第30卷 第1期 2010年3月

文章编号:1000-4734(2010)01-0098-09

陕西旬阳公馆一青铜沟汞锑矿床地球化学研究

张颖¹² 陈衍景^{3 4*} 祁进平⁴ 冷成彪¹² 赵成海¹²

(1. 中国科学院 地球化学研究所 矿床地球化学国家重点实验室 ,贵州 贵阳 550002;
2. 中国科学院 研究生院 ,北京 100049; 3. 北京大学 造山带与地壳演化重点实验室 ,北京 100871;
4. 中国科学院 广州地球化学研究所 成矿动力学重点实验室 ,广东 广州 510640)

摘要:陕西旬阳公馆一青铜沟汞锑矿床位于南秦岭东部 矿床受赋矿的泥盆纪白云岩地层和发育于其中的断裂 的双重控制 矿体呈脉状 矿石主要由辉锑矿、辰砂、石英、方解石组成。氢氧同位素研究表明,该矿床的成矿流 体为大气水。碳氧同位素显示热液方解石的形成与地层碳酸盐关系密切,并有少量有机碳参与成矿。矿石硫 来源于地层中硫化物的分解或硫酸盐的还原作用。锶、铅同位素研究表明其与成矿物质汞、锑共同来源于下覆 基底地层。综合研究表明公馆-青铜沟汞锑矿是一种受断裂控制的脉状矿床。

关键词:公馆--青铜沟汞锑矿;成矿流体;同位素;地球化学

中图分类号:P611; P618.66; P618.68 文献标识码:A

作者简介:张颖,男,1981年生,硕士研究生,矿床学专业. E-mail:zhangying2701@ sina. com

陕西旬阳公馆——青铜沟汞锑矿带位于陕西省 旬阳县境内,秦岭—中亚汞锑矿成矿带东端[1]。 该矿床汞锑共生 规模大 是国内最大的汞锑共生 矿床,也是秦岭—中亚汞锑矿成矿带中储量最大 的汞锑矿床(汞金属储量达巨大型矿床规模,锑 金属储量达中型规模)^[2]。前人对该矿床做过诸 多的研究 积累了许多地球化学方面的资料^[1-0], 关于该矿床的成因提出了不同的认识,如沉积-改 造^[135689]、沉积-再造^[24]、碰撞造山成因^[7]和 多源热液成因等^[10]。造成这些分歧的原因主要 是采取的研究手段较少或缺乏针对性,为此我们 在总结了前人资料的基础上,选取与成矿关系密 切的碳酸盐化的产物方解石及该矿的赋矿围岩白 云岩为主要研究对象 进行碳氧同位素的研究 对 主要矿石矿物辉锑矿进行硫同位素的研究 以进 一步揭示该矿床的地球化学特征和矿床成因。

1 区域地质特征

公馆一青铜沟汞锑矿床位于秦岭南部。该区 出露的地层^[2-6 β-0](图1)有上元古界震旦系,为

^{*} 通讯作者 Æ-mail: yjchen@pku. edu. cn

一套变质的海底火山喷发岩夹沉积岩,主要岩性 为酸性和中酸性火山熔岩、火山碎屑岩夹少量的 含碳硅质岩、含碳千枚岩和含碳灰岩 与上覆下古 生界地层呈平行不整合接触。下古生界的寒武 系、奥陶系、志留系地层,为一套变质的泥、砂质碎 屑岩、泥质碳酸盐岩、硅质岩和少量的正片岩,与 上覆泥盆系呈不整合接触。泥盆系在该地区发育 较全、分布较广,地层主要由滨海-浅海相沉积的 碎屑岩及碳酸盐岩组成,其中泥盆系下泥盆统的 公馆组为该矿床的主要控矿层位。石炭系是一套 下部为燧石灰岩和灰岩,中部为碳质页岩、杂色千 枚岩夹燧石灰岩、石英砂岩,上部为灰白色厚层灰 岩的地层。二叠系为一套浅海相碳酸盐岩夹少量 碎屑岩的地层。三叠系由泥砂质碎屑岩及少量泥 质碳酸盐岩组成。第三系由一套红色砂砾岩及砂 岩夹红色砂质页岩组成。

该区构造上属于秦岭南部留坝—山阳构造 带 构造线由北向南由东西向-北西西向 略呈反 S 形弯曲,并有向北西收敛、向东撒开的趋势(图 1)。 I级构造自北向南有:板岩镇断裂、唐家河 断裂,南羊山断裂等。在区域北部和西北角分布 有岩浆岩,主要有二长花岗岩、滑石化、蛇纹石化 超基性岩和云煌岩。

