doi: 10. 3799/ dqkx. 2010. 022

峨眉火成岩省内带岩浆硫化物 含矿岩体橄榄石的成因意义

官建祥^{1,2}, 宋谢炎^{1*}, Leonid V. Danyushevsky³, 陈列锰^{1,2}, 聂晓勇^{1,2}

1. 中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵州贵阳 550002

2. 中国科学院研究生院, 北京 100049

3. School of Earth Sciences and Centre for Ore Deposit Research, University of Tasmania, GPO Box 272-79, Hobart TAS 7001, Australia

摘要: 峨眉火成岩省内带出露数十个含 Ni-Cu 铂族元素(PGE)硫化物矿床(或矿化)的镁铁质一超镁铁质侵入岩体. 根据铂族 元素(PGE)含量的不同,这些岩浆硫化物矿床可分为 Ni-Cu 型(如力马河和清水河)、Ni-Cu PGE 型(如清矿山和黄草坪)和 PGE 型(如金宝山和杨合武). 不同类型含矿岩体的橄榄石电子探针分析表明,除了清矿山岩体少数几个橄榄石晶体属于镁橄 榄石外(Fo_{20.1} ~ Fo_{93.1}),其余均为贵橄榄石(Fo_{76.8} ~ Fo_{80.6}). 不同矿化类型的岩体的橄榄石成分差异明显. Ni-Cu 型硫化物含 矿岩体的橄榄石 Fo 为 77~87. Ni 含量变化范围为(976~2176)×10⁻⁶. Ni-Cu PGE 型硫化物含矿岩体的橄榄石 Fo 为 80~86. Ni 含量范围为(1024~2543)×10⁻⁶. PGE 型硫化物含矿岩体的橄榄石 Fo 为 78~84. Ni 含量在(776~1755)×10⁻⁶之间 变化. 清矿山 Ni-Cu-PGE 型硫化物含矿岩体橄榄石具有高 Fo(最高达 93.1)和 CaO 含量(0.245%~1.14%)、以及非常低的 Ni(266×10⁻⁶)的特征. 可能是同化混染作用的结果. 利用力马河岩体最高 Fo 含量的橄榄石成分计算表明,母岩浆是高镁苦橄玄武质岩浆. 橄榄石分离结晶和硫化物熔离模拟显示: Ni-Cu 型矿化侵入体母岩浆经历了最广泛的硫化物熔离(~0.1%), Ni-Cu-PGE 型侵入体次之,大约为0.06%,而 PGE 型侵入体母岩浆硫化物熔离程度最低(~0.02%). 早期结晶的橄榄石晶体 与间隙硅酸盐熔浆之间再平衡过程是橄榄石成分变化的原因.

关键词:峨眉火成岩省内带;岩浆硫化物矿床;橄榄石;分离结晶;硫化物熔离;晶间熔浆效应. 中图分类号: P 574.2; P571 文章编号: 1000-2383(2010)02-0224-11 收稿日期: 2008-12-10

Genetic Significances of Olivine from Magmatic Sulfide Ore-Bearing Intrusions in Central Zone of Emeishan Large Igneous Province

GUAN Jian-xiang^{1,2}, SONG Xie-yan^{1*}, Leonid V. Danyushevsky³, CHEN Lie-meng^{1,2}, NIE Xiao-yong^{1,2}

1. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China

2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China

3. School of Earth Sciences and Centre for Ore Deposit Research, University of Tasmania, GPO Box 272-79, Hobart TAS 7001, Australia

Abstract: Several mafic ultramatic intrusions hosting economic NiCu-(PGE) sulfide deposits and sub-economic sulfide mineralization occur in the central zone of the Emeishan large igneous province (LIP). These magmatic sulfide deposits can be divided into the Ni-Cu type (e. g. Limahe and Qingshuihe), Ni-Cu-PGE type (e. g. Qingkuangshan and Huangcaoping) and PGE type (e. g. Jinbaoshan and Yanghewu), according to the variations in the content of platinum-group elements (PGE). Electron microprobe analyses of olivine show that almost all olivine crystals are chrysolite (Fo_{76.8}— Fo_{89.6}), with an exception of some grains from the Qingkuangshan intrusion which are forsterite (Fo_{90.1}— Fo_{90.1}). The compositions of olivine are distinct between intrusions containing different types of sulfides. For the Ni-Cu sulfide-bearing intrusions, the Fo and Ni contents of olivine range from 77 to 87 and from 976× 10⁻⁶ to 2 176× 10⁻⁶, respectively. Olivine crystals in the Ni-Cu-PGE sulfide-bearing intrusions contain olivine crystals with Fo numbers varying from 80 to 86 and (1 024– 2 543)× 10⁻⁶ Ni. The PGE sulfide-bearing intrusions contain olivine crystals with Fo numbers ranging from 78 to 84 and Ni contents of 776× 10⁻⁶ to 1755× 10⁻⁶. The olivine from the Qingkuan-

作者简介: 官建祥(1982-), 男, 博士研究生, 矿物学、岩石学、矿床学专业, *通讯作者: 宋谢炎, E-mail: songxieyan [@]vip. gyig. ac. cn (1994-2014 China Academic Journal Electronic Publishing House, All rights reserved, http://www.cnki.net

gshan intrusion, which contains economic Ni-Cu-PGE sulfides, is distinct from others by its high Fo numbers (up to 93. 1) and CaO content (0.24%-1. 14%) and extremely low Ni (266×10^{-6}). The Ni concentrations and Mg[#] of parental magma have been estimated by using the compositions of most Fo-rich olivine crystals and the results show a high-MgO picritic-basaltic magma. Modeling of olivine fractional crystallization and sulfide segregation show that the parental magma for the Ni-Cu type mineralized intrusions has experienced the most extensive sulfide segregation (~ 0.1%). For the Ni-Cu-PGE type intrusions, it is ~ 0.06%, and for the PGE type intrusions it is ~ 0.02%. Re-equilibration of the early formed olivine crystals with the trapped liquid can account for the variations of olivine compositions.

Key words: central zone of Emeishan large igneous province; magmatic sulfide deposit; olivine; fractional crystallization; sulfide segregation; trapped silicate liquid effect.

0 引言

橄榄石是镁铁质岩浆最早结晶的矿物之一,橄 榄石/熔体平衡使得其Fo和Ni含量除了受母岩浆 成分控制外,还会受到橄榄石分离结晶和硫化物熔 离的影响(Duke and Naldrett, 1978; Li *et al.*, 2007).在S不饱和体系中,橄榄石Fo牌号和Ni含 量受控于硅酸盐母岩浆成分和橄榄石分离结晶过 程.当体系达到S饱和时,镁铁质岩浆分离结晶产生 的橄榄石的Ni含量会因硫化物熔离而表现出不同 程度的亏损.此外,橄榄石的成分还会因与间隙硅酸 盐熔浆或与硫化物熔体的反应而发生改变(Barnes, 1986; Li and Naldrett, 1999).由此可见,镁铁质一 超镁铁质岩体中,特别是含硫化物的岩体中橄榄石 Fo及Ni含量蕴含着丰富的岩浆演化和硫化物熔离 成矿的信息.

