 可 见,程 海 沉 积 物 柱 芯 (CH970608-1)不同沉积物层节中²³⁹⁺²⁴⁰Pu 与¹³⁷Cs的

图 3 程海沉积物柱芯(CH970608-1)中²³⁹⁺²⁴⁰ Pu/¹³⁷ Cs活度比 值随沉积物深度变化

Fig. 3 The activity ratios between ²³⁹⁺²⁴⁰Pu and¹³⁷Cs vs. sediment depth in sediment core (CH970608–1) of Lake Chenghai

活度比值为 0.008 ~ 0.039 ,平均值为 0.016 相近于 全球大气散落沉降的²³⁹⁺²⁴⁰ Pu/¹³⁷ Cs活度比值 0.021 (UNSCEAR, 1982; 2000) ,远大于切尔诺贝利反应堆 核泄漏物中²³⁹⁺²⁴⁰ Pu/¹³⁷ Cs的活度比值(0.001) (Muramatsu *et al.*, 2000). 程海沉积物柱芯 (CH970608-1)中²³⁹⁺²⁴⁰ Pu 与¹³⁷ Cs比活度之间具有良 好的线性相关关系(图4): [²³⁹⁺²⁴⁰ Pu] = 0.011 × [¹³⁷ Cs], (r = 0.85),即²³⁹⁺²⁴⁰ Pu/¹³⁷ Cs = 0.011. 其 中 较低比活度部分的散点偏离相关曲线较大,可 能与它们在较低比活度下的测定误差有关,也可能 受它们自身迁移行为的影响.

瑞士 Greifen 湖沉积物柱芯(GR-83-11)中, ²³⁹⁺²⁴⁰Pu/¹³⁷Cs活度比值随沉积物深度虽然也具有一 定的波动(0.018~0.023),但是总体变化不大,平 均值为0.018(万国江等,1986; Wan *et al.*,1987), 也接近于全球大气散落沉降的²³⁹⁺²⁴⁰Pu/¹³⁷Cs活度 比值.

程海沉积物柱芯(CH970608-1)的垂直剖面 上,²³⁹⁺²⁴⁰Pu /¹³⁷Cs 活度比具有一定的变化(图3), 似乎存在3个时段:①1972年前平均为0.010(其中 1964年的主蓄积峰沉积物中²³⁹⁺²⁴⁰Pu 与¹³⁷Cs活度比 值为0.010±0.001);②1972~1985年间平均为 0.013;③1986年之后较为离散,平均为0.024.这 一信息记录可能寓意:²³⁹⁺²⁴⁰Pu 和¹³⁷Cs 在湖泊沉积 物中的扩散存在差异?或者,²³⁹⁺²⁴⁰Pu 和¹³⁷Cs 在进 入湖泊沉积物之前也存在迁移差异?但是,如果是 它们仅仅在进入湖泊沉积物之前存在迁移差异,则 难以解释 1986年之后沉积物层节中出现的较高 比率!

- 图 4 程海沉积物柱芯(CH970608-1)中²³⁹⁺²⁴⁰ Pu 与¹³⁷ Cs比活 度相关关系
- Fig. 4 The correlation of ²³⁹⁺²⁴⁰ Pu and¹³⁷ Cs specific activities in sediment core (CH970608-1) of Lake Chenghai

进一步认识沉积物中 Pu 的地球化学运移行为 将具有重要意义. 早期有人认为,在海湾环境中 Pu 可优先地由生物干扰的氧化性沉积物中迁移并由 沉积物表面扩散进入到上覆水体. 通过模拟实验推 断,与其它核素(u^{210} Pb、²²⁸ Th、²³⁴ Th等)一样, ²³⁹⁺²⁴⁰ Pu的迁移率基本上受它们对微粒的亲合力及 微粒自身的迁移性能所控制. 在缺氧的淡水和海洋 沉积物中,Pu 是不迁移的, $\Sigma^{239+240}$ Pu/ Σ^{137} Cs的活 度比值变化是由于¹³⁷ Cs在海洋环境中具较大的溶解 度和迁移性所致(Santschi *et al.*,1983;1990). 近 20 余年以来,已有关于²³⁹⁺²⁴⁰ Pu 在河、湖、海洋水体及 沉积物中浓度及分配关系的较多研究报道(Crusius and Anderson,1995; Gascó *et al.*,2002; Yeager *et al.* 2004). 看来,较深部沉积物中²³⁹⁺²⁴⁰ Pu /¹³⁷ Cs 活度比值的降低可能与¹³⁷ Cs沉积后在沉积物中存在 的较大扩散迁移有关. 我们将另文讨论²³⁹⁺²⁴⁰ Pu、 ¹³⁷ Cs、²¹⁰ Pb 等核素在湖泊沉积物中的地球化学赋存 状态,以对比认识它们在沉积物中的迁移能力.