收稿日期:2009-05-15

基金项目:国家 973 项目(2006CB4035008)和中国科学院地球化 学研究所百人计划项目资助

2 矿床地质

公馆—青铜沟汞锑矿床位于南羊山大断层北 侧(图2),公馆—回龙背斜两翼及倾末端中。矿 区出露地层主要有石炭系、泥盆系和志留系。其 中泥盆系中的下泥盆统公馆组 (D_{1g}) 是主要的赋 矿地层。矿床受北东-南西向延伸的主干断裂 F_1 (也称南羊山大断裂)和近东西向延伸的 F_2 、 F_3 和 F_4 所控制 注干断裂之间发育的一些次级断裂为 主要容矿构造。

Fig. 2. Ore deposit geologic map of the Gongguan-Huilong Hg-Sb ore belt.

主要矿石矿物为辰砂、辉锑矿,含少量的黄铁 矿、雌黄、雄黄、闪锌矿、黄锑矿、红锑矿、锑华,以 及微量的黑辰砂、自然汞、硫铜锑矿、黝铜矿、蓝辉 铜矿、斑铜矿和孔雀石。个别钻孔中见有方铅矿。

99

脉石矿物主要为石英、方解石、白云石,其次是重 晶石、粘土矿物、萤石等。

矿石结构主要为他形-半自形淀晶结构,其次 为晶体内部双晶结构、溶蚀填隙结构、交代充填结 构和交代残余结构(见图3中E和F),少数含矿 体中有自形淀晶结构,在动力作用较强的地段可 见到变晶结构^[2,3,10]和揉皱结构。矿石主要构造 类型是充填作用形成的浸染状、角砾状、网脉状 (见图3中C、G和H)、斑点状、团块状构造,其次 为充填条带状(见图3中B和D),再次为晶洞状 构造。

根据野外观察和手标本的研究并结合前人的 研究^[23]将成矿划分为4个阶段: I 阶段形成白 云石、石英脉,其中含黄铁矿、闪锌矿及微量方铅 矿,几乎不含辰砂、辉锑矿;Ⅱ阶段脉石矿物以石 英为主,间夹个别的白云石,含较多的辉锑矿和少 量辰砂,此阶段是辉锑矿的主要成矿阶段;Ⅲ阶段 脉石矿物为石英和方解石,形成大量的辰砂、含少 量或几乎不含辉锑矿,是汞成矿的主要阶段;Ⅳ阶 段形成粗大的方解石脉,无矿化。

成矿作用以充填作用为主,交代作用较弱。 辰砂、辉锑矿均分布在由石英、白云石、方解石、重 晶石和白云岩角砾等组成的脉状蚀变体内。主要 围岩蚀变类型为硅化、碳酸盐化,其次为重晶石 化、黄铁矿化。其中硅化和强碳酸盐化与汞锑矿 化关系最为密切。

A. 汞锑矿石(浸染状、块状构造);B. 汞矿石(块状构造);C. 汞矿石(浸染状构造);D. 汞矿石 (充填条带状构造);E. 充填结构;F. 交代残余结构;G. 网脉状结构;H. 角砾状结构

图 3 公馆一青铜沟汞锑矿床中典型矿石类型及结构构造图

Fig. 3. Typical ore types , texture and structure in Gongguan-Qingtonggou Hg-Sb deposit.

3 同位素地球化学特征

3.1 氢氧同位素

氢、氧同位素组成是成矿流体来源及其演化的指示剂^[11]前人已对对公馆—青铜沟汞锑矿做了一些关于氢氧同位素方面的研究^[3 6 7,12],其中方解石的 $\delta^{18}O_{SMOW}$ 为23.63%。~25.20%。,计算出的 $\delta^{18}O_{H_{20}}$ 为10.2%。~11.8%。, δ D为-76%。~411.3%。(表 1)。石英的 $\delta^{18}O$ 为23.68%。~25.20%。,计算出的 $\delta^{18}O_{H_{20}}$ 为10.24%。~12.67%。, δD_{SMOW} 介于-24.4%。~411.3%。之间。从图4可以看出 2个方解石及两个石英的样品的投影点