岩浆镍一铜一铂族元素(PGE)硫化物矿床是峨 眉火成岩省地幔柱活动形成的两个重要的成矿系列 之一(高振敏等, 2004; 胡瑞忠等, 2005; 宋谢炎等, 2005).在目前已发现的40余处岩浆硫化物矿床和 矿点中(宋谢炎等,2005),外带仅出露杨柳坪 Ni-Cu-PGE 硫化物矿床和白马寨 Ni-Cu 硫化物矿床, 而内带含矿岩体密集,不仅有国内唯一的大型 PGE 硫化物矿床(金宝山矿床)、力马河小型 Ni-Cu 硫化 物矿床、以及其他 Ni-Cu-PGE 硫化物矿点外,还有 不少成矿潜力尚不清楚的含矿岩体. 宋谢炎等 (2005)和 Song et al. (2008)根据 PGE 含量的不同 将岩浆硫化物矿床划分为 Ni-Cu 型、Ni-Cu-PGE 型 和 PGE 型 3 种类型. 铂族元素地球化学研究证实了 不同类型矿床的形成取决于玄武岩浆中 PGE 的丰 度、硫化物熔离的期次和强度等 (Song et al., 2008). 然而, 不同类型岩浆硫化物成矿过程对橄榄 石矿物化学成分影响的研究尚未引起足够重视.本 文对峨眉火成岩省内带的力马河、清水河、清矿山、

黄草坪、金宝山和杨合武 6 个硫化物含矿岩体的橄 榄石成分进行了分析和研究,证实了橄榄石成分与 母岩浆成分、硫化物熔离过程有着内在联系.这对利 用橄榄石成分判断其他岩体的含矿性具有一定的指 导意义.

1 峨眉火成岩省内带的基本地质特征

峨眉火成岩省是指中国西南云贵川三省和越南 北部 Song Da 地块大面积(>5×10⁵ km²)的晚二叠 世溢流玄武岩分布区,包括许多时空上与溢流玄武 岩密切相关的镁铁质一超镁铁质侵入岩体和碱性岩 体(张云湘等,1988;徐义刚和钟孙霖,2001;张招崇 等,2001;Lo *et al.*,2002;肖龙等,2003),为晚二叠 世地幔柱活动的产物(Chung and Jahn, 1995; Song *et al.*,2001; Zhou *et al.*,2002; He *et al.*,2003; 张招崇和王福生,2003;Xu *et al.*,2004).

根据玄武岩厚度、岩性和地球化学特征在空间 上的变化,结合侵入岩体的分布特征,峨眉火成岩省 又可划分为内带和外带(图1)(Xu et al., 2004; 宋 谢炎等,2005).相对外带而言,内带主要有以下几个 特征:(1)玄武岩厚度巨大;(2)低 Ti 玄武岩为主,分 布在岩系中下段,有少量高 Ti 玄武岩;(3)分布大型 层状岩体和碱性岩体,以及许多小的镁铁质一超镁 铁质岩体.

镁铁质一超镁铁质侵入岩体主要出现在大火成 岩省内带攀枝花一西昌地区,在空间上呈近南北向 的带状分布(图1).根据所赋主要矿种的不同,可分 为两类:一是产出巨型 V-Ti-Fe 磁铁矿矿床的大型 层状岩体,全部出现在大火成岩省的内带,如攀枝 花、红格、新街和白马等岩体;二是以 Ni-Cu-PGE 硫 化物矿化为主的小的镁铁质一超镁铁质岩体,如金 宝山、力马河、朱布、清矿山等岩体.若根据伴生金属 的不同可进一步细分为五类,如图1 所示.

?1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

图 1 峨眉火成岩省内带镁铁质一超镁铁质含矿岩体分布简 图(据宋谢炎等, 2005 改绘)

Fig. 1 Simplified geological map of the inner Emeishan large igneous province showing the distribution of mineralized mafic-ultramafic intrusions

I.含 Ni-Cu 硫化物矿化岩体: 2. 黄草坪; 3. 丹桂; 5. 黄草; 8. 垭口; 12. 力马河; 13. 黄土坡; 18. 纳拉箸; 19. 水平; 20. 拱青山; II.含 PGE 硫化物矿化岩体: 7. 大槽; 14. 杨合武; 21. 朱布; 23. 猛林沟; 25. 迎风; 26. 金宝山; III 含 Ni-Cu-PGE 硫化物岩体: 9. 清水河; 15. 清矿山; 16. 核桃树; IV.含巨型 V-Ti 磁铁矿矿床岩体: 1. 太和; 4. 白马; 10. 红 格: 17. 攀枝花; V.含 PGE 矿化和 V-Ti 磁铁矿岩体: 6. 新街; 11. 中 十沟; 22. 热水塘; 24. 安益

Zhou *et al*. (2008)对力马河岩体辉长岩和朱布 岩体闪长岩进行了锆石 U-Pb 年龄测试,其结果分 别为 263 \pm 3 M a 和 261 \pm 3 M a. 这个年龄值与攀枝 花(Zhou *et al*., 2005)、新街(Zhong *et al*., 2004)、 红格 (Zhong and Zhu, 2006)、白马(Guo *et al*., 2004)等 V-Ti-Fe 磁铁矿含矿岩体的年龄是一致的. 因此本区镁铁质一超镁铁质岩体与峨眉山溢流玄武 岩同为峨眉地幔柱活动的产物(Chung and Jahn, 1995;徐义刚和钟孙霖, 2001; Guo *et al*., 2004; Xu *et al*., 2004; 宋谢炎等, 2005; Zhou *et al*., 2008).

2 铜镍铂族元素硫化物含矿岩体地质特征

Song et al. (2008)根据 PGE 含量的不同将大 火成岩省的硫化物含矿岩体分为 3 类: (1)贫 PGE 的 Ni-Cu 型硫化物含矿岩体,如内带的力马河、清水 河(陶琰等, 2007; Song et al., 2008)和外带的白马 寨(Wang et al., 2006; Wang and Zhou, 2006); (2)中等 PGE 含量的 Ni-Cu-PGE 型硫化物含矿岩 体,如内带的清矿山、黄草坪和外带的杨柳坪(Song et al., 2003, 2004); (3)PGE 型硫化物含矿岩体,如 内带的金宝山(朱丹等, 2003; Tao et al., 2007)和 杨合武.由于杨柳坪、白马寨等岩体蚀变强烈,未发 现新鲜橄榄石晶体,本文选择内带的力马河、清水河 Ni-Cu 硫化物含矿岩体,清矿山、黄草坪 Ni-Cu-PGE 硫化物含矿岩体,金宝山 PGE 含矿岩体和只在岩体 边缘有弱 PGE 矿化的杨合武岩体为研究对象.