3.3 沉积物柱芯中²⁴⁰ Pu /²³⁹ Pu 原子比率的垂直变 化特征示踪核素的全球大气散落

基于²⁴⁰Pu / 239 Pu 原子比率与 Pu 的来源有关 ,以 及质谱测试技术的提高 ,²⁴⁰ Pu /²³⁹ Pu 原子比率可能 作为 Pu 来源的有效示踪剂. 图 5 和图 6 分别展示出 程海沉积物柱芯(CH970608-1)中²⁴⁰Pu/²³⁹Pu 原子 比率既不随沉积物深度而变,也不随²³⁹⁺²⁴⁰Pu比活 度而变. 沉积物柱芯(CH970608-1) 中²⁴⁰ Pu /²³⁹ Pu 原 子比率为 0.164~0.271,平均值为 0.195±0.021 (表1) 与 Kelley 等报道的北半球 20°~30°范围内 大气散落沉降的²⁴⁰Pu/²³⁹Pu 原子比率 0.178 ± 0.019 相吻合(Kelley et al., 1999). 根据 Koide 等报道 20 世纪60年代以前全球大气散落沉降核素 Pu 的原子 比率高于 0.18, 约为 0.22~0.20 (Koide et al., 1985). Mitchell 等发现图勒(格陵兰岛西北部城镇) 沉积物中²⁴⁰Pu/²³⁹Pu 原子比率低于 0.033 ± 0.004, 明显呈现核试验的 Pu 来源(Mitchell et al., 1997). 可见 程海沉积物柱芯(CH970608-1)中的²⁴⁰⁺²³⁹Pu 主要来自全球大气散落沉降.

图 5 和图 6 中,对应于几何深度 8 cm(质量深 度为 2.98 g·cm⁻²,年代为(1990 ± 2)年),²³⁹⁺²⁴⁰Pu 比活度为(0.231 ±0.020) Bq·kg⁻¹,²⁴⁰Pu/²³⁹Pu原 子比率为 0.27,显得偏大而出现一个异常值.切尔 诺贝利核事故附近土壤中 Pu 的同位素比率高达 0.408(Muramatsu *et al.* 2000).可以认为:该时段沉 积物层节中可能存在非全球大气散落沉降源,可能 是受切尔诺贝利核事故泄漏的影响.虽然根据沉积 计年结果为 1990 年,但是应该知道沉积计年仅是一 个平均值概念;从沉积层节的时序上与 1986 年的切 尔诺贝利核事故是一致的;当然,还可以认为是切 尔诺贝利核事故的二次影响.即被切尔诺贝利核事 故直接影响区域中,吸附有 Pu 和 Cs 的颗粒物再次 悬浮 经对流层大气传送,进而沉降并沉积显示在 程海沉积物中.这一现象同样显示出程海沉积物中 存在切尔诺贝利核事故影响的痕迹.

图 5 程海沉积物柱芯(CH970608-1)中²⁴⁰ Pu/²³⁹ Pu 原子比率 随深度变化

Fig. 5 The ²⁴⁰ Pu/²³⁹ Pu atom ratio vs. sediment depth in core (CH970608–1) of Lake Chenghai

- 图 6 程海沉积物柱芯(CH970608-1)中²⁴⁰ Pu /²³⁹ Pu 原子比率 与²³⁹⁺²⁴⁰ Pu 比活度相关关系
- Fig. 6 The correlation of ²⁴⁰ Pu /²³⁹ Pu atom ratio with ²³⁹⁺²⁴⁰ Pu specific activities in sediment core (CH970608-1) of Lake Chenghai

4 结论(Conclusions)

程海沉积物柱芯(CH970608-1)中:

 ²³⁹⁺²⁴⁰Pu及¹³⁷Cs比活度的垂直剖面分布基本 相似 主蓄积峰值同时标记了 1964 年沉积层位及沉积 物平均堆积速率为(0.433 ± 0.006)g•cm⁻²•a⁻¹;
²³⁹⁺²⁴⁰Pu比活度与北半球¹³⁷Cs逐年沉降量之间具很 好的对应关系,显示²³⁹⁺²⁴⁰Pu 具有湖泊现代沉积计 年的时标价值.

2) 不同层节沉积物的²³⁹⁺²⁴⁰Pu/¹³⁷Cs活度比值与 全球大气散落沉降相近; 沉积物中二者的总累计值 ($\Sigma^{239+240}$ Pu/ Σ^{137} Cs) 也与大气沉降相近.