学性质活泼 δ^{18} O 较高 ,为 21.4‰ ~ 27.8‰ ^[3 4], 流体可从围岩中汲取¹⁸O。

		20 1	1	00 00	00 0 1	
样品	矿区	矿物	$\delta^{18}O/{\it \%o}$	δD/‰	$\delta^{18} {\rm O}_{{\rm H_2O}} / \text{\%o}$	资料来源
F ₅₂	公馆	石英		-83.9		[6]
F ₅₆	公馆	石英		-24.4		[6]
F ₈₀	公馆	石英		-82.1		[6]
F	青铜沟	方解石		-104.8		[6]
F ₆₈	青铜沟	方解石	23.63	-85.9	10.2	[6]
F ₇₀	青铜沟	方解石	25.20	-111.3	11.8	[6]
N58-F6	公馆	方解石		-76		[3]
N-F46	公馆	石英		-91		[3]
SPD39	公馆	白云石		-77		[3]
Q21-B1	青铜沟	石英		-103		[3]
Q21-B5	青铜沟	石英		-109		[3]
	公馆	石英	23.68	-111.3	10.24	[12]
	公馆	石英	25.20	-85.9	12.67	[12]

表1 公馆—青铜沟汞锑矿床氢氧同位素组成

Table 1.	Hydrogen	and	oxvgen	isotope	composition	of	Gongguan-	Oingtonggou	Hg-Sb	deposit

3.2 碳氧同位素

挑选的方解石样品单矿物纯度达 99% 以上, 方解石和白云岩中碳和氧同位素分析步骤如下: 方解石和白云岩粉碎至 200 目,样品量约为 200 μg。直接进行 CO₂ 气体的制备和碳同位素分析。 碳氧同位素在中国科学院环境地球化学国家重点 实验室用连续流体同位素质谱测定,精度为 0.1‰ 与 PDB 标准对应。

层发生了较强的水-岩相互作用 因为赋矿地层化

在转换 δ^{18} O_{PDB} 和 δ^{18} O_{SMOW} 时使用 Friedman 等(1977)的公式:

 $\delta^{18}O_{\text{SMOW}} = 1.03086\delta^{18}O_{\text{PDB}} + 30.86\%$

公馆—青铜沟汞锑矿带热液方解石的 C、O 同位素测试结果见表 2。从中可以看出地层白云 石的 δ^{13} C_{PDB} 为-2.0% ~ -0.3% (平均-0.6%), δ^{18} O_{SMOW} 为 21.4% ~ 27.3% (平均 24.4%),前 人^[3 4]所测的地层中方解石和白云石的 δ^{13} C_{PDB} 为-1.6% ~ 0.3% (平均-0.4%), δ^{18} O_{SMOW} 为 23.5% ~ 27.8% (平均 25.8%),反映了赋矿地层 是典型的海相碳酸盐岩^[13]。成矿期的方解石的 δ^{13} C_{PDB} 为-5.4% ~ -1.0% (平均-3.6%), δ^{18} O_{SMOW} 为 16.4% ~ 23.7% (平均 19.9%)。成矿末期方 解石的 δ^{13} C_{PDB} 为-8.1% ~ -1.2% (平均 16.4%)(表 3)。 热液方解石中 δ^{13} C_{PDB} 值最大为-1.0%, 与地 层样品的值一致;但最小为-8.1%, 远远小于地层 样品的值。丁抗^[3]在公馆矿区辰砂晶体中发现 了大量有机包裹体,认为有机碳的加入造成了热 液方解石的 δ^{13} C_{PDB} 值低于地层,因为有机质平均 δ^{13} C 为-27%^[14,15]。我们认为,大气降水热液中 的 CO₂ 也可导致热液方解石的 δ^{13} C_{PDB} 值低于地 层,因为大气 CO₂ 的 δ^{13} C 为-7% ~ -11%^[16]。

在图 5 中 所有样品呈现出明显的线性相关。 理论上可能造成这种相关性的原因有 3 个[17-20]: ① 流体混合作用;② CO, 去气作用;③ 流体与围 岩之间的水岩反应。迄今为止,尚未见到有关于 流体混合造成方解石和地层碳酸盐中碳、氧同位 素线性相关的报道。如果是 CO₂ 去气作用导致 了 C、O 同位素组成的线性关系 则该作用对流体 的 O 同位素组成影响不明显,只对 C 同位素组成 影响显著,但从该矿热液方解石的0同位素组成 来看,变化明显,而且到了成矿末期,δ¹³C_{PDB}值有 减小的趋势也与 CO2 去气作用相矛盾。因此,我 们认为流体与围岩之间的水-岩反应对热液方解 石的沉淀起到了一定的作用。这种水岩反应具体 的表现为一种碳酸盐的溶解作用。此外,晚期样 品的 δ¹³C_{PDB} 值有变负的迹象 这与到了成矿晚期 温度的降低有一定关系 因为随着温度的降低 生 成碳酸盐时分馏作用会降低 $\delta^{13}C_{PDB}$ 值 [11]。