2.1 Ni-Cu 型硫化物含矿岩体

力马河 Ni-Cu 型硫化物含矿岩体位于会理县城 南西约 30 km, 其产出受安宁河一易门深断裂带控 制,围岩是前震旦纪会理群变质岩系(图1).平面上, 岩体呈"履状",轴向南北,长900m,宽20~180m,剖 面上呈漏斗状,倾向西,倾角70°~90°,最大延深约 800 m(姚家栋, 1988; Song et al., 2008)(图 2a). 力马 河岩体是一个复式岩体,主要由上部辉长岩--闪长岩 相构成,两者相互呈过渡关系,下部含硫化物橄榄岩 相沿辉长岩相底部侵入。含矿橄榄岩相具有对称带状 分异现象:中部为中粗粒橄榄岩相,边缘是中细粒橄 辉岩相 (刘朝基等, 1988). 矿石中硫化物含量大干 10%,以浸染状为主,局部海绵陨铁状,主要金属矿物 为磁黄铁矿、镍黄铁矿、黄铜矿和磁铁矿、黄铁矿.成 矿元素以Ni-Cu为主(0.1%~4%Ni,0.02%~6.5% Cu), 贫 PGE (< 0. 2× 10^{-6} Pt, < 0. 3× 10^{-6} Pd, $< 0.007 \times 10^{-6}$ Ir)(Song *et al.*, 2008).

清水河岩体位于会理县城北北西约7km(图 1),岩体大小和矿化规模均小于力马河含矿岩体.岩 体呈脉状,平面上表现为北宽南窄的"蝌蚪状",受北 西向断裂(F₁)控制,侵位于下寒武统页岩和灰岩中, 剖面上呈向南西陡倾的长漏斗状脉体(图 2b).岩体 主要由含矿的橄榄岩和橄辉岩组成(姚家栋,1988). 铜镍硫化物矿化出现在超基性岩脉中,矿体呈小透 镜状产于橄榄岩及橄辉岩中,产状与岩体产状一致.

2.2 Ni-Cu-PGE 型硫化物含矿岩体

t al., 2004; 木谢众寺, 2005; Zhou *et al.*, 2008). 清矿山 Ni-Cu-PGE 型硫化物含矿岩体位于会 ?1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

- 图 2 峨眉火成岩省内带典型硫化物含矿岩体地质图与 剖面图(a,b,c据Song et al., 2008; d据姚家栋, 1988) Fig. 2 Geological maps and cross sections of typical sul
 - fide mineralized mafic-ultramafic intrusions in the central zone of ELIP

a. 力马河岩体, h. 清水河岩体地质图和剖面图; c. 清矿山岩体地质图; d. 杨合武岩体地质图和剖面图. 1. 中元古代变质岩系; 2. 橄榄岩; 3. 橄辉岩; 4. 辉石岩; 5. 含长辉石岩; 6. 辉长岩脉; 7. 角岩; 8. 推测断层

理县城西南约 40 km, 受河口复式背斜与安宁河一 易门深断裂控制, 围岩是前震旦纪会理群河口组变 质岩系 (图 1). 岩体呈透镜状, 走向近南北、向西陡 倾, 主要由含矿橄榄岩组成, 其中大约 90% 的橄榄 岩脉为铜镍硫化物矿体, 矿石以浸染状为主. 细粒辉 长岩分布于岩体边缘, 与橄榄岩呈侵入接触关系 (姚 家栋, 1988). 清矿山岩体矿石中硫化物含量一般 > 10%, 矿石矿物主要有磁黄铁矿、镍黄铁矿、黄铜 矿, Ni、Cu 含量分别为 0. 1% ~ 6. 2%、0. 03% ~ 11%, PGE 含量中等, 其中 Pt 为(150 ~ 1 797)× 10⁻⁹, Pd 为(350 ~ 4 867)×10⁻⁹, Ir 小于 500×10⁻⁹ (Song *et al.*, 2008). 前震旦纪康定群混合花岗片麻岩与会理群板岩接触带,呈楔形,南北向延伸.岩体分异明显,自下而上可划分为单辉纯橄岩、含长单辉橄榄岩、含长二辉橄榄岩一辉石岩、苏长辉长岩等岩相带.岩体下部含长单辉橄榄岩中可见硫化铜镍矿化,矿化带长 870 m,宽20~70 m,延伸 350 m.矿石以浸染状为主(刘朝基等,1988).

2.3 PGE 型硫化物含矿岩体

金宝山 Pd-Pt 硫化物含矿岩体位于滇中台坳边 缘、红河断裂东侧(图 1). 岩体呈似层状(岩席), 侵 位于泥盆系金宝山组白云岩、泥灰岩、砂板岩中. 岩 体相带分异不明显, 主要由蛇纹石化的辉橄岩组成, 岩体上部有辉长岩相. 矿化以铂族元素富集, 而相对 贫 Cu、Ni 为特征. 矿体呈似层状、透镜状赋存于辉 橄岩中.矿石为浸染状, 硫化物含量最高仅 1.8 %, Ni、Cu 分别低于 0.2 %和 0.3 %, Pt、Pd 含量很高, 分别为(350~10 240)×10⁻⁹、(190~6430)×10⁻⁹ (Tao *et al.*, 2007).

杨合武岩体位于会理县城西南 38 km, 围岩是 前震旦纪会理群力马河组变质岩系. 岩体属于阿拉 斯加型(Alaska-type)环状杂岩体, 空间上似一不规 则向北西倾伏的漏斗状岩株(如图 2d). 岩相分异明 显, 核心相由橄榄岩和橄辉岩组成; 过渡相主要是辉 石岩; 辉长岩则不连续地环绕辉石岩分布, 组成了岩 体的边缘相. 相与相之间为过渡接触关系. 岩体与围 岩同化一混染作用和交代(重结晶)作用十分强烈, 变质级度可达角闪岩相. 岩体边缘相含长辉石岩和 辉长岩中出现弱 PGE 矿化, Pt+Pd 含量最高可达 0. 42 g/t(姚家栋, 1988), 但未形成工业品位的矿 体. 金属硫化物有磁黄铁矿、黄铁矿、镍黄铁矿和黄 铜矿, 主要呈星散状分布, 少数呈斑点状、团块状、陨 铁状分布.

