汞矿山环境汞污染研究进展

张 超"" 仇广乐"" 冯新斌

(1中国科学院地球化学研究所环境地球化学国家重点实验室,贵阳 550002 2中国科学院研究生院,北京 100049)

摘 要 汞矿山开采对周边环境的汞污染一直受到关注,尽管全球多数汞矿山已经相继停 产、闭坑,但这些废弃的汞矿山仍然通过采矿所遗留的尾矿等固体废弃物、坑道废水和污染 的土壤等对当地的环境和居民健康产生着持续的影响和危害。本文总结了环境样品中各 形态汞的分析方法,评述了全球范围内汞矿的分布以及汞矿山开采和冶炼过程所造成的环 境影响,提出了对于污染治理和风险评价的展望。

关键词 汞矿山;汞分析方法;环境污染;展望

中图分类号 \$963 文献标识码 A 文章编号 1000-4890(2011)5-0865-09 Environmentalmercury pollution in mercury mining areas A review ZHANG Chad², QU Guang le, FENG X in bid (¹ State Key Laboratory of Environmental Geochemistry Institute of Geochemistry Chinese Academy of Sciences Guiyang 550002 China, ² Graduate University of Chinese Academy of Sciences Beijing 100049 China). Chinese Journal of Ecopy 2011, 30 (5): 865-873.

Abstract Themercury (Hg) pollution of surrounding environment caused by mercury mining has been paid attention. Although most of worldwide Hg mining activities have been discontinued or ceased those abandoned Hg mines pose a lasting inpact and damage to the local environment and residents health by the remaining solid waste drainage and Hg contaminated soils. This review summarized the analysisme thod of various Hg forms in environmental samples the global Hg mining activities distribution and their environmental impact of Hg smelting. The risk assess ment and pollution control and treatment were prospected

Key words Hgmining activities Hg analytical methods environmental contaminations prospecting

世界范围内汞矿山的开采冶炼活动对矿区的水 体、土壤、大气、植物和农作物造成了严重的污染。 汞在环境中具有多种化学形态。元素汞(H^g)具 有很高的蒸汽压和相对较低的水溶性。易于进入大 气并能长时间(0.5~2年)居留在大气中(Schroeder& Munthe1998),参与全球大气汞循环而成为全球 性污染物;二价汞(H^{g+}),与配体具有很强的亲和 力,例如:氯、硫、羟基离子和溶解性的有机碳等配 体;有机汞的形式,例如:甲基汞(CH_3H^g),显示了 很强的生物积累能力,被公认为对人类危害最大的 汞形态($Garça_Sanchez$ et a], 2009)。

汞的毒性及其产生的症状依托于其暴露的途

径,这些途径主要是吸入、摄入、注射、皮肤真皮的接 触,以及胎盘到胎儿的转移与其暴露的时间长度 (Sierra et al, 2009)。汞易与含巯基的蛋白质及酶 类结合,导致体内数十种酶失活或膜功能紊乱,从而 造成细胞损伤,是汞毒性作用的基础。汞还具有致 突变作用,可以引起染色体畸变(费云芸和刘代成, 2003)。低剂量的汞还会影响人的神经系统、肾脏 系统、免疫系统、心血管系统以及肌肉活动(Zahir et al, 2005)。

汞矿山的环境问题,特别是对矿区居民汞暴露 的研究和环境风险评价,一直以来都受到人们的广 泛关注,各国科学工作者相继在不同的汞矿山开展 了大量的研究工作。

1 汞矿山环境样品中汞的分析方法

^{收稿}日期4-2017/2台ina 接受日期::2011-02-21 Electronic Publishing House. AT rights reserved. http://www.enki.met

^{*}中国科学院知识创新工程重要方向项目(KZCX2-YW-135)和国家 高技术研究发展计划项目(2008AA06Z335)资助。 * *通讯作者 Email qiuguangk@ viP skleg cn

物等样品。人们对于水样中汞形态的分析,目前主要基于实验操作程序,结合汞在水生环境中存在的 化学形态,把水体中汞的分析形态定义为总汞、溶解 态及颗粒态总汞、溶解气态汞、活性汞、总甲基汞、溶 和基汞、溶解态及颗粒态甲基汞、胶体态甲基汞、二 甲基汞、溶解态及颗粒态甲基汞、胶体态甲基汞、二 甲基汞、溶解态及颗粒态甲基汞、胶体态甲基汞、 总汞指特定环境中各种形态汞的总含量,天然水体 中总汞最常用的测定方法为金汞齐富集结合冷原子 荧光法测定(CVAFS)。天然水体有机汞主要为甲 基汞和二甲基汞两种形态,它们都是由二价无机汞 通过甲基化过程而形成的。最常用的水体甲基汞的 测定方法为蒸馏 乙基化反应结合恒温气相色谱分 离 冷原子荧光检测 (GC-CVAFS)(冯新斌等, 2009)。

传统测定土壤中汞的方法,主要是样品经酸消 解后,在冷蒸汽中经量化的原子吸收分光光度技术 (AAS)测量,或经 ICP-MS和 ICP-OES测量 (Gil et al, 2010)。但消解通常会带来一些问题,主要是 由于挥发、不完全消解以及不同来源的污染,可能会 影响汞检测的精确度和准确度 (Vœgborlo & Adima d9 2010)。此外,基于原子吸收分光光度计原理的 高级汞分析仪 (AMA-254 LECO Instruments),可用 于测量土壤中各种形态的汞,其优点是固体或液体 样品在分析前不需要进行化学前处理 (Siema et al, 2009)。最近,由 US EPA提出了一个区别于之前的 方法,即使用热分解、汞齐化结合原子吸收的方法 (TDAAS)来测定土壤中总汞的含量 (Gil et al, 2010)。