3)²³⁹⁺²⁴⁰Pu /¹³⁷Cs 活度比值总体稳定,但具有一 定的垂直变化,寓意²³⁹⁺²⁴⁰Pu 在湖泊沉积物中较 ¹³⁷Cs具有更小的扩散迁移能力.

4)²⁴⁰ Pu /²³⁹ Pu 原子比率显示²⁴⁰⁺²³⁹ Pu 主要来自 全球大气散落沉降;在几何深度 8 cm,²³⁹⁺²⁴⁰ Pu 比活 度及²⁴⁰ Pu /²³⁹ Pu 原子比率显示出程海沉积物物中存 在切尔诺贝利核事故影响的痕迹.

责任作者简介: 万国江,中国科学院地球化学研究所研究员、 中国科学院研究生院教授、博士生导师,环境地球化学国家 重点实验室首任主任,1963 年毕业于中国科学技术大学,曾 先后在瑞士 EAWAG、美国 TEXAS A&M 大学、奥地利湖沼研 究所及英国伦敦大学皇家 Holloway 学院客座研究.长期从事 环境质量目标的地球化学研究,在区域环境质量及环境界面 生物地球化学过程领域主持完成国家及中科院重点项目 26 个 发表论著 338 篇(部).曾获国家科技进步二等奖、贵州 省科技进步一等奖及"竺可桢野外科学工作奖".

参考文献(References):

- Agudo E G. 1998. Global distribution of ¹³⁷Cs inputs for soil erosion and sedimentation studies [R]. In: Use of ¹³⁷Cs in the study of soil erosion and sedimentation. IAEA-TECDOC-1028, July, 1998. 117-121
- 白占国,万国江,刘东生,等. 2002. 散落核素⁷Be和¹³⁷Cs在洱海和红 枫湖沉积物中蓄积对比[J]. 地球化学,31(2):113-118
- Bai Z G , Wan G J , Liu D S , et al. 2002. A comparative study on accumulation characteristics of ⁷Be and ¹³⁷Cs in sediments of Lake Erhai and Lake Hongfeng , China [J]. Geochimica , 31(2):113– 118 (in Chinese)
- Crusius J , Anderson R F. 1995. Evaluating the mobility of $^{137}\,Cs$, $^{239\,+240}\,Pu$ and $^{210}\,Pb$ from their distributions in laminated lake sediments [J]. J Paleolimnol ,13:119–141
- Gascó C ,Antón M P ,Delfanti R ,*et al.* 2002. Variation of the activity concentrations and fluxes of natural (²¹⁰ Po , ²¹⁰ Pb) and anthropogenic (²³⁹ ²⁴⁰ Pu , ¹³⁷ Cs) radionuclides in the Strait of