3 橄榄石矿物化学特征

本次研究选择蚀变程度较低的不同岩性的样品 共计 17 件,其中都有含量不等的新鲜的橄榄石.在 橄辉岩和浸染状矿石(橄榄岩)中,橄榄石含量分别 在 20%~35%和 60%~70%之间.辉长岩中橄榄石 含量小于 3%,多呈半自形粒状或浑圆粒状,常见辉 石包橄结构和反应边结构.除个别样品外,一般每件 样品选取若干个新鲜橄榄石颗粒进行电子探针分 析,其平均成分和以4个氧为基数计算的阳离子系

(#54) 7.54 jut 3.8×10^{-1} 3.1^{-1} 3.1^{-1} 3.1^{-1} 3.1^{-1} 3.1^{-1} 3.1^{-1} 3.1^{-1} 3.1^{-1} 3.1^{-1} 3.1^{-1} 3.1^{-1} 3.1^{-1} 3.1^{-1} 3.1^{-1}	HF 112		
株式 SL05-5 SL05-7 SL05-7 SL05-5 SL05-7 SL05-7 <th>卑玶</th> <th>杨合武</th> <th>金宝山</th>	卑玶	杨合武	金宝山
	05-4 SH05-11 SY05-2 诨岩 橄辉岩 橄辉岩	SY05-3 SY05-4 SY05 橄辉岩< 橄辉岩< 橄辉岩	5-7 JB-19 5-7 JB-19
SIO 38.9 38.7 38.8 39.2 39.9 39.7 38.8 <th< td=""><td>6 13 3</td><td>10 17 11</td><td>9</td></th<>	6 13 3	10 17 11	9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.9 39.1 39.0	38.8 38.8 38.4	6 39.2
	02 0.02 0.02	0.02 0.02 0.0	0.01
	02 0.01 0.01	0.02 0.01 0.0	0.02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.7 14.9 19.3	19.8 19.2 20.4	6 15.5
	21 0.19 0.27	0.25 0.24 0.2	29 0.22
	3.0 44.4 41.6	41.1 41.6 40.	4 44.2
	08 0.06 0.09	0.12 0.07 0.10	0.14
K20 0.01 0.01 <th< td=""><td>01 0.02 0.01</td><td>0.01 0.01 0.0</td><td>0.00</td></th<>	01 0.02 0.01	0.01 0.01 0.0	0.00
	00 0.01 0.00	0.00 0.00 0.00	00 0.00
NiO 0.18 0.17 0.15 0.16 0.24 0.22 0.14 0.15 0.13 0.18 0.13 0.18 0.13 <th< td=""><td>01 0.01 0.01</td><td>0.00 0.01 0.0</td><td>0.01</td></th<>	01 0.01 0.01	0.00 0.01 0.0	0.01
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	29 0.28 0.14	0.14 0.15 0.1	12 0.21
(16) $80.3 \sim$ $79.3 \sim$ $76.8 \sim$ $83.6 \sim$ 83.1 $84.6 \sim$ $86.1 \sim$ $85.5 \sim$ $80.2 \sim$	9.2 99.0 100.4	100.2 100.2 100.	.2 99.4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$3 \sim 83.2^{\circ}$) 84.1
(4) 不對为基数的用高子数 Si ⁺⁺ 0.991 0.992 0.994 0.994 0.994 0.996 0.9 Si ⁺⁺ 0.991 0.992 0.994 0.994 0.994 0.994 0.996 0.9 Ti ⁺⁺ 0.000 0	$\begin{array}{rrrr} 67 \sim & 1 & 998 \sim & 1 & 033 \sim \\ 26 & 2 & 513 & 1 & 125 \end{array}$	$\begin{array}{rrrr} 658 \sim & 1033 \sim & 777 \\ 1256 & 1359 & 1016 \end{array}$	\sim 1444 5 1749
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	994 0.993 0.995	0.995 0.994 0.99	96 0.993
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	000 0.000 0.000	0.000 0.000 0.00	00 0.000
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	000 0.000 0.000	0.001 0.000 0.00	00 0.001
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	358 0.318 0.412	0.424 0.412 0.44	44 0.333
$ \begin{split} \mathbf{Mg}^{3+} & 1.649 1.617 1.605 1.638 1.676 1.658 1.763 1.722 1.752 1.627 1.627 1.627 1.627 1.627 1.627 1.617 0.004 0.006 0.004 0.004 0.004 0.004 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.001 0.000 0.00$	005 0.004 0.006	0.006 0.005 0.00	00 0 008
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	639 1.682 1.585	1.572 1.587 1.55	51 1.666
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	002 0.002 0.002	0.003 0.002 0.00	03 0.004
\mathbf{K}^+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.0 \mathbf{Cr}^{2+} 0.001 0.001 0.001 0.001 0.001 0.000 0.0 0.	001 0.001 0.000	0.001 0.000 0.00	01 0.000
${f Cr}^{3+}$ 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.000 0.0 0.	000 0.000 0.000	0.000 0.000 0.00	00 0.000
$Ni2^+$ 0.004 0.004 0.003 0.003 0.005 0.004 0.003 0.003 0.004 0.0	000 0.000 0.000	0.000 0.000 0.00	00 0.000
	006 0.006 0.003	0.003 0.003 0.00	02 0.004
Total 3.008 3.008 3.006 3.005 3.001 3.006 3.009 3.006 3.007 3.004 3.0	006 3.007 3.004	3.004 3.005 3.00	04 3.006

?1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

数见表 1.氧化物与橄榄石牌号 (Fo)的关系如图 3 所示.

由表 1 可见,除清矿山岩体个别橄榄石为镁橄 榄石外 (Fo> 90), 其他均为贵橄榄石 (Fo= 90~ 70). 不同矿化类型的岩体橄榄石成分存在明显差 异.Ni-Cu 型硫化物含矿岩体橄榄石 Fo 为 77~87, Ni 含量为(971~2166)×10⁻⁶. Ni-Cu-PGE 型硫化 物含矿岩体(黄草坪)橄榄石 Fo 为 80~86, Ni 含量 在(1015~2526)×10⁻⁶之间.PGE 型硫化物含矿 岩体橄榄石 Fo 为 78 ~ 84, Ni 含量为(658 ~ 1749)×10⁻⁶(表1).橄榄石 Fo 与 SiO2、MgO、NiO 呈正相关关系, 与 FeO、M nO 呈负相关关系, 与 CaO 的线性关系不是很清楚(图 3). 橄榄石 Fo 与氧化物 之间良好的相关性表明可能具有共同的母岩浆起 源.清矿山橄榄石成分与其他岩体橄榄石具有明显 的差异,如 Fo 高达93.1,接近苦橄岩橄榄石成分 (Fomax=88.3, 徐义刚和钟孙霖, 2001; Fomax=91.3, Zhang et al., 2005), 远高于其他岩体橄榄石 Fo (< 87), 不仅 NiO 含量非常低(最低仅0.15%), NiO 与 Fo 还呈现出独特的负相关关系(图 3b),特别是 CaO 含量(0.2%~1.2%), 明显高于其他岩体橄榄 石 < 0.25 %)(图 3d).这种成分特点可以用富钙镁 的围岩(如白云岩)同化混染作用加以解释.

4 橄榄石的成因意义

橄榄石是镁铁质一超镁铁质岩浆最早结晶的硅酸盐矿物之一,随着分离结晶的进行,橄榄石 FeO/MgO比值会逐渐升高,因此FeO/MgO比值可 作为分离结晶作用的指示剂.Ni在橄榄石中是微量 元素,同时又是相容元素,其化学行为遵循亨利定 律.在S不饱和体系中,橄榄石Ni含量取决于硅酸 盐母岩浆Ni的丰度和分配系数.在S饱和体系中, 橄榄石Ni含量明显受硫化物熔离作用控制.另外, 早期结晶的橄榄石成分还会因与间隙硅酸盐熔浆或 与硫化物熔体的再平衡作用而发生改变(Duke and Naldrett, 1978; Barnes, 1986; Cawthorn *et al.*, 1992; Li and Naldrett, 1999).因此,橄榄石成分不 仅能反映母岩浆性质,而且是很好的硫化物熔离以 及晶间熔浆效应的示踪剂.