大气中主要存在 3种形态的汞, 气态元素汞 (GEM 即 H^g), 活性气态汞 (RGM)和颗粒态汞 (PHg) (Fu et al, 2010)。由于 GEM具有很强的挥 发性、较低的化学反应能力和较低的水溶性, 从而具 有相对较长的大气寿命 (约 1年) (Rothenberg et al, 2010)。 RGM和 HH^g易溶解于水中, 因而大气 停留时间较短, 并且会通过干湿沉降的方式沉降于 地面。湿沉降是 RGM和 HH^g通过雨滴等形式降落 至地表, 而干沉降主要指的是汞直接沉降至土壤、水 体和植被。相比较湿沉降, 汞的干沉降缺乏准确的 测量手段, 更难于定量分析 (Fu et al, 2010)。大气 中各形态的汞 (GEM RGM PHg)采用 Tekran2537 A/1130/1135组件分析, 该方法基于冷原子 荧光 (CVAFS)的原理。

汞矿山环境样品还包括大量生物体。测量鱼类 产品以及其他生物组织体内的汞含量使用的方法为 冷原子荧光光谱(CVAFS)或者冷原子吸收光谱 (CVAAS)。其中,CVAFS有着较低的检出限,但由 于其价格昂贵而不被广泛应用;CVAAS常用于分析 组织中的总汞,要求样品量在至少 200 ^{mg}其价格 易于接受从而能够广泛应用(Voegborlo& Adimado 2010)。目前,一种新的方法,基于离子色谱(C)结 合光诱导气相发生(CVG)原子荧光光谱法(AFS)测 量水产品当中的二价汞和甲基汞已经开始应用(Liu et al, 2010)。汞矿山环境样品中各形态汞的分析 方法见表 1。

2 全球汞矿山分布与特征

全球各大型汞矿山主要沿板块边缘分布,世界 大型汞矿化带包括:环太平洋汞矿化带、地中海中 亚汞矿化带和大西洋中脊汞矿化带。世界第一大汞 矿西班牙 A^{haden}汞矿、斯洛文尼亚 Idrip汞矿、意 大利 Monte Amjat[®]汞矿、菲律宾 Pa^pwan汞矿、美国 N^{ew A haden}汞矿以及我国贵州万山汞矿、务川汞 矿和陕西旬阳汞矿等,均分布在上述汞矿化带中。

西班牙 Ahnaden 示矿作为世界上最大的汞矿, 其产量约占全世界总产量的 1/3(Moreno Jine nez et al, 2006)。斯洛文尼亚境内的 khrin 示矿是世界 第二大汞矿,近 500年内其累计的汞产量约为 7628 t(Hylander & Meili 2003)。中国是汞储量世 界排名第三的国家,而贵州万山是中国最大的汞工 业基地,曾因汞资源储量和汞产量分别列亚洲之首 和世界第三,被誉为中国"汞都"(Feng & Qiu 2008)。随着汞资源的逐渐枯竭,汞矿生产规模日 趋缩小,至 2002年已经全部停产、闭坑(仇广乐等, 2006)。随着 20世纪末贵州的万山汞矿和务川汞矿 相继闭坑停产,陕西的旬阳汞矿已成为目前中国最 大规模开采冶炼的汞矿山。据不全完统计,旬阳县 地下金属汞储量约 14000,t占中国总储量的 19.8% (Zhang et al, 2009)。

自然界中含汞矿物约有 20多种,常见的含汞矿 物有:辰砂(HSS)、橙汞矿(HSO)、汞金矿(AuHS)、 汞银矿(ASHS)、硒汞矿(HSSe)、碲汞矿(HSTe)和 自然汞等。不同矿区的含汞矿物各有不同,例如:西 班牙 A^{made n}成矿区的含汞矿物主要是由辰砂 (HSS)组成,以硫化物相和零价汞为主要代表,脉石 矿物主要以重晶石(BaSQ)为主(H^{guenas} et al, 2003, G^{ang a}S₂ nchez et al, 2009)。此外,方铅矿 (PbS)、黄铁矿(FeS)、黝铜矿((Cu Fe)₁₂ Sh S₃), ing House, All rights reserved. http://www.cnki.net