表 2	地层方解石、	白云石的碳	、氧同位素组成
~ ~			

Table 2. Carbon and oxygen isotope composition in stratal calcite and dolomite

样品	矿区	性质	测试对象	$\delta^{13}C_{PDB}/\% o$	$\delta^{18} \mathrm{O}_{\mathrm{SMOW}} / \mathscr{W} o$	数据来源
Qtg24-15	青铜沟	公馆组白云岩	白云石	-2.0	21.4	本文
Qtg24-20	青铜沟	公馆组白云岩	白云石	-0.7	24.4	本文
Qtg24-26	青铜沟	公馆组白云岩	白云石	-0.4	23.8	本文
GG24-15	公馆	公馆组白云岩	白云石	-0. 8	27.3	本文
GG24-16	公馆	公馆组白云岩	白云石	-0.5	25.2	本文
Q24-Fr44	青铜沟	地层白云岩	白云石	-0.1	26.8	[3]
Q21-Fr44	青铜沟	地层白云岩	白云石	0.3	27.8	[3]
Bsc-I	青铜沟	地层白云岩	方解石	-1.6	23.8	[21]
Bsc-2	青铜沟	地层白云岩	方解石	4.1	24.5	[21]
Bsc-3	青铜沟	地层白云岩	方解石	4.0	26.1	[21]
Vbsg-I	公馆	地层白云岩	方解石	4.0	23.5	[21]
Vbsg-2	公馆	地层白云岩	方解石	0.2	25.9	[21]
Vbsg-4	公馆	地层白云岩	方解石	0.2	26.5	[21]
Vbsg-5	公馆	地层白云岩	方解石	0.2	27.8	[21]
Vbsg-6	公馆	地层白云岩	方解石	0.2	25.5	[21]

表 3 热夜方解石、白云石的碳、氧同位素组成

Table 3. Carbon and oxygen isotope compositions in hydrothermal calcite and dolomite

	矿区	矿物	类型	δ ¹³ C /‰	$\delta^{18}O\%$	数据来源
GG39-09	公馆	方解石	成矿期	-3.4	18.6	本文
N58-F3	公馆	方解石	成矿期	-3.4	19.6	[3]
N58-B4	公馆	方解石	成矿期	-3.1	17.4	[3]
N58-B119	公馆	方解石	成矿期	4.0	23.7	[3]
N24-B124	公馆	方解石	成矿期	-4.1	16.4	[3]
S51-B70	公馆	方解石	成矿期	-5.4	21.7	[3]
S51-F74	公馆	方解石	成矿期	-4.7	21.8	[3]
GG-27-09	公馆	方解石	成矿末期	-7.1	15.7	本文
GG-27-10	公馆	方解石	成矿末期	-5.2	13.5	本文
GG27-11	公馆	方解石	成矿末期	-6.6	15.8	本文
GG27-12	公馆	方解石	成矿末期	-5.9	14.9	本文
N58-F6	公馆	方解石	成矿末期	-4.4	16.4	[3]
N67-F35	公馆	方解石	成矿末期	-8.2	18.4	[3]
N16-B60	公馆	方解石	成矿末期	-7.1	17.7	[3]
N58-B118	公馆	方解石	成矿末期	-4.8	13.8	[3]
Q21-F26	青铜沟	方解石	成矿末期	4.2	21.1	[3]
Q24-B137	青铜沟	方解石	成矿末期	-8.1	16.8	[3]

注:成矿期为含粗晶状辰砂的方解石细脉,或含浸染状辰砂、黄铁矿的白云石、方解石脉;成矿末期大量出现方解石脉,充填于断裂空间,具弱矿化或无矿化现象.