4.1 母岩浆性质

大量研究表明,岩浆硫化物中 PGE 的含量取决 于母岩浆 PGE 丰度和硅酸盐熔浆与熔离硫化物熔 体的质量比(即 *R* 因子)的大小(Campbell and Naldrett, 1979).富PGE 的硫化物矿床 *R* 因子高达 10^5 ,而贫 PGE 富 Ni-Cu 的硫化物矿床 *R* 因子只有 数百(Naldrett, 1989).原始岩浆 PGE 丰度取决于 地幔性质和部分熔融程度, Barnes and Maier (1999)

?1994-2014 China Academic Journal Electronic Publishing Flouse. All rights reserved. http://www.cnki.net

研究表明,对于原始地幔而言,25%~30%的部分熔 融可产生S不饱和的富PGE的原始岩浆,这种岩浆 必然同时具有高镁特征.徐义刚和钟孙霖(2001)和 张招崇和王福生(2003)的研究表明,峨眉火成岩省 的原始岩浆具有高镁特征(MgO>16%),后者更指 出原始岩浆 MgO 含量为21.79%.确定母岩浆性质 的方法相对简单,可根据橄榄石/熔体平衡原理,对 橄榄石成分进行研究来获得.

前面已提到,清矿山母岩浆可能遭受白云质围 岩的同化混染作用,由此结晶的橄榄石成分不能用 作母岩浆性质的研究.选择另外5个含矿岩体中Fo 最高的橄榄石,取镁铁交换常数 K_D = (X_OI / X_OI)/ $(X_{\text{met}}^{\text{Fe}}/X_{\text{met}}^{\text{Mg}}) = 0.30$ (Roeder and Emslie, 1970), **R** 据橄榄石/熔体平衡原理计算得到的与橄榄石平衡 的岩浆的 Mg^{\pm} (MgO/(MgO+FeO))分别为: 力马 河(65.8)、清水河(63.0)、黄草坪(63.8)、金宝山 (61.3)、杨合武(52.8)、除杨合武、金宝山岩体外,其 余四个岩体母岩浆 Mg[#]与金川岩体的母岩浆比较 接近(~64, Chai and Naldrett, 1992). 考虑到各岩 体的橄榄石成分分布在同一趋势线上(如图 3),假 设它们具有共同的母岩浆起源 $(Mg^{*} = 65.8)$,根据 全岩 Mg[#] vs. MgO 图解(Thompson and Gibson, 2000)(全岩数据未刊)计算得到的母岩浆 MgO 含 量为 11.9%, 与金川母 岩浆的 MgO 含量相似 (12%, Chai and Naldrett, 1992), 稍低于金宝山母 岩浆 MgO 含量(~12.9%, 陶琰等, 2002; 朱丹等, 2003). 根据 IUGS 对高镁和苦橄质火山岩划分标准 (Le Bas, 2000),属于高镁玄武质岩浆.需要指出的 是,用橄榄石成分计算得到的母岩浆 MgO 含量通 常低于真实的母岩浆 MgO 含量,因此,这些含矿岩 体的母岩浆可能是苦橄玄武质岩浆.

4.2 分离结晶和硫化物熔离

实验研究表明, Ni 在硫化物/ 硅酸盐岩 浆之间 的分配系数(如 D_{Ni}^{Ni} =500, Peach *et al.*, 1990)远 远高于其在橄榄石/硅酸盐岩浆的分配系数(如 D_{Ni}^{OVSI} 为 2.86~13.6, Takahashi, 1978).在S 不饱 和体系中结晶的橄榄石, Ni 含量随分离结晶进行而 缓慢降低;在S 饱和体系中结晶的橄榄石, Ni 含量 会出现不同程度的亏损.因此, 橄榄石中 Ni 含量变 化特征可用来示踪分离结晶和硫化物熔离作用.

橄榄石中 Ni 含量与硅酸盐岩浆中 Ni 含量之间 关系可用瑞利分馏定律来描述:

 $C_{i}^{i}=C_{\circ}^{i}F^{(D-1)},$

式中: *C* 和 *C* 分别代表微量元素 *i* 在残余的和初始 的岩浆中的浓度; *F* 是初始岩浆分离结晶作用后剩 余的份额(结晶度或固结程度); *D* 是元素 *i* 在结晶 相和熔体之间的总分配系数, 由下式计算得到;

 $D = X_{\alpha}K^{\alpha'L} + X_{\beta}K^{\beta'L} + \dots$ (2) 其中: X_{α} 为结晶相中 α 矿物的百分含量; $K^{\alpha'L}$ 为矿 物 α 对 *i* 元素的分配系数.

根据上述公式,橄榄石分离结晶过程中微量元 素 Ni 的变化就可以定量模拟.需要指出的是,在 Ni 含量变化不大的情况下,电子探针分析误差的客观 存在,母岩浆成分的不确定性以及分配系数选择上 的主观差异性,给定量模拟造成了一定程度的影响, 但这些因素不会改变整个模拟趋势,也不会改变本 文的结论,此处不再详细论述.

鉴于硫化物主要以乳滴状、浑圆状包裹在单斜 辉石和角闪石中,在橄榄石中未见硫化物产出,而橄 榄石又是三者中最先结晶矿物,这说明硫化物熔离 是在橄榄石结晶发生之后.因此,本文主要考虑只有 橄榄石分离结晶,以及橄榄石分离结晶到一定程度, 硫化物出现熔离的情况.假设初始岩浆 MgO、FeO 含量分别为 12.5%和 12.3%, Ni 含量为 330× 10^{-6} ,该值在大洋高原玄武岩 Ni 含量范围内((28~ 723)×10⁻⁶, Kerr, 2004).Ni 在橄榄石/硅酸盐岩浆 之间的分配系数 D_{Ni}^{Ni} ^{SII}设为7(Takahashi, 1978),在 硫化物/硅酸盐岩浆中的分配系数 $D_{Ni}^{SulvSII}$ 为 500 (Peach *et al.*, 1990), $K_D^{Ee^{-Mg}} = 0.3$ (Roeder and Emslie, 1970).