表 1 汞矿山环境样品中各形态汞的分析方法

Table 1 Summary of analyticalmethods for Hg species in mercury mining

环境样品	汞形态	预处理 /提取 /消解方法	检测方法	检出限	参考文献
水	THg	使用 HC 和 B·C 酸化→紫外照射→ S ^{nC}]还原→金	CV AAS	0. 01 ~ 1. 0 ng_{\circ} g ⁻¹	Horvatetal, 2003
	M∉Hg	水介晶未 HC酸化→萃取 M fH sc l至 CH, Cl→通过 CH, Cl 的蒸发反萃取 M fH sc 至水体相→离子汞的乙基化 → Tenax等的觉泪宣集	CV AFS	0. 001 ~ 0. 01 ng_{\circ} g ⁻¹	Horvatetal, 2003
	^{1]Hg} ,颗 粒 态 汞 /溶解性汞	加 BCl采用 USEPA me hod 1631 测定总汞含量→ 经过滤滤膜→滤膜上的悬浮颗粒测颗粒态汞→王水 消解→微波烤炉加热→稀释至 100 ml→滤膜下的水 样测溶解性汞	CV AFS	0. 1 ^{pg}	Zhang et al, 2009
土壤	THg	样品 0.2~0.3 ^g →加入 5 ^m 超纯水→加入 5 ^m 王 水并搅拌→95 [°] C条件下消解 2 h→冷却 后用超纯水 稀释定容至至 25 ^m 1	CV AAS	0. 01 ^{ng, g-1}	Qiu et al, 2006 ^a
		研磨后样品使用 HgMilestone analyse 分析→联合热 解装置→汞齐和原子吸收测量	Milestone analy_ ser	_	Garq a S _a nchezạ et al, 2009
		样品经空气干燥→研磨过筛至 2 ^{mm} → 0.1 ~ 0.2 ⁸ 磨好的样品在密封舱直接称量并进行分析	5 TDAAS	1. $0 \mu^{\text{g}} \text{ kg}^{-1}$	Giletal, 2010
	M∉Hg	KBr/H ₂ SQ 混合液浸出→ M ^e H ^g B ^r 萃取至甲苯→半	GC ECD	0. 01 ~ 0. 05 $ng_{\circ} g_{-1}$	Horvatetal, 2003
		加氨酸小溶液 $f_{n,r}$ → 反卒取 hr_{1} f_{2} $f_{$	GC-CVAFS	0.6 ^{pg}	仇广乐等,2006
	^{11Hg} /颗粒态 汞/溶解性汞	子水定谷→取 10~20 ^m (行)测 样品空气干燥→35 [℃] 烘干 48 b→研磨过筛(<420 μ ^m)→次序提取法加工 500 ^{m8} 样品→样品和试剂 在丙烯管中混合→离心混合物→上层清液用于分析	AMA-254	_	Milanetal, 2006
大气	THg	测试 5 ™产的采样阶段、气体通过捕气金管,采样阶段末 气体转移至第二个金管,已经富集汞的第一个金管 立即进行热分解,冷原子荧光法测量	Teknon model 2573 A	0. 3 ng. m ⁻³	W itt et al, 2010
大米	THg	HNQ,和H,SQ,混合酸在聚四氟乙烯容器密封消解	CV AAS	0. 01 ~ 1. 0 ng_{\circ} g ⁻¹	Horvatetal, 2003
	M∉Hg	→ S ^{III} 」 KB ^I /H, SO, 混合溶液浸出→ M ^{eH8B} 萃取至甲苯中 → 半時気酸水溶液浸洗→反苯取 M ^{eH8} 至纯茶	GC ECD	0. 01 ~ 0. 05 ng_{\circ} g-1	Horvateta], 2003
植物	各形态的汞	素馏水漂洗多次→超声波水浴去除表面的污垢→ 35 ℃下烘干 48 h →研磨过筛 (\leq 50 μ ^m)	Advanced Mer cuny Ana Jyser	—	Milt ^{n et a} l, 2006
	THg	3~5 ⁸ 样品 ⁽ 湿重)加 10 ^{ml} 65½ (W/V)的 HNO ₃ 消 解→加 2.5 ^{ml} 30½ (W/V)的 H ₂ Q→ 85 [°] C条件下加	USEPA method 1631	_	Zhang et al, 2009
海产品	Hg(]])/Me. Hg	 热 5 h→转移并用超纯水定容至 50 ml 0 5 8冷冻干燥的样品加入 2 ml25% (m/ \bb KOH) →震荡过夜→加入 6 mlCH₂C₁→1.5 mbx HCl 滴定→震荡 15 min→在 3000 ^{romin-1}条件下离心 15 min→將 CH₂Cl相准确转移至 10 mb离心管中 	IC-CVG-AFS	H⊈(∐):0.1 ng m⊢i, MeHġ0.08 ng m⊢i	上連 2010
		→加入 1 m 10 mmol L ⁻¹ 的 L半胱氨酸,震荡 45 m ip→ 3500 [™] i ⁻¹ 条件下离心 15 ^{m ip→} 水相用 IC- AFS测量甲基汞含量			
	ΠHg	05 ⁸ 样品加入 1 ^{ml} H,O→轮流加入 2 ^{ml} HNQ - HClQ(11)和 5 ^{ml} H,SQ→混合物在(200±5)℃ 的条件下加热 30 ^{min} ~冷却后用 DDW稀释至 20 ^{ml}	CVAA S	0. 52 ng g-1	Voegborlo & Adima do 2010
头发	Hg(]])	丙酮和水清洗样品 10 ^{m in→} 置于 40 [℃] 烤箱烘干至 恒定质量→约 200 ^{mS} 样品加入 5 ^m 浓 ^{HNQ} 和 1 ^{m 1} H Q 消解→容器密封并置于微波消 解炉→四阶 段消解, 冷却至室温→转移至 50 ^m 的烧杯中, 加入 1 4 ^m 的浓 H ₂ SQ ₄ →溶液转移至 25 ^m 的容量瓶, 使用去离子水 (DIW)定容	ECVG-AFS	1.3 pg m†1	Jjang et a <mark>.l,</mark> 2010
	THg	样品先后经非离子洗涤剂、蒸馏水和丙酮清洗→在 60℃的烘箱中干燥过夜→95℃条件下新鲜配制的 混合酸 HNQ/H, SQ (V/V=4:1)中水浴消解	CV AFS	0. 01 ^{ng, g-1}	Lietal, 2008
		不锈钢剪刀采样,清洗后,直接进样分析	DMA-80	0. 005 ng	Limetal, 2010
		样品置于镍舱中称重→燃烧发生接触反应→经金汞 前富集→热解吸附作用→原子吸收	AMA-254	0. 0027 μ g° g ⁻¹	Freire et al, 2010
	M∉Hg	样品在 100 ℃条件下, 350 ± 的 60% 硝酸中消解→ 冷却后, 转移至试管, 混合醋酸缓冲溶液、二苯汞和 苯基汞→与水和四乙基硼化钠发生催化反应→固相 微波提取→ 气相色 谱结合 冷原子 荧光法 (GC- CVAFS)测量	GC-CVAFS	0. 040 µ g° g ⁻¹	Freire et al, 2010

?1994-2017 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

黄铜矿(CuFeŞ)、闪锌矿(ZnS)、雄黄(AsS)和金矿 中叶含有微量的汞。

3 汞矿山周边环境介质中汞的分布特征

3.1 固体废弃物

固体废弃物主要由汞矿的开采和冶炼产生,包 括采矿废石和冶炼炉渣。由于交通和经济条件等原 因,全球各地 ^{Hg}矿区中存有的大量固体废弃物未 得到妥善处理,大都被直接排放于矿坑口或堆放在 附近河谷及河流两岸。有研究发现,在温度较高、降 雨量大的湿润气候条件下汞的甲基化更易发生。有 机碳和总硫对汞的甲基化也有影响,贫碳的矿渣通 常不会富集高浓度的甲基汞(Gray et al, 2006)。