3.3 硫同位素

本次 8 个辉锑矿硫同位素分析测定在中国科 学院地球化学研究所环境地球化学国家重点实验 室完成。采用连续流同位素质谱仪 CF-IRMS (EA-IsoPrime,型号为 Euro3000,GV instruments) 测定硫同位素组成,测定数据采用以国际硫同位 素 CDT 标准标定的国家硫同位素标准(硫化银) GBW-4414(δ^{34} S = -0.07%)和 GBW-4415(δ^{34} S = 22.15%)校正,测量误差小于±0.2%(n=5)。

公馆 青铜沟汞锑矿的硫同位素组成(表4) 均为正值 数据范围较集中(图6)。60%的辰砂 的 δ^{34} S 值为 6‰ ~ 9‰ 90% 辉锑矿的 δ^{34} S 值为 4‰ ~ 8‰。辰砂的成矿温度(不超过 250 ℃,190 ℃为最佳)^[1]比辉锑矿(不超过 300 ℃)^[1]低,辉 锑矿主要是 II 阶段产物,沉淀早于辰砂(III 阶段) (图 3)。在硫同位素相对富集系列中,辰砂较辉 锑矿富集³⁴S 因为 H-S 键合强度大于 Sb-S 键^[22], 辉锑矿成矿温度高于辰砂,先结晶,而 H₂S 富集 ³²S,所以后期的流体将会越来越富集³⁴S。公 馆一青铜沟汞锑矿 δ^{34} S 值分布范围较窄,反映了 他们硫源的单一。辰砂和辉锑矿的 δ^{34} S 值与地 层黄铁矿的 δ^{34} S 值(3.4%~8.6%)^[3]基本一致, 也表明了硫主要来源于地层。模拟实验和热力学 计算^[1]表明汞锑矿的成矿热液在弱酸性和弱碱 性之间波动,当成矿流体为偏碱性时有利于地层 中硫酸盐的还原。因此推测硫主要来源于地层中 硫化物的分解或硫酸盐的还原。

样品性质	测试对象	样品	样品数(N)	$\delta^{34}S/\%$	资料来源
矿石	辉锑矿	GG39-09	1	8.5	本文
矿石	辉锑矿	GG39-06	1	8.5	本文
矿石	辉锑矿	GG39-08	1	9.4	本文
矿石	辉锑矿	GG27-13	1	8.4	本文
矿石	辉锑矿	GG27-04	1	7.9	本文
矿石	辉锑矿	Qtg24-01	1	7.9	本文
矿石	辉锑矿	Qtg24-02	1	7.9	本文
矿石	辉锑矿	Qtg24-17	1	4.0	本文
矿石	辉锑矿		18	4.2~9	[1]
矿石	辉锑矿		16	2.0~8.8	[2]
矿石	辰砂		45	3.3~11.6	[1]
矿石	辰砂		16	4.8~11.3	[2]
矿石	辰砂		7	5.5~11	[3]
地层白云岩	黄铁矿		5	3.4~8.6	[1]
地层白云岩	黄铁矿		4	5.6~8.2	[2]

3.4 锶同位素

公馆 青铜沟汞锑矿中矿石围岩的锶含量及 其同位素组成见表 5。从中可知各类样品的 Rb 含量很低,均未检测出。因此,矿石样品中的 ⁸⁷Sr/⁸⁶Sr 测定值就可以代表其形成时流体的 Sr 同 位素组成。从中可知,两个地层白云岩的 Sr 含量 分别是 64×10^{6} 和 74×10^{6} , 87 Sr / 86 Sr 值为 0. 7089 和 0. 7098,与 泥 盆 纪 海 水 的 锶 同 位 素 组 成 (0. 7078~0. 7089)基本一致^[23]。两个不含矿方 解石脉的 Sr 含量为 230 × 10⁶和 54 × 10⁶, 87 Sr / ⁸⁶ Sr 值为 0. 7109 和 0. 7105;其余矿石样品的 Sr 含 量主要分布于 39 × 10⁶~224 × 10⁶, 87 Sr / 86 Sr 值为 0. 7107~0. 7174。矿石样品 SPD39 给出了异常高 的 Sr 含量 1650×10⁶, 是何原因导致,有待进一步 的验证。