Gibraltar (Spain) [J]. Journal of Environmental Radioactivity 62 (3):241-262

- Kelley J M ,Bond L A ,Beasley T M. 1999. Global distribution of Pu isotopes and ²³⁷Np [J]. The Science of the Total Environment , 237/238:483-500
- Koide M ,Bertine K K ,Chow T J ,et al. 1985. The²⁴⁰ Pu/²³⁹ Pu ratio , a potential geochronometer [J]. Earth Planet , Sci Lett ,72:1–8
- 林瑞芬,卫克勤,程致远,等. 1992. 新疆博斯腾湖沉积岩心的 ²¹⁰ Pb、²²⁸ Th、²³⁹ ²⁴⁰ Pu 和³ H 的分布及意义 [J]. 地球化学,21 (1):63-69
- Lin R F , Wei K Q , Cheng Z Y , et al. 1992. Distributions of ²¹⁰ Pb , ²²⁸ Th ,²³⁹ ²⁴⁰ Pu and ³ H and their implicationd in sediment core from Bosten Lake ,Xinjiang ,China [J]. Geochimica ,21(1):63-69 (in Chinese)
- Mitchell P I ,Vintro L L ,Dahlgaard H ,et al. 1997. Perturbation in the ²⁴⁰ Pu/²³⁹ Pu global fallout ratio in local sediments following the nuclear accidents at Thule (Greenland) and Palomares (Spain) [J]. The Science of the Total Environment 202: 147–153
- Muramatsu Y ,Ruhm W ,Yoshida S *et al.* 2000. Concentrations of ²³⁹ Pu and ²⁴⁰ Pu and their isotopic ratios determined by ICP-MS in soils collected from the Chernobyl 30-km zone [J]. Environmental Science and Technology ,34:2913-2917
- Oughton D H ,Skipperud L ,Fifiedl L K ,et al. 2004. Acceleator mass spectrometry measurement of ²⁴⁰ Pu/²³⁹ Pu isotope ratios in Novaya Zemlya and Kara Sea sediments [J]. Applied Radiation and Isotopes , 61: 249–253
- Santschi P H ,Höhener P ,Benoit G ,et al. 1990. Chemical processes at the sediment-water interface [J]. Marine Chemistry 30:269-315
- Santschi P H ,Li Y H ,Adler D M ,et al. 1983. The relative mobility of natural (Th , Pb , Po) and fallout (Pu , Am , Cs) radionuclides in the coastal marine environments: results from model ecosystems (MERL) and Narragansett Bay [J]. Geochim Cosmochim Acta , 47: 201–210
- UNSCEAR(United Nations Scientific Committee on the Effects of Atomic Radiation). 1982. Sources and biological effects of ionizing radiation [R]. Report to the General Assembly ,United Nations , New York , 211
- UNSCEAR(United Nations Scientific Committee on the Effects of Atomic Radiation) . 2000. Sources and effects of ionizing radiation [R]. Exposures to the public from man-made sources of radiation ,Report to General Assembly , United Nations , New York. 654
- 万国江. 1999. 现代沉积年分辨的¹³⁷Cs计年──以云南洱海和贵州 红枫湖为例[J]. 第四纪研究, 19(1):73-80
- Wan G J. 1999. ¹³⁷Cs dating by annual distinguish for recent sedimentation: Samples from Erhai Lake and Hongfeng Lake [J]. Quaternary Sciences , 19 (1):73–80(in Chinese)
- 万国江 陈敬安 吴丰昌 等. 2004. ²¹⁰ Pb_{ex}沉积通量突发增大对湖泊 生产力的指示────以程海为例 [J]. 中国科学 D 辑: 地球科 学 34(2):154-162
- Wan G J ,Chen J A ,Wu F C ,et al. 2004. Sudden enhancement of sedimentation flux of $^{210}\,\mathrm{Pb}_{\mathrm{ex}}$ as an indicator of lake productivity as exemplified by Lake Chenghai [J]. Science in China (Series D) ,

34(2):154-162

- Wan G J ,Chen J A ,Wu F C *et al.* 2005. Coupling between ²¹⁰ Pb_{ex} and organic matter in sediments of a nutrient-enriched lake: An example from Lake Chenghai , China [J]. Chemical Geology ,224 (4): 223–236
- Wan G J Santschi P Sturm M et al. 1987. Natural (²¹⁰ Pb, ⁷Be) and fallout (¹³⁷Cs, ²³⁹ ²⁴⁰ Pu, ⁹⁰Sr) radionuclides as geochemical tracers of sedimentation in Greifensee, Switzerland [J]. Chemical Geology, 63:181–196
- 万国江 ₽ 桑季 K 法任库忍 ,等. 1985. 瑞士 Greifen 湖新近沉积物 中的¹³⁷Cs分布及其计年[J]. 环境科学学报 5(3):360-365
- Wan G J Santschi P ,Farrenkothen K , et al. 1985. The distribution and dating of ¹³⁷Cs for recent sediments in Lake Greifen , Switzerland [J]. Acta Scientiae Circumstantiate , 5(3): 360–365(in Chinese)
- 万国江 Santschi P H Sturm M 等. 1986. 放射性核素和纹理计年对 比研究瑞士格莱芬湖近代沉积速率 [J]. 地球化学,15(3): 259-270

- Wan G J ,Santschi P H ,Sturm M ,et al. 1986. The comparative study using varve counting and radionuclide dating for recent sedimentation rate of Lake Greifen , Switzerland [J]. Geochimica , 15(3):259–270 (in Chinese)
- Yeager K M Santschi P H Rowe G T. 2004. Sediment accumulation and radionuclide inventories (²³⁹ ²⁴⁰ Pu , ²¹⁰ Pb and ²³⁴ Th) in the northern Gulf of Mexico , as influenced by organic matter and macrofaunal density [J]. Marine Chemistry 91:1–14
- Zheng J ,Yamada M. 2004. Sediment core record of global fallout and Bikini close-in fallout Pu in Sagami Bay , Western Northwest Pacific Margin [J]. Environmental Science and Technology , 38: 3498–3504
- Zheng J , Liao H Q , Wu F C , et al. 2008. Vertical distributions of ²³⁹⁺²⁴⁰Pu activity and ²⁴⁰Pu/²³⁹Pu atom ratio in sediment core of Lake Chenghai , SW China [J]. Journal of Radioanalytical and Nuclear Chemistry 275(1):37-42