汞矿冶炼炉废渣中含有高浓度的汞,研究表明, 西班牙 A^In ade n</sub>汞矿冶炼废渣总汞含量高达 34000 $^{mg_{\circ}}$ k^{g1}。万山汞矿冶炼废渣总汞含量也高达 4400 $^{mg_{\circ}}$ k^{g1},但甲基汞含量仅为 1.1 $^{ng_{\circ}}$ g⁻¹ (Q^Iu et a.],2005)。G^{ray}等(2006)在美国德克萨斯 州西南部 Terlingua地区的汞矿研究发现,冶炼废渣 中总汞和甲基汞含量分别高达 19000 $^{\mu g_{\circ}}$ g⁻¹和 1500 $^{ng_{\circ}}$ g¹。矿渣中甲基汞的浓度与 H^{g+}、有机 碳、总硫的浓度呈正相关关系,其净甲基化率为 11000 $^{ng_{\circ}}$ g⁻¹。d⁻¹,表明此地的细菌引起了明显 的汞甲基化作用。世界主要汞矿区固体废弃物中总 汞含量见表 2.

3.2 水体汞污染

汞矿的开采过程中,极易产生坑道废水。闭坑 后由于雨水对矿渣的淋滤作用,也会将汞带入地表 河流而导致矿区水生系统的汞污染(冯新斌等, 2009)。汞矿区受废渣等影响,废水中也含有大量 的汞。美国加利福尼亚汞矿区,废水中的总汞 (TH^g)含量达 450000 ng。L⁻¹(Ganguli et al, 2000, K^{in et al}, 2004)。最近,对我国贵州万山汞矿地区 的研究发现,当地河流总汞的含量变化极大,从 12000 ng。L⁻¹(采样点位于矿渣堆下游 100 m)到 1.9 ng。L⁻¹(采样点位于矿渣堆下游 14 km)不等; 在高水位期总汞浓度从 1.9~12000 ng。L⁻¹,正常 水位期浓度为 2.9~1200 ng。L⁻¹, 古水期浓度为 2.6~3200 ng。L⁻¹(Zhang et al, 2010 a)。高含量 汞的废水不断汇入矿区地表河流,造成了汞污染物 向矿区周围环境及下游地区的迁移,使汞污染范围 不断扩大 (冯新斌等, 2009)。

水生系统中总汞浓度的升高主要是受汞矿前期 采矿活动的影响。例如, $A \operatorname{Imade} n$ 地区径流受到矿 渣影响, 在夏季表现出极高的总汞浓度, 高达 20300 $ng_{\circ} \operatorname{L}^{-1}$ (Qiu et al, 2006)。万山汞矿地区尽管在 矿渣下游水体中检测到高浓度的汞, 但在距离矿渣 6~8 km的下游发现水体中总汞的浓度急剧减小至 50 $ng_{\circ} \operatorname{L}^{-1}$ (美国 EPA淡水的汞浓度标准)。总汞 浓度的降低可能是由于在河流中含汞颗粒物沉降至 沉积物中, 也可能由于低汞含量的支流的汇入, 发生 稀释作用, 从而使得汞浓度含量降低。在矿渣堆上 游采样, 发现水样中总汞含量相对较低, 为 13~53 $ng_{\circ} \operatorname{L}^{-1}$ (3个水位期平均 28 $ng_{\circ} \operatorname{L}^{-1}$)该值接近无 汞矿开采活动山谷地区的背景值, 因此, 可以推断矿 渣的淋滤作用是该地区汞污染的主要来源之一 (Zhang et al, 2010 @。

同样在万山地区 约 80%采样点)在干旱期相 比较正常水位期显示出了较高的甲基汞浓度。甲基 汞浓度和总汞浓度有很好的正相关关系,且与冶炼

表 2 世界不同汞矿山固体废弃物和水体汞含量

Table 2 Hg concentrations in m ine waste and water from different Hg mining areas worldwide

 地点	固体废弃物总汞 (^{mg} k ^{g−1})	水体			
		总汞(ng。L-1)	甲基汞 (ng L ⁻¹)		
	3. 0~810	22~360	0. 21 ~ 5 7	Qiu et al, 2006 b Li et al, 2008	
中国贵州万山汞矿	5. 7~4400	17. 3~10580	0. 012~0 766	Qiu et al, 2005 Horvat et al, 2003	
中国贵州万山汞矿	—	1. 9~12000	< 0. 035 ~ 11	Zhang et al, 2010,ª 2010b	
美国 ^{N evada} 汞矿	1. 9~2000	3. 1 ~ 2000	—	Gray et al, 2002 2003 b	
美国 N evada金、汞矿	—	4. 28 ~ 2107	0. 305 ~ 7. 2	Bonzongo etal, 1996	
西班牙 A İnadi n汞矿	160~34000	7. 6~13000	0. 41 ~ 30	Gray et al, 2004	
斯洛文尼亚 Idrija汞矿	42. 6~1640	2. 8 ~ 322	0. 01 ~ 0 6	Hinesetal, 2000, Biesteretal, 2002	
菲律宾 Palawan汞矿	28~660	8~31000	< 0. 02 ~ 3 1	Gray et al, 2003 a	
美国 California汞矿	78~7240	2~450000	0. 003 ~ 47	Kimetal, 2004, Gangulietal, 2000	
美国 SW Alaska汞矿	—	1. 0~2500	0. 01 ~ 1 2	Gray et al, 2000	
美国 SW Texas汞矿	4. 1~480	—	—	Gray et al, 2006	
中国贵州铜仁汞矿	1. 8~900	92~2300	2.6~7.9	Li ^{et a} l, 2008	

?1994-2017 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

矿渣存放地的距离成负相关关系,表明冶炼矿渣可 能是下游甲基汞污染的一个重要的来源(Zhang et al,2010 b)。在水环境中,甲基汞主要是通过原位 甲基化作用而产生。因此,甲基汞的浓度除了与无 机汞浓度有关,还与所在的环境条件密切相关,特别 是甲基化细菌的活动可以增强汞的生物利用效率, 从而引起其浓度升高,包括温度、^{IAI}微生物、有机 物质、氧化还原条件和硫化物。