矿石样品的⁸⁷Sr/⁸⁶Sr 值(0.7105~0.7174)大 于白云岩(0.70889和0.7098),表明成矿流体中 锶的主要来源不可能是地层。导致成矿流体中 ⁸⁷Sr/⁸⁶Sr值较高的可能原因有两种:① 成矿流体 源区具有较高的⁸⁷Sr/⁸⁶Sr 值,导致成矿流体本身 具有较高的⁸⁷Sr/⁸⁶Sr 值;② 成矿流体流经了某 些⁸⁷Sr/⁸⁶Sr 值较高的地质体,导致流体⁸⁷Sr/⁸⁶Sr 值 升高。公馆 青铜沟汞锑矿床赋矿地层的下伏基 底为古老的火成岩和变质岩地层^[2],其 Rb 含量 通常较高^[24],成岩后放射成因锶的积累会导致 ⁸⁷Sr/⁸⁶Sr 值较高 因此我们推测下伏的古老的火

103

2010年

	Table 5. Sr isotopic con	nposition, Hg a	nd Sb values of	ore and countr	y rocks		
样品	类型	w(Sr)/10 ⁻⁶	w (Rb) $/10^{-6}$	$^{87}{ m Sr}/^{86}{ m Sr}$	w(Hg)/%	w (Sb) $/%$	
N58-F56	未矿化的方解石脉	230	—	0.710918			
N24-H11	蚀变岩型侵染状汞矿石	78	—	0.710717	0.13	0.04	
N24-H12	石英脉型汞锑矿石	106	—	0.713600			
N24-H16	石英脉型单汞矿石	39		0.712587			
N14-H21	石英脉型单汞矿石	223		0.717477	3.99	0.02	
S50-H24	石英脉型汞锑矿石	206		0.715106	2.66	54.62	
SM21-H26	石英脉型汞锑矿石	222	—	0.715954	8.22	3.91	
SDD20	白云石脉型、含黄铁矿的浸染状	1650	_	0 712572			
51 059	汞矿石	1050		0. /12372			
Q21-B1	石英脉型单汞矿石	—	—	0.714713			
Q24-H3	石英脉型单汞矿石	44	—	0.715990			
Q24-H8	未矿化的方解石脉	54	—	0.710538	$0.0008\sim 0$. 1	0.22	
Q24-H10	石英脉型单汞矿石	224		0.714277	0.96	0.039	
Q21-Fr44	地层白云岩	64	—	0.708895	0.000367	0.0008	
Q24-Fr54	地层白云岩	74	—	0.709826	0.000348	0.0006	

矿石、围岩的锶同位素组成与汞、锑含量 表 5

成岩和变质岩地层是成矿流体中锶的主要来源。 矿石样品的⁸⁷Sr/⁸⁶Sr 值和 Hg、Sb 含量呈正的线性 相关关系(图7) 表明成矿物质 Hg、Sb 很可能与 Sr 是同一来源的。

3.5 铅同位素

辉锑矿中铅同位素比较均一,有正常普通铅 特征,²⁰⁶ Pb/²⁰⁴ Pb 为 18. 243~18. 643,²⁰⁷ Pb/²⁰⁴ Pb 为 15.393 ~ 15.663 , Pb / ²⁰⁴ Pb 为 37.593 ~ 38.577 (表 6)。白云岩的铅组成²⁰⁶ Pb/²⁰⁴ Pb 为 19. 169 ~ 22. 115²⁰⁷ Pb/²⁰⁴ Pb 为 15. 6333 ~ 15.828²⁰⁸Pb/²⁰⁴Pb为38.090~38.442,以异常铅 为主。在铅构造模式图^[25](图8)中,绝大多数点

落到造山带附近,这与南秦岭拗陷区的金、银、铅 锌、汞、锑矿床矿石的铅同位素组成一致^[20 26],具 有深源铅的特征。但是该矿是浅成矿床,所以铅 直接来源于地幔或下地壳可能性不大,其铅同位 素组成特征与本地区中新元古界基底和和古生界 沉积岩石的铅同位素组成比较接近^[27],因此推断 矿石中的铅主要来源来基底地层。

表6 公馆 青铜沟汞锑矿床铅同位素组成 Table 6 Ph isotonia composition of Computer Directory Wash denoit