橄榄石分离结晶和硫化物熔离定量模拟结果如 图 4. 若硅酸盐体系没有发生硫化物熔离, 结晶的橄 榄石 Ni 含量在 Ni-Fo 图中将投影在硫不饱和条件 下橄榄石分离结晶曲线上;如果橄榄石 Ni 在分离结 晶趋势线下,则说明有硫化物熔离作用发生(Duke and Naldrett, 1978; Li and Naldrett, 1999; Li et al., 2007). 由图 4a 可见, 力马河 Ni-Cu 型岩浆硫 化物矿床经历了广泛的分离结晶(~16%)和硫化物 熔离作用(~0.1%), 清水河 Ni-Cu 型含矿岩体只有 6%左右的橄榄石分离结晶,几乎没有出现硫化物熔 离,这与实际样品观察有出入,可能是数据太少造成 分析不全面的缘故.黄草坪 Ni-Cu-PGE 型岩体橄榄 石分离结晶和硫化物熔离程度分别约为 12%和 0.06%(图 4b), 清矿山 Ni-Cu-PGE 型含矿岩体遭 受强烈的同化混染作用,无法用现有的方法进行模 拟.金宝山 PGE 型含矿岩体经历 8 %的橄榄石分离

(1)

Fig. 4 Modeling of olivine fractional crystallization, sulfide segregation and trapped silicate liquid (TSL) effect a. Ni-Cu 型矿化岩体; b. Ni-CuPGE 矿化岩体; c. PGE 型矿化岩体; I. 橄榄石分离结晶模拟曲线 F 为分离结晶程度; II. 橄榄石分离结晶和硫 化物熔离同时发生; II a. 两者同时发生; II b. 橄榄石分离结晶 6%后, 出现硫化物熔离; II c. 橄榄石分离结晶 2. 5%后, 出现硫化物熔离; III. 晶间 熔浆作用 (TSL)模拟

结晶和大约 0.02 %的硫化物熔离;杨合武岩体以分 离结晶为主,仅有极少量的硫化物熔离(图 4c),这 与其微弱的 PGE 硫化物矿化仅出现在岩体边缘的 现象基本吻合.

总而言之, 橄榄石 Fo 牌号和 Ni 含量不仅与分 离结晶程度有关, 也与硫化物熔离强度有关, 从硫化 物熔离强度较高的 Ni-Cu 型和 Ni-Cu-PGE 型硫化 物矿床, 到硫化物熔离强度较低的 PGE 型硫化物矿 床, 含矿岩体中橄榄石 Ni 的亏损程度也明显降低. 这与 Song *et al*. (2008)利用 PGE 定量模拟得到的 结果一致.

4.3 晶间熔浆效应

早期结晶的橄榄石成分还会受到堆积后地质过 程的影响,如橄榄石在液相线下与晶间熔浆局部再 平衡作用(Barnes, 1986; Cawthorn *et al.*, 1992; Cawthorn, 1996; Borghini and Rampone, 2007)、 橄榄石内部熔融包裹体与主晶的局部再平衡等 (Danyushevsky *et al.*, 2002),其中又以晶间熔浆 效应对堆积后橄榄石成分的影响最为显著.

橄榄石成分变化特征可定性地判断晶间熔浆类 型. 若晶间熔浆为硅酸盐岩浆, 橄榄石一熔体平衡会 导致橄榄石堆晶 Fo降低, 但不改变 Ni-Fo 的正相关 关系; 若晶间熔浆是硫化物熔浆, 晶体一熔体平衡过 程中 Ni-Fe 交换反应会产生负的 Ni-Fo 关系(Li and Naldrett, 1999). 由图 4 可见, 力马河、金宝山、 杨合武岩体以及黄草坪橄辉岩中橄榄石 Ni-Fo 是正 相关关系, 说明存在间隙硅酸盐岩浆作用, 而黄草坪 辉长岩 Ni-Fo 负相关关系表明橄榄石与硫化物熔浆 发生了再平衡作用. 质量平衡计算获得(Barnes, 1986). 堆晶橄榄石成分 使用前文定量计算结果数据, 中间堆积橄榄石成分 通过热力学软件 M ELTs (Ghiorso and Sack, 1995) 计算得到. M ELTs 使用的初始岩浆为金川母岩浆 成分 (Chai and Naldrett, 1992), Ni 含量设定为 300×10^{-6} , 初始岩浆温度设定为 1 300 ℃, 压力 10^{5} kPa, 氧逸度是 QFM. 计算结果如图 4.

由图 4a 可见, 力马河 Ni-Cu 型矿化岩体的辉长 岩和橄辉岩中橄榄石成分变化分别需要 40 %、50% 的间隙硅酸盐岩浆再结晶.清水河岩体橄榄石没有 明显的与间隙硅酸盐反应的迹象.图 4b 中, 清矿山 Ni-Cu-PGE 型含矿岩体橄榄石是地壳同化混染作 用的结果, 黄草坪 Ni-Cu-PGE 型含矿岩体母岩浆 Ni 含量可能要高于模拟计算假设的初始 Ni 含量, 因此不能用目前的母岩浆成分进行模拟.图 4c 中金 宝山 PGE 型矿化岩体橄榄石成分变化只需要 10% 的间隙硅酸盐岩浆再结晶, 40% 的间隙硅酸盐岩浆 再结晶可以解释杨合武岩体橄榄石的成分变化.

5 结论

(1)橄榄石成分在探讨母岩浆性质、分离结晶和 硫化物熔离以及晶间熔浆效应方面有重要的指示意 义.(2)峨眉火成岩省内带岩浆硫化物含矿岩体原始 岩浆为苦橄质玄武岩浆,其 MgO、FeO 含量分别为 12.5%、12.3%.(3)矿化类型与橄榄石分离结晶没 有必然联系,但和硫化物熔离程度却有一定关系,即 Ni-Cu 型硫化物熔离最强(~0.1%), Ni-Cu-PGE型 次之(~0.06%),而 PGE 型最弱(< 0.02%).(4)晶

· 间隙硅酸盐岩浆对橄榄石成分影响程度可通过 ?1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net 间熔浆效应是橄榄石结晶后成分变化的主导因素 之一.

References

- Barnes, S. J., 1986. The effect of trapped liquid crystallization on cumulus mineral compositions in layered intrusions. *Contrib. Mineral. Petrol.*, 93(4): 524-531. doi: 10.1007/ BF00371722
- Barnes, S. J., Maier, W. D., 1999. The fractionation of Ni Cu and the nobel metals in silicate and sulfide liquids. In: Keays, R. R., Lesher, C. M., Lightfoot P. C., eds., Dynamic processes in magmatic ore deposits and their application in mineral exploration. *Geological Association* of Canada Short Course Notes, 13: 69-106.
- Borghini, G., Rampone, E., 2007. Postcumulus processes in oceanic-type olivine-rich cumulates: the role of trapped melt crystallization versus melt/rock interaction. *Contributions to Mineralogy and Petrology*, 154(6): 619– 633. doi: 10.1007/s00410-007-0217-5
- Campbell, I. H., Naldrett, A. J., 1979. The influence of silicate: sulfide ratios on the geochemistry of magmatic sulfides. *Economic Geology*, 74 (6): 1503-1506. doi: 10. 2113/gsecongeo. 74. 6. 1503
- Cawthorn R.G., 1996. Re-evaluation of magma compositions and processes in the uppermost critical zone of the Bushveld complex. *Mineralogical Magazine*, 60(398): 131-148.
- Cawthorn R. G., Sander, B. K., Jones I. M., 1992. Evidence for the trapped liquid shift effect in the M ount Ayliff intrusion. South Africa. Contributions to Mineralogy and Petrology, 111 (2): 194 – 202. doi: 10. 1007/ BF00348951
- Chai G., Naldrett, A. J., 1992. The Jinchuan ultramafic intrusion-cumulate of a high-Mg basaltic magma. *Jour*nal of Petrology, 33(2): 277-303. doi: 10. 1093/ petrology/33. 2. 277
- Chung, S. L., Jahn, B. M., 1995. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian— Triassic boundary. *Geology*, 23(10): 889—892. doi: 10. 1130/0091—7613(1995)023<0889: PLI-IGO> 2. 3. CO; 2
- Danyushevsky, L. V., McNeill, A. W., Sobolev, A. V., 2002. Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques advantages and complications. *Chemical Geology*, 183(1-4): 5-24. doi: 10. 1016/ S0009-2541(01)00369-2