3.3 土壤汞污染

受矿山活动影响,矿区土壤汞污染具有含量高、 变化范围广及表层污染严重等特点。在 A hade n地 区和 A haska地区,总汞含量分别为 6~8889和 0.05 ~5326 mg。 kg⁻¹,甲基汞含量变化也较大,范围在 0.04~80 µg。 kg⁻¹ (Bailey et al. 2002, Higueras et al. 2003)。土壤中汞的甲基化作用在矿区普遍存 在,这可能对当地居民在一定程度上造成毒害作用。

在贵州万山地区的研究发现,表层土壤中的总 汞含量很高,但随着深度的增加,土壤中的总汞含量 快速减少至稳定的浓度。可见表层土壤中的总汞主 要来自汞矿释放到大气中的汞,而非地质来源(Liet al,2008)。矿区土壤中含有大量的甲基汞,但总汞 和甲基汞浓度没有明显的正相关关系(Fengetal, 2008)。然而,甲基汞与总汞的比例在采矿区要低 于非采矿区,其原因可能在于在采矿区酶催化微生 物的去甲基化反应破坏了 Hg-C键,而生成了二价 汞和 CH,这样就阻止了高浓度的甲基汞在土壤中 的富集(Lietal,2008)。研究使用改良过的顺序提 取技术,分析中国万山汞矿区径流沉积物和稻田土 壤:径流沉积物的总汞浓度高达 480 ^{mg。} k^{g⁻¹},土 壤样品中的总汞含量为 130 ^{mg。} k^{g⁻¹}。在大部分 土壤和沉积物样品中,可交换态汞和强结合态汞分 别占总汞的 10% ~30%和 20% ~40% (Lin et al, 2010)。稻田土壤的有机物含量较多,因此含有有 机结合态汞。可交换汞、强结合态汞和有机结合态 汞主要被微粒吸收,其增强了汞在高流动性径流中 的移动性,对于研究汞的移动性和生物利用率尤为 重要。

在世界两大汞矿 ^{Idrija}(斯洛维尼亚)和 A^{tn}ad^en(西班牙)土壤和沉积物中汞的研究表明, 当地环境中汞主要为硫化汞(H^gS),占土壤样品中总 汞的 5% ~89%。酸溶性汞占的比例其次,说明在酸 性条件下,汞可能更易于迁移。在含有机物较多的土 壤当中,大部分酸溶性汞会与有机物结合(L^{in et al}, 2010)。世界不同汞矿山土壤汞含量见表 3

3.4 生物体汞污染

植物吸收包括汞在内重金属的能力,取决于多种因素,如植物种类和土壤性质(Sierra et al, 2009)。不同种类的植物表现出不同的汞吸收和迁移的能力,1年生或2年生的植物较多年生植物汞吸收量少(Milk n et al, 2009)。种植于高汞含量土壤中的植物具有较高的汞吸收和富集的能力,在美国Alaska西南部的废弃汞矿区,柳树的汞含量高于桤木中的汞含量(Bailey et al, 2002)。

在 A hade 地区的研究发现, 尽管土壤中的汞

表 3 世界不同汞矿山土壤汞含量比较

Table 3 Comparative Hg concentrations in soil collected from Hg_m in ing a reas worldwide

	地点	总汞 (^{mg} k ^{g-1})	甲基汞 (^{ng g-1})	参考文献
	Red Devil	0 05 ~1587	0. 08 ~ 8. 2	Bailey et al, 2002
	CinnabarCreek	0 38 ~5326	0. 05 ~ 41	
	Red Top	0 29 ~1419	0. 04 ~ 6. 9	
	背景值	0 03 ~3.7	0. 02 ~ 9. 2	
西班牙汞矿	A]ma∉ n	6~8889	—	Higueras et al, 2003 Loredo et al, 2007
	Asturias	1. 7 ~472	—	
斯洛文尼亚汞矿	Idrija	0 39 ~2759	1. 3 ~ 78	Gnamus et al, 2000
	Podljubelj	12 ~27	5. 8~80	
	质量控制	0 18 ~0.68	0. 3 ~ 1. 0	
中国贵州万山汞矿	采矿区	16~156	1. 3 ~ 23	Horvat et al, 2003 Qiu et al, 2005
	采矿区	5. 1 ~790	0. 13 ~ 15	Lin et al, 2010
	采矿区	130	—	
	质量控制	0. 1 ~ 1. 2	0. 1~1.6	
中国贵州滥木厂汞铊矿	采矿区	8. 4 ~950	0. 7 ~ 8. 8	Xiao et al, 2004, Qiu et al, 2006 b
	背景区	0 26 ~0.87	—	

?1994-2017 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

含量很高,但植物可利用的活性汞比例却很低。实验中种植的薰衣草转移到地上植物部分的汞含量仅为 $1 \sim 10^{\mu \text{ g}}$ 。株⁻¹薰衣草植物。产生该情况的可能原因: 1)与 A^{haden}地区的其他植被相比较,薰衣草更易于吸收土壤中的活性汞; 2)薰衣草的根对于汞的迁移起到了一定的屏障作用,从而使得薰衣草根部分的汞含量高于地上部分植株的汞含量(Sienaetal, 2009)。

中国国家标准局推荐食品中的 H⁸的最大值为 20 ^{ng。g¹}。在陕西的旬阳汞矿地区研究发现,当 地的卷心菜中高度富集汞,含量已经超过中国可食 用物品汞推荐值的 6~540倍(Zhang et a.l, 2009)。 在贵州汞矿区,稻米中的总汞含量高达 570 μ ^{g。} k^{g⁻¹}, MeH8含量高达 170 μ ^{g。} k^{g⁻¹}(Horvata et a.l, 2003, Q^{iu} et a.l, 2008)。卷心菜和大米是当地居民 的主要食物,居民长期食用这些食物,会对健康产生 影响。在矿山地区种植某种超富集植物,可成为治 理矿山污染的有效方法。王建旭等(2010)在矿山 植物修复的研究中发现,硫代硫酸铵能显著增加汞 污染土壤中生物有效态汞含量。当土壤中添加浓度 为 2 ^{g。} k^{g⁻¹}硫代硫酸铵后,不仅增加了印度芥菜生 物量,而且提高了印度芥菜修复汞污染土壤的效率。