	Table 6. The isotopic composition of congguan Qingtonggou ing 55 deposit.							
样号	测试对象	$^{206}{ m Pb}/^{204}{ m Pb}$	²⁰⁷ Pb / ²⁰⁴ Pb	$^{208}{ m Pb}/^{204}{ m Pb}$	t/Ma	资料来源		
N14-F55	辉锑矿	18.422	15. 557	38.010	104	[3]		
N31-F11	辉锑矿	18.361	15.634	38.377	245	[3]		
N40-F31	辉锑矿	18.243	15.393	37. 593	23	[3]		
N40-F42	辉锑矿	18.321	15.579	38. 211	206	[3]		
N40-F42	辉锑矿	18.335	15.614	38.178	239	[3]		
N40-F31	辉锑矿	18.243	15.393	37. 593	23	[3]		
N55-F421	辉锑矿	18.321	15.579	38. 211	206	[3]		
N55-F422	辉锑矿	18.335	15.614	38. 1778	239	[3]		
SM21-F3-5	辉锑矿	18.461	15. 588	38.076	114.7	[3]		
S5-F28	辉锑矿	18.466	15.614	38. 222	143.9	[3]		
S50-F38	辉锑矿	18.449	15. 593	38.13	129.8	[3]		
Q21-F106	辉锑矿	18. 544	15. 589	38. 133	54.7	[3]		
Q21-K14	辉锑矿	18.643	15.628	38. 138	31.9	[3]		
QH2945	辉锑矿	18.495	15. 598	38. 122	102.4	[3]		
QH2922	辉锑矿	18.371	15. 572	37.922	160.2	[3]		
Q24-F75	辉锑矿	18.501	15.663	38. 577	179.5	[3]		
S51-F36	黄铁矿	18.082	15.5841	38.000	385	[3]		
Q21-Br421	白云岩	19. 222	15.6333	38.104		[3]		
Q21-Br422	白云岩	19.169	15.675	38.365		[3]		
Q21-Fr44	白云岩	20.022	15.673	38.136		[3]		
Q21-Br46	白云岩	21.794	15.828	38.090		[3]		
Q21-Br54	白云岩	22.115	15.824	38.442		[3]		

注:年龄数据 t 根据 Geokit 地球化学软件^[28]计算得到.

4 结 论

公馆 青铜沟汞锑矿床成矿流体主要是经地 层循环的大气水,沿多期构造活动形成的断裂贯 入,下渗到深部,在温度、压力等作用下与基底地 层发生反应,淋滤了其中的成矿物质汞、锑,并使 流体同时也携带了基底地层中的锶、铅等元素,在 温度、压力的作用下发生循环,携带着成矿物质沿 断裂进入泥盆纪地层,与地层中的硫结合,随着温 度、压力、pH 值等因素的变化而在构造拐弯、分支 和交叉处沉淀成矿,形成了公馆 青铜沟这种受 断裂控制的热液矿床。

致谢:中国科学院地球化学研究所彭建堂研究员对本文 提出了宝贵的修改意见,陕西地矿局地质一大队赵新科 科长、中陕金属矿业有限公司旬阳矿区的伍兴全经理,孙 苏主任为野外研究提供了方便,特此致谢!

参考文献:

- [1] 涂光炽. 中国层控矿床地球化学[M] 北京:科学出版社 ,1984:189-214.
- [2] 白洪生,朱经祥.陕西省旬阳县公馆汞锑矿床地质研究报告[R] 北京:中国地质大学图书馆,1984:1-66.
- [3] 丁抗.陕西公馆地区汞锑矿床地球化学研究[D] 贵阳:中国科学院地球化学研究所,1986:1-126.
- [4] 杨志华.陕西旬阳公馆汞锑矿床地质特征及形成机制[J] 西北地质 ,1980 ,(4):236-242.
- [5] 屈开硕. 陕南公馆-回龙地区汞锑矿床地质特征[J] 地质论评,1981,(1):186-192.
- [6] 庞庆邦 ,贾伟光 ,韩仲文 ,陈守武. 陕西省旬阳地区汞锑金矿成矿条件 [J] 地质与资源 2001 ,10(2):91-101.
- [7] 李勇 周宗桂.陕西镇安-旬阳地区汞锑、铅锌、金矿床成因及演化规律浅析[J] 地质与资源 2003,12(1):19-35.