fractionation of olivine and molten sulfide from komatiite magma. *Earth and Planetary Science Letters*, 39(2): 255– 266. doi: 10.1016/0012-821X (78)90201-7

- Gao, Z. M., Zhang, Q., Tao, Y., et al., 2004. An analysis of the mineralization connected with Emeishan mantle plume. Acta Mineralogica Sinica, 24(2): 99-104 (in Chinese with English abstract).
- Ghiorso, M. S., Sack, R. O., 1995. Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. *Contributions to Mineralog y and Petrology*, 119(2-3): 197-212. doi: 10. 1007/ BF00307281
- Guo, F., Fan, W. M., Wang, Y. J., et al., 2004. When did the Emeishan mantle plume activity start? Geochronological and geochemical evidence from ultramafic-mafic dikes in southwestern China. *International Geology Review*, 46 (3): 226-234. doi: 10. 2747/0020-6814.46.3.226
- He, B., Xu, Y. G., Chung, S. L., et al., 2003. Sedimentary evidence for a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts. *Earth* and Planetary Science Letters, 213(3-4): 391-405. doi: 10.1016/S0012-821X(03)00323-6
- Hu R. Z., Tao, Y., Zhong H., et al., 2005. Mineralization systems of a mantle plume: a case study from the Emeishan igneous province, Southwest China. *Earth Science Frontiers*, 12(1): 42-54 (in Chinese with English abstract).
- Kerr, A. C., 2004. Oceanic plateaus. In: Holland, H. D., Turekian, K. K., eds., Treatise on geochemistry. Elsevier, Amsterdam. 3: 537-565. doi: 10.1016/ B0-08 -043751-6/03033-4
- Le Bas, M. J., 2000. IUGS reclassification of the high-Mg and picritic volcanic rocks. *Journal of Petrology*, 41 (10): 1467-1470. doi: 10.1093/petrology/41.10.1467
- Li C. S., Naldrett, A. J., 1999. Geology and petrology of the Voisey's Bay intrusion: reaction of olivine with sulfide and silicate liquids. *Lithos* 47(1-2): 1-31. doi: 10. 1016/S0024-4937(99)00005-5
- Li C. S., Naldrett A. J., Ripley, E. M., 2007. Controls on the Fo and Ni contents of olivine in sulfide-bearing mafic ultramafic intrusions: principles modeling and examples from Voisey's bay. *Earth Science Frontiers*, 14(5): 177-183.
- Liu, C. J., Zeng, X. W., Jin, J. T., et al., 1988. Mafic ultramafic intrusions in Kang-Dian region. Chongqing Publishing House, Chongqing, 52-88 (in Chinese).

Duke J. M., Naldrett, A. J., 1978. A numerical model of the ?1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

- 第2期
- Lo, C. H., Chung, S. L., Lee, T. Y., et al., 2002. Age of the Emeishan flood magmatism and relations to Permian— Triassic boundary events. *Earth and Planetary Science Letters*, 198 (3-4): 449-458. doi: 10. 1016/S0012-821X(02)00535-6
- Naldrett, A. J., 1989. Magmatic sulfide deposits. Springer, New York, 137–140.
- Peach C. L., Mathez, E. A., Keays R. R., 1990. Sulfidemelt-silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB; implications for partial melting. *Geochimica et Cosmochimica Acta*, 54(12): 3379-3389. doi: 10. 1016/ 0016-7037(90)90292-S
- Roeder, P. L., Emslie, R. F., 1970. Olivine-liquid equilibrium. Contributions to Mineralogy and Petrology, 29 (4): 275-289. doi: 10.1007/BF00371276
- Song, X. Y., Zhang C. J., Hu, R. Z., et al., 2005. Genetic links of magmatic deposits in the Emeishan large igneous province with dynamics of mantle plume. *Journal* of Mineralogy and Petrology, 25(4): 35-44 (in Chinese with English abstract).
- Song, X. Y., Zhou, M. F., Cao, Z. M., 2004. Genetic relationships between base-metal sulfides and platinum-group minerals in the Yangliuping Ni-Cu-(PGE) sulfide deposit, southwestern China. *Canadian Mineralogist*, 42: 469-483. doi: 10.2113/gscanmin. 42. 2. 469
- Song, X. Y., Zhou, M. F., Cao, Z. M., et al., 2003. Ni-Cu-(PGE) magmatic sulfide deposits in the Yangliuping area. Permian Emeishan igneous province, SW China. *Mineralium Deposita*, 38(7): 831-843. doi: 10.1007/3 - 540-27946-6
- Song, X. Y., Zhou M. F., Hou, Z. Q., et al., 2001. Geochemical constraints on the mantle source of the Upper Permian Emeishan continental flood basalts, southwestern China. *International Geology Review*, 42(3): 213-225. doi: 10.1080/00206810109465009
- Song, X. Y., Zhou, M. F., Tao, Y., et al., 2008. Controls on the metal compositions of magmatic sulfide deposits in the Emeishan large igneous province. SW China. *Chemical Geology*, 252(1-2): 38-49. doi: 10.1016/j. chemgeo. 2008. 04. 005
- Takahashi E., 1978. Partitioning of Ni²⁺, Co²⁺, Fe²⁺, Mn²⁺, and Mg²⁺ between olivine and silicate melts: compositional dependence of partition coefficient. *Geochimica et Cosmochimica Acta*, 42 (12): 1829-1844. doi: 10.1016/0016-7037(78)90238-7
- Tao, Y., Gao, Z. M., Luo, T. Y., et al., 2002. Inversion of primary magma composition for Jinbaoshan ultramafic ?1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net
 vines in picritic-komatiitic rocks from the Emeishan large igneous province, southwestern China. *Episodes*.

intrusion, Yunnan. Acta Petrologica Sinica, 18 (1):
70-82 (in Chinese with English abstract).