众所周知, 食用鱼肉等水产品是人类甲基汞暴 露的主要途径。食物链中,尤其是水生环境食物链 中,由于甲基汞具有生物积累和生物放大的性质,从 而会对包括人体在内的动物体产生危害。即使是低 水平的暴露, 汞也会使得副交感神经的机能失调, 从 而影响心脏的自主活动(Lin et al, 2010)。据报 道,肉食性鱼类如金枪鱼和顶端的肉食动物遭受最 大程度的汞暴露(Sundseth et al, 2010)。通过小鼠 暴露于 HSCI的实验发现,肾是汞富集的主要器官, 肝位于其次,这也和当前动物和人类无机汞暴露的 研究结果相同(Ekstrand et al., 2010)。在菲律宾 Naboc地区,由于食用来自汞污染河流中的鱼类和 贝类, 38%的当地居民受到严重汞暴露 (Appletona et al, 2006)。世界卫生组织 (WHO)推荐成人每天 摄入总汞的耐受度(值)为每千克体重 0.71 µ S(Si erra et al. 2009)。在中国西南汞矿区,居民摄入含 汞大米也是一个甲基汞主要暴露的途径,而这个观 点与当前鱼和鱼产品是暴露甲基汞主要途径不同

3.5 大气汞污染

汞排放到大气中的主要方式有燃料的燃烧、采 矿和冶炼活动,生物体的燃烧和垃圾的焚烧(Witt et al, 2010)。尤其是汞矿开采和冶炼过程中,会产生 高汞含量的废气,造成汞矿区大气的严重汞污染。

位于西班牙西北部地区的阿斯图里亚斯(Asturias), 过去的采矿活动留下了富汞的废渣、土壤和沉积物。在位于 Miere和 Pola de Lena地区的废弃汞 矿和冶炼厂 La Pena—El Terrona和 La Soterra 的 研究发现, 大气汞浓度均高于该地区的背景值(0.1 μ g。 Nm⁻³), 在 距 地 面 0.2 m浓度 高 达 203.7 μ g。 Nm⁻³(Loredo et al, 2007)。表明过去的汞矿开 采活动在该地区对于汞浓度的增加有着很大影响, 并 且大气的迁移是环境汞循环当中一个主要途径。

由于贵州省的某些汞矿仍在开采中,因此矿区 仍向大气排放汞,务川汞矿区 2004年的大气汞排量 为 3.7~9.6,^t垢溪汞矿区 2006年的大气汞排放量 为 1.3~2.3,^t表明研究区的人工汞矿活动是该地 区重要的大气汞排放的源之一(Li et al, 2009 b)。 W^{an}等(2007)于 2002年 11月和 2004年 7—8月 调查万山大气汞交换的通量,空气中平均气态总汞 浓度为 17.8~1101.8 $ng \cdot m^{-3}$,平均汞释放通量为 162~27827 $ng \cdot m^{-2} \cdot h^{-1}$,平均汞干沉降通量为 0~9434 $ng \cdot m^{-2} \cdot h^{-1}$ 。结果表明,空气当中高含 量的大气总汞会抑制汞从土壤中的释放,在污染严 重的大气中可能会导致气态汞在土壤和空气之间快 速循环,而植物能够抑制汞从土壤中的释放,并且能 够吸收空气中一定数量的汞。

汞在大气中可以长时间停留 约 1年)(Sunds eth et al, 2010),因此, 汞矿开采过程中产生的汞会 被转移到其他大陆,或迁移到遥远地区的生态系统, 如南极洲、北极地区(X^a et al, 2010)。空间上而 言,全球人类活动排放到大气中的汞,大约有 2/3来 源于亚洲,其中中国是最主要的源,美国和印度分别 列于第二和第三,但这两个国家的排放总量只有中 国的 1/2,其中由于汞矿山的开采和冶炼所排放的 汞约占全球人类活动排放到大气中的汞的 1/3(Hy lander& Meilb 2003)。2005年由于人类活动排放 到大气中的汞接近 1930, 北据全球大气汞测评(The G bbal Amospheric Mercury Assessment)估计,若不

(Feng& Qiu 2008) ?1994-2017 China Academic Journal Electronic Publishing House: All fights reserved. http://www.cinki.net 排放量将由 2005年的 1930 增加到 2020年的 2390 (Pacyna et al, 2010)这一问题是值得广泛 关注的。

4 展 望

通常矿山水体含有高含量的汞主要是由冶炼矿 渣的淋滤作用引起,但不同矿山地区水体中总汞和 甲基汞含量相差甚远是由于汞的甲基化作用受到温 度、¹⁴(微生物、有机质、氧化还原条件和硫化物的 影响。土壤中汞的甲基化作用在矿山普遍存在,使 土壤大量富集总汞和甲基汞,而种植在该地区的植 物,也会从土壤中吸收大量的汞。粮食作物一旦富 集高含量汞,经人体食用后,会严重影响食用者的健 康。汞矿开采和冶炼过程中,产生大量高含量汞的 废气,会造成矿山地区大气的汞污染。