- [8] 彭大明.秦岭地槽汞锑资源成矿探讨[J] 地质找矿论丛 2000,15(1):64-71.
- [9] 彭大明. 旬阳锑汞矿田成矿研探[J] 有色金属矿产与勘查,1998,7(5):289-293.
- [10] 何立贤 韩至钧 安树仁 严均平. 汞矿地质与普查勘探 [M] 北京:地质出版社 ,1996:1-129.
- [11] 郑永飞 陈江峰. 稳定同位素地球化学[M] 北京:科学出版社 2000:1-316.
- [12] 祁思敬. 秦岭热水沉积型铅锌(铜)矿床[M] 北京:地质出版社,1993:1-467.
- [13] Veizer J, Hods J. The name of ¹⁸O/¹⁶O and ¹³C/¹²C secular trends in sedimentary carbonate rocks [J] Geochim cosmochim Acta , 1976, 40(11): 1387-1395.
- [14] Schidlowski M. Beginning of terrestrial life: Problems of the early record and implications for extraterrestrial scenarios [J]. Instruments, Methods and Missions for Astrobiology, SPIE, 1998, 3441: 149-157.
- [15] 陈衍景 刘丛强 陈华勇 涨增杰 李超.中国北方石墨矿床及赋矿孔达岩系碳同位素特征及有关问题讨论[J] 岩石学报 2000, 16(2):233-244.
- [16] Hoefs J. Stable Isotope Geochemistry (Forth Edition) [M]. Berlin: Springer-Verlag, 1997: 201.
- [17] 彭建堂 胡瑞忠. 湘中锡矿山超大型锑矿床的碳、氧同位素体系 [J] 地质论评 2001 47(1):34-41.
- [18] Zheng Y F. Carbon-oxygen isotopic covariation in hydrothermal calcite during degassing of CO₂: A quantitative evaluation and application to the Kushikino gold mining area in Japan [J] Miner Deposita, 1990, 25(4): 246-250.
- [19] Zheng Y F. Calculation of oxygen isotope fractionation in hydroxylbearing silicates [J]. Earth Planet Sci Lett , 1993, 120 (3/4): 247-263.
- [20] 郑永飞.稳定同位素体系理论模式及其矿床地球化学应用[J] 矿床地质 2001 20(1):1-316.
- [21] 杨志华.边缘转换盆地的构造岩相与成矿[M] 北京:科学出版社,1991:1-228.
- [22] 沈渭洲. 同位素地质学教程[M] 北京:原子能出版社,1997:17.
- [23] Veizer J , Compston W. ⁸⁷ Sr/⁸⁶ Sr composition of seawater during the Phanerozoic [J] Geochim Acta , 1974 , 38: 41461-41484.
- [24] 福尔 G. 同位素地质学原理 [M] 北京:科学出版社 ,1983:1-351.
- [25] Zartman R E , Doe B R. Plumbo tectnoics-the modle1 [J]. Tectonophysics , 1981 , 75: 135-162.
- [26] 张理刚. 成岩成矿理论与找矿[M] 北京:北京工业大学出版社,1989:1-200.
- [27] 张本仁 高山 张宏飞. 秦岭造山带地球化学[M] 北京:科学出版社 2002:38-41.
- [28] 路远发. Geokit: 一个用 VBA 构建的地球化学工具软件包[J] 地球化学 2004 33(5):459-464.

Geochemistry of Gongguan-Qingtonggou Hg-Sb deposit in Xunyang , Shaanxi Province

ZHANG Ying¹², CHEN Yan-jing³⁴, QI Ji-ping⁴, LENG Cheng-biao¹², ZHAO Cheng-hai¹²

State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China;
 Graduate School of Chinese Academy of Sciences, Beijing 100039, China;

3. Open Laboratory of Orogen and Crust Evolution, Peking University, Beijing 100871, China;

4. Key Laboratory of Mineralization Dynamics, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China)

Abstract: Gongguan-Qingtonggou Hg-Sb deposit in Xunyang , Shaanxi Province is controlled by both strata and faults , and ore bodies occur in the faults at each level in the dolomite of the Devonian Gongguan formation. Hydrogen and oxygen isotopic study indicates that the ore-forming fluid is dominated by meteoric water. Carbon and oxygen isotopes reveal that the formation of hydrothermal calcite is closely related to the strata. The carbon isotope composition of the hydrothermal calcite is not completely consistent with that of ore-bearing strata due to the organic carbon in the strata mixed with the ore-forming fluid. Moreover , the sulfur is derived from the decomposition of sulfide or the reduction of sulfate in the strata while the lead is derived from a deep source and displays the characteristics of lead isotope in orogenic belt. Sr isotopes in ores and wall rocks indicate that the main ore-forming material such as Hg and Sb is carried by the fluid with high ⁸⁷Sr/⁸⁶Sr value that is derived from a deep source.

Key words: Gongguan-Qingtonggou Hg-Sb deposit; ore-forming fluids; isotope; geochemistry