- Tao, Y., Hu, R. Z., Qi L., et al., 2007. Geochemical characteristics and metallogenesis of the Limahe maficultramafic intrusion Sichuan. Acta Petrologica Sinica, 23(11): 2785-2800 (in Chinese with English abstract).
- Tao, Y., Li, C. S., Hu, R. Z., et al., 2007. Petrogenesis of the Pt-Pd mineralized Jinbaoshan ultramafic intrusion in the Permian Emeishan large igneous province, SW China. *Contributions to Mineralogy and Petrology*, 153 (3): 321-338. doi: 10. 1007/s00410-006-0149-5
- Thompson, R. N., Gibson, S. A., 2000. Transient high temperatures in mantle plume heads inferred from magnesian olivines in Phanerozoic picrites. *Nature*, 407 (6803): 502-506. doi: 10.1038/35035058
- Wang, C. Y., Zhou M. F., 2006. Genesis of the Permian Baimazhai magmatic Ni Cu-(PGE) sulfide deposit, Yunnan, SW China. *Mineralium Deposita*, 41 (8): 771-783. doi: 10. 1007/s00126-006-0094-2
- Wang, C. Y., Zhou, M. F., Keays R. R., 2006. Geochemical constraints on the origin of the Permian Baimazhai mafic-ultramafic intrusion, SW China. Contributions to Miberalogy and Petrology, 152 (3): 309 - 321. doi: 10. 1007/s00410-006-0103-6
- Xiao, L., Xu, Y. G., Mei, H. J., et al., 2003. Late Permian flood basalts at Jinping area and its relation to Emei mantle plume: geochemical evidences. Acta Petrologica Sinica, 19(1): 38-48 (in Chinese with English abstract).
- Xu, Y. G., Chung, S. L., 2001. The Emeishan large igneous province: evidence for mantle plume activity and melting conditions. *Geochimica*, 30(1): 1-9 (in Chinese with English abstract).
- Xu, Y. G., He B., Chung, S. L., et al., 2004. Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province. *Geology*, 32: 917–920. doi: 10.1130/G20602.1
- Yao, J. D., 1988. Genesis of magmatic Cu-(Pt)-Ni sulfide deposit in the Xichang region. Chongqing Publishing House Chongqing, 11-61 (in Chinese).
- Zhang Y. X., Luo, Y. N., Yang, C. X., 1988. Panxi rift. Geological Publishing House, Beijing, 142-184 (in Chinese).
- Zhang, Z. C., Mao, J. W., Wang, F. S., et al., 2005. Mantle plume activity and melting conditions: evidence from olivines in picritic-komatiitic rocks from the Emeishan large igneous province couthwestern China. Enjander

28(3): 171–176.

- Zhang, Z. C., Wang, F. S., 2003. Sr, Nd and Pb isotopic characteristics of Emeishan basalt province and discussion on their source region. *Earth Science – Journal of China University of Geosciences*, 28(4): 431–439 (in Chine se with English abstract).
- Zhang, Z. C., Wang, F. S., Fan, W. M., et al., 2001. A discussion on some problems concerning the study of the Emeishan basalts. Acta Petrologica et Mineralogica, 20 (3): 239-246 (in Chinese with English abstract).
- Zhong H., Yao, Y., Prevec, S. A., et al., 2004. Traceelement and Sr-Nd isotopic geochemistry of the PGEbearing Xinjie layered intrusion in SW China. *Chemical Geology*, 203(3-4): 237-252. doi: 10.1016/j. chemgeo.2003.10.008
- Zhong H., Zhu, W. G., 2006. Geochronology of layered mafic intrusions from the Pan-Xi area in the Emeishan large igneous province, SW China. *Mineralium Deposita*, 41 (6): 599-606. doi: 10.1007/s00126-006-0081-7
- Zhou, M. F., Arndt N. T., Malpas J., et al., 2008. Two magma series and associated ore deposit types in the Permian Emeishan large igneous province SW China. *Lithos*, 103 (3-4): 352-368. doi: 10. 1016/j. lithos. 2007.10.006
- Zhou, M. F., Malpas. J., Song, X. Y., et al., 2002. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction. *Earth and Planetary Science Letters*, 196(3-4): 113-122. doi: 10.1016/S0012-821X(01)00608-2
- Zhou M. F., Robinson, P. T., Lesher, C. M., et al., 2005. Geochemistry, petrogenesis and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe-Ti-V oxide deposits Sichuan Province, SW China. Journal of Petrology, 46(11): 2253-2280. doi: 10. 1093/ petrology/egi054
- Zhu, D., Tao, Y., Luo, T. Y., et al., 2003. Geochemical and pet-

no logical characteristics of mafic and ultra-mafic intrusions
in Jinbaoshan Yunnan. Acta Mineralogica Sinica, 23(1):
63-69 (in Chinese with English abstract).

附中文参考文献

- 高振敏,张乾,陶琰,等,2004. 峨眉山地幔柱成矿作用分析. 矿物学报,24(2):99-104.
- 胡瑞忠, 陶琰, 钟宏, 等, 2005. 地幔柱成矿系统: 以峨眉山地 幔柱为例. 地学前缘, 12(1):42-54.
- 刘朝基,曾绪伟,金久堂,等,1988.康滇地区基性超基性岩. 重庆:重庆出版社,52-88.
- 宋谢炎,张成江,胡瑞忠,等,2005.峨眉火成岩省岩浆矿床成 矿作用与地幔柱动力学过程的耦合关系.矿物岩石,25 (4):35-44.
- 陶琰, 高振敏, 罗泰义, 等, 2002. 云南金宝山超镁铁岩原始岩 浆成分反演. 岩石学报, 18(1): 70-82.
- 陶琰,胡瑞忠,漆亮,等,2007.四川力马河镁铁一超镁铁质岩 体的地球化学特征及成岩成矿分析.岩石学报,23 (11):2785-2800.
- 肖龙,徐义刚,梅厚均,等,2003.云南金平晚二叠纪玄武岩特 征及其与峨眉地幔柱关系——地球化学证据.岩石学 报,19(1):38-48.
- 徐义刚, 钟孙霖, 2001. 峨眉山大火成岩省: 地幔柱活动的证 据及其熔融条件. 地球化学, 30(1):1-9.
- 姚家栋, 1988. 西昌地区硫化铜(铂)镍矿床成因. 重庆: 重庆 出版社, 11-61.
- 张云湘, 骆耀南,杨崇喜, 1988.攀西裂谷.北京:地质出版社, 142-184.
- 张招崇, 王福生, 2003. 峨眉山玄武岩 Sr、Nd、Pb 同位素特征 及其物源探讨. 地球科学——中国地质大学学报, 28 (4): 431-439.
- 张招崇, 王福生, 范蔚茗, 等, 2001. 峨眉山玄武岩研究中的一些问题的讨论. 岩石矿物学杂志, 20(3): 239-246.
- 朱丹, 陶琰, 罗泰义, 等, 2003. 云南金宝山镁铁--超镁铁岩的 地球化学特征及成因. 矿物学报, 23(1):63-69.