对干矿山地区如何进行修复和治理,报道较少。 对于矿山固体废弃物污染,可利用植物固定技术将 汞固定在土壤中,防止长期的风化和雨水冲刷使得 汞向周围环境扩散。对于矿山水体汞污染,一方面 可以改污染水源作为灌溉用水的水稻田为旱田,控 制水体中的汞通过土壤进入农作物:另一方面,由于 水体中的汞主要来自矿渣淋滤液,因此,可以在矿渣 附近修建沉淀池并添加黑炭等吸附剂,将汞沉淀。 对于矿山土壤汞污染,建议在污染区种植对汞富集 能力差的农作物,如玉米等;考虑利用生物修复技术 对其进行控制和修复,如植物固定或者植物提取。 对于生物体污染,如农作物等,考虑通过基因改良或 者更换品种,种植对汞吸收能力差的作物品种。对 于食用含甲基汞大米及蔬菜的长期作用,应该仔细 调查,从而估计人类汞暴露的风险。汞矿山大气汞 污染来源复杂,如汞的冶炼,土壤释放等,这就要求 一方面执法部门加大对违法炼汞进行查处,另一方 面对于一些重要的大气汞源,如裸露的矿渣,可在其 表面种植植被。为了评价矿山居民受汞污染的真实 水平,可采取生物监测的措施,包括:头发、血液和尿 液中总汞和甲基汞的检测。

汞矿山环境中各要素汞的生物地球化学的转 变、迁移和生物积累并不是单一作用的结果。基于 不同矿山地区特殊的气候、环境、经济和社会等因 素,对于汞的生物地球化学循环及其对于健康的影 响的研究还需不断的探索和努力,应发展有效减少 汞排放且更安全的转变方式和清洁技术,对于严重 汞污染的地区的修复技术也应该及时建立,大量的 工作还需开展。

参考文献

- 冯新斌, 仇广乐, 付学吾, 等. 2009. 环境汞污染. 化学进 展, 21(2/3): 436-457.
- 费云芸,刘代成. 2003 低剂量汞元素的毒性作用机理.山 东师范大学学报(自然科学版), **18**(1), 88-90.
- 仇广乐,冯新斌,王少锋,等. 2006 贵州汞矿矿区不同位置土壤中总汞和甲基汞污染特征的研究.环境科学,27
 (3):550-555
- 王建旭, 冯新斌, 商立海, 等. 2010 添加硫代硫酸铵对植物修复汞污染土壤的影响. 生态学杂志, 29(10): 1998 - 2002
- Appletona J Weeksb J Calvezc J et al 2006 Impacts of mercury contaminated mining waste on soil quality crops bivalves and fish in the Naboc River area Mindanao Philippines Science of the Total Environment 354 198– 211.
- Bailey F. Gray J. Theodorakos P. 2002. Mercury in vegetation and soils at abandoned mercurymines in southwestern A las.
 ka USA Geochemistry Exploration Environment Analysis 2, 275-285.
- Biester H Muller G Scholer H 2002 Binding and mobility of mercury in soils contaminated by emissions from chlor alkali plants Science of the Total Environment 284 191-203
- Bonzongo J Heim K Warwick J et al 1996 Mercury levels in surface waters of the Carson River Lahontan Reservoir system, Nevada Influence of historic mining activities Environmental Pollution 92 193-201.
- Ekstrand J Nielsen J Havarinasab S 2010 Mercury toxicoki netics—Dependency on strain and gender Toxicology and Applied Pharmacology 243 283—291
- Feng X, Qiu G 2008 Mercury pollution in Guizhou, Southwestem China, An overview, Science of the Total Environ. ment 400, 227-237.
- Freire Ç Ramos R Lopez Espinosa M et al 2010 Hairmer cury levels fish consumption, and cognitive development in preschool children from Granada Spain Environmental Research 110 96-104
- Fu X Feng X Zhu W, et al 2010 Elevated amospheric deposition and dynamics of mercury in a remote upland forest of southwestern China Environmental Pollution, 158 2324-2333
- Ganguli P, Mason R, Abu Saba K, et al 2000 Mercu V speci

响的研究还需不断的探索和努力,应发展有效减少 ation in drainage from the New Idra mercurymine Califor 1994-2017 China Academic Journal Electronic Publishing House. All rights reserved. http://www.chki.net

n a Environmental Science and Technology **34** 4773-4779.

- Garça Sánchez A Murciego A Álvarez Ayuso E et al 2009 Mercury in soils and plants in an abandoned cinnabarm in ing area (SW Spain). Journal of Hazardous Materials
 - **168** 1319-1324
- GilÇ Ramos Miras J Roca Perez L et al 2010 Determina tion and assessment of mercury content in calcareous soils Chemos there 78 409-415
- Gnamus A Byme A Horvat M 2000 Mercury in the soilplant-deer-predator food chain of a temperate forest in Slovenia Environmental Science and Technology 34 3337 -3345
- Gray J Crock J Fey D 2002 Environmental geochemistry of abandoned mercury mines in West Central Nevada USA Applied Geochemistry 17, 1069-1079
- Gray J Greaves, I Bustos D et al 2003 Mercury and methyl mercury contents in mine-waste calcine water and sediment collected from the Palawan Quick silver Mine Philippines Environmental Geology 43 298-307.
- Gray J Hines M Biester H et al 2003 Mercury methylation in m ine wastes collected from abandoned mercury mines in the USA Journa [De Physique]V, 107: 573-576
- Gray J Hines M Biester H 2006 Mercury methylation influ enced by areas of pastmercury mining in the Terlingua dis trict Southwest Texas USA Applied Geochemistry 21 1940–1954
- Gray J Hines M H gueras P et al 2004 Mercury speciation and microbial transformations in mine wastes stream sedi ments and surface waters at the A maden Mining District Span Environmental Science & Technology 38 4285-4292
- Gray J Theodorakos P Bailey E et al 2000 Distribution speciation and transport of mercury in stream sediment stream water and fish collected near abandoned mercury mines in southwestern Alaska USA Science of the Total Environment 260 21-33
- H gueras P Oyarzun R Biester H et al 2003 A first ins ght into mercury distribution and speciation in soils from the Almaden mining district Spain Journal of Geochemical Exploration 80 95-104
- Hines M Horvat M Faganeli J et al 2000 Mercury biogeo chemistry in the Idrija river Sloven ja from above themine into the Gulf of Trieste Environmental Research 83 129– 139
- Horvat M. Nohle N. Fajon V. et al 2003 Total mercury methylmercury and selenium in mercury polluted areas in the province Guizhou. China Science of the Total Environ.

- Hylander L. Meili M 2003 500 years of mercury production G bbal annual inventory by region until 2000 and associated emissions Science of the Tota [Environment **304** 13-27.
- Jiang X, Gan W, Wan L, et al 2010 Determination of mercury ry by electrochemical cold vapor generation atom ic fluores cence spectrometry using polyaniline modified graphite electrode as cathode Spectrochimica Acta Part B 65, 171 - 175
- Kin Ç Rytuba J Brown J et al 2004 Geological and anthro. pogenic factors influencing mercury speciation in mine wastes An EXAFS spectroscopy study Applied Geochemis. ty 19 379-393
- LiP Feng X Qiu G et al 2008 Mercury exposure in the population from Wuchuan mercury mining area Guizhou China Science of the Total Environment **395** 72-79
- LiP Feng X QiuG et al 2009 Atmospheric mercury emission from artisanal mercury mining in Guizhou Province Southwestern China Atmospheric Environment **43** 2247-2251
- Li P Feng X Shang L et al 2008 Mercuty pollution from artisanal mercuty mining in Tongren, Guizhou China Applied Geochemistry 23 2055-2064
- Lin S Chung H Paek D 2010 Low dose mercury and heart rate variability among community residents nearby to an industrial complex in Korea Neuro Toxicology **31**, 10-16
- Lin Y Larssen T Vogt R et al 2010 Identification of fractions of mercury in water soil and sediment from a typical Hg mining area in Wanshan, Guizhou province China Applied Geochemistry 25 60-68
- Liu Q 2010 Determination of mercury and methylmercury in seafood by ion chromatography using photo induced chemical vapor generation atomic fluorescence spectrometric detection. Microchemical Journal 95, 255-258
- Loredo J Soto J Á lvarez R et al 2007. Atmospheric monitor ring at abandoned mercury mine sites in Asturias (NW Spain). Environmental Monitoring and Assessment 130, 201-214.
- Mildin R. Gamarra R. Schmid T. et al. 2006 Mercury content in vegetation and soils of the Almaden mining area (Spain). Science of the Total Environment **368**, 79-87.
- Moneno Jine nez Ę Gamana R, Carpena Ruiz R, et al 2006 Mercury bioaccumulation and phytotoxicity in twowild Plant species of Anna & n area. Chemosphere, 63, 1969—1973
- Pacyna E Pacyna J Sundseth K et al 2010 G lobal emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020 Atmospheric Environment 44 2487-2499.

ment 304 231–256 ?1994-2017 China Academic Journal Electronic Publishing House. All rights reserved. tion in rice (Oryza sativa I,) grown at abandoned mercury mines in Guizhou China Journal of Agricultural and Food Chemistry **56** 2465-2468

- QiuG FengX WangS et al 2005 Mercury and methytner cury in riparian soil sediments mine_waste calcines and moss from abandoned Hgmines in east Guizhou province southwestem China Applied Geochemisty 20 627-638
- QiuG FengX WangS et al 2006a Mercury contaminations from historic mining to water soil and vegetation in Lanmuchang Guizhou southwestern China Science of the Total Environment **368** 56-68
- QiuG FengX Wang S et al 2006 b Environmental contami nation of mercury from Hgm ining areas in Wuchuan northeastern Guizhou China Environmental Pollution 142 549-558
- Rothenberg S McKee L Gilbreath A et al 2010 Evidence for short range transport of a mospheric mercuty to a rural inland site Amospheric Environment 44 1263-1273
- Schroeder W, Munthe J 1998 Atmospheric mercury An o verview Atmosphere Environment 32 809-822
- Sierra MJ Mild n R Esteban E 2009 Mercury uptake and distribution in Lavandula stoechas plants grown in soil from A lmade n mining district (Spain). Food and Chemical Tox icopgy 47: 2761-2767
- Sund seth K Pacyna J Pacyna E et al 2010 E conomic bene fits from decreased mercury emissions Projections for 2020 Journal of Cleaner Production **18** 386-394
- Voegborip R Adimado A 2010 A simple classical wet diges tion technique for the determination of total mercury in fish tissue by cold vapour atomic absorption spectrometry in a low technology environment Food Chemistry 123 936-940
- Wang Ş Feng X Qiu G et al 2007. Characteristics of mercu ry exchange flux between soil and air in the heavily air polluted area eastern Guizhou. China Amostheric Environ.

men,t **41**: 5584-5594.

- WittM Meheran N Mather T et al 2010 Aerosol tracement als particle morphology and total gaseous mercury in the atmosphere of Oxford UK Atmospheric Environment 44 1524-1538
- Xia Ç Xie Z Sun L 2010 Atmospheric mercury in the marine boundary layer along a cruise path from Shanghai China to Prydz Bay Antarctica Atmospheric Environment 44 1815–1821.
- Xiao T Guha J Boyle D et al 2004 Environmental concerns related to high thallium levels in soils and thallium up take by plants in southwest Guizhou. China Science of the Total Environment **318** 223-244
- Zahir F Rizwi S Haq S et al 2005 Low dose mercury toxicity and human health Environmental Toxicology and Phar macology 20, 351-360
- Zhang H, Feng X, Larssen T, et al 2010 a Fractionation dis tribution and transport of mercury in rivers and tributaries around W anshan Hg mining district Guizhou province southwestem China Part 1- Totalmercury Applied Geo. chemistry 25, 633-641.
- Zhang H, Feng X, Larssen T, et al 2010b Fractionation dis tribution and transport of mercury in rivers and tributaries around W anshan Hg mining district Guizhou Province Southwestern China Part 2-Methylmercury Applied Geo. chemistry 25, 642-649.
- Zhang L. Jin Y. Lu J. et al. 2009 Concentration, distribution and bioaccumulation of mercury in the Xunyang mercury mining area. Shaanxi Province China Applied Geochem is ty 24 950-956

作者简介 张 超,男, 1987年生,硕士研究生,主要从事汞 的地球化学研究。 Email changblu@ gnail com 责任编辑 魏中青