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Antimony (Sb) has received increasing attention recently due to its toxicity and potential human
carcinogenicity. In the present work, drinking water, fish and algae samples were collected from the
Xikuangshan (XKS) Sb mine area in Hunan, China. Results show that serious Sb and moderate arsenic (As)
contamination is present in the aquatic environment. The average Sb concentrations in water and fish were
53.6±46.7 μg L−1 and 218±113 μg kg−1 dry weight, respectively. The Sb concentration in drinking water
exceeded both Chinese and WHO drinking water guidelines by 13 and 3 times, respectively. Antimony and
As concentrations in water varied with seasons. Fish gills exhibited the highest Sb concentrations but the
extent of accumulation varied with habitat. Antimony enrichment in fish was significantly lower than that of
As and Hg.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

As a toxic trace element and a suspected human carcinogen (Gebel,
1997), antimony (Sb) has been listed as a priority pollutant of interest in
both the USA (USEPA, 1979) and EU (Council of the European
Communities, 1976). Similar to As, Sb is a chalcophilic group V
metalloid, and is assumed to have a comparable geochemical behavior
and toxicity (Gebel, 1997; Wilson et al., 2004; Tighe et al., 2005). The
principal global sources of anthropogenic Sb pollution are mining and
smelting (Adriano, 1986; Li and Thornton, 1993). Antimony concentra-
tions in Sb mine drainage can reach 6064–7502 μg L−1 (Zhu et al.,
2009). In contrast, in non-polluted water Sb concentrations are usually
less than 1.0 μg L−1 (Filella et al., 2002a). Like lead and mercury,
antimony contamination is also a global environmental issue. Antimony
enrichment and accumulation have been reported in peat bogs in
Europe and in polar ice in the Canadian arctic during the past few
decades (Shotyk et al., 1996; Krachler et al., 2005). Antimony has been
reported as the most enriched trace element in some city aerosols
(Shotyk et al., 2005). However, little attention has been paid to the
environmental chemistry of Sb in comparison to metals and metalloids
such as As, Pb and Hg (Shotyk et al., 2005), primarily because the Sb

content of most environmental matrices is usually low (Bencze, 1994).
Recently, environmental concerns regarding Sb has increased as a result
of elevated concentrations around smelters, chemical plants, mining
andmineralizedareas, and the increased availabilityof Sb rich consumer
products (i.e., use in fire retardants and brake pads) (Filella et al.,
2002a).

Antimony is generally not readily mobilized in the environment
despite high Sb soil concentrations at smelter sites (Flynn et al., 2003;
Wilson et al., 2004). The “phytoavailable Sb” in contaminated soil was
found to be only 0.06–0.59% of the total Sb content in German Sb/As/
Hg mine area (Hammel et al., 2000) and 1.62–8.26% in Chinese Sb
mine area (He, 2007). Relatively low Sb bioavailability has also been
reported in soils, plants, invertebrates and small mammals around a
smelter in England Sb mine area (Ainsworth et al., 1990a,b). Bio-
concentration factors (BCFs, a ratio of element concentrations in
organism to that in the exposure source) just ranged from 0.003 to
0.34 in these areas. Nevertheless, elevated Sb and As concentrations
have been measured in the upper trophic level macroinvertebrates of
an aquatic ecosystem contaminated by mining activity (Telford et al.,
2009). Especially highly soluble Sb and methylantimony has been
found in natural waters (Andreae et al., 1981). Although the
distribution and chemical form of Sb in the terrestrial and aquatic
environment probably has a strong influence on its uptake, the
bioavailability and accumulation of Sb in aquatic environments
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remain unclear, and further investigation is required to fully
understand the behavior of Sb in aquatic ecosystems.

China is one of the largest Sb producers in the world. The average
production of Sb in these two years of 1999 and 2006 accounted for 85.5%
of the global production (Carlin, 2000, 2006). The largest Sbmine in China
is Xikuangshan (XKS) Sb mine, located in Lengshuijiang, Hunan province
in central China. The XKS Sb mine is located on a large Sb deposit and is
nicknamed the “World's Antimony Capital”. Antimonywas first mined at
the site in 1897 andmining operations continue today. The climate in this
area represents a typical subtropical continental monsoon with an
average annual rainfall of 1354 mm. Significant seasonal differences in
rainfall exist with highest rainfall in summer (approx 550–600 mm from
May to July).

A number of previous studies have been undertaken in the area. These
showed that mine tailings (He, 2007), mine drainage (Zhu et al., 2009),
soils (He, 2007), crops (He and Yang, 1999; He et al., 2002) and hair of
local residents (Liu et al., 2009) contain elevated Sb, As and Hg
concentrations (Table 1). These studies focused mainly on Sb effects on
crops, Sb accumulations andmobility inmine tailings, mine drainage and
soils. However, to date, Sb in drinking water and its biogeochemical
behavior in the aquatic environment of the mine area have not been
investigated. The objectives of the present study were to investigate
contamination and bioaccumulation of Sb, As and Hg in water and fish in
the area of the XKS Sb mine.

2. Materials and methods

2.1. Sampling procedure

BetweenDecember 2007 and July 2008, 73fish, 51water and 12 algae
sampleswere collected from the study area. The sampling sites included a
river (ShuichangRiver), 3ponds (Nankuang,Yangjia andTongxing), and4
reservoirs (Shuichang, Shengli, Fuyuan and Minzhu) (Table 2 and Fig. 1).
These water sampling sites were not directly polluted by Sb mine

drainage. Antimony smelting operations and subsequent atmospheric
transportation of Sb may have contributed to pollution of these sites. All
reservoirs are used as drinking water supplies. Water samples were
divided at each site. One partwas acidified to 1% v/vwith ultrapureHCl in
order to determine dissolved (filteredwith 0.45-μmfiltrationmembranes
in the field) and total metal (unfiltered) concentrations; The other part
wasnot acidified inorder tomeasuredissolvedorganic carbon(DOC). Fish
and algae samples were stored in sealed-polyethylene bags and water
samples were stored in acid-cleaned plastic bottles. All samples were
immediately placed in ice-packed coolers and transported to the
laboratory where they were stored at −20 °C for fish and algae, and
2 °C for water.

Frozen fish and algae samples were thawed and rinsed
individually with deionized water to remove possible metal
contaminants. The fish organs including gill, liver, kidney, muscle,
swim bladder and skin were then extracted. Subsequently, gill and
skin were washed successively with Milli-Q water to remove
adsorptive impurities. All samples were freeze-dried for 48 h, and
then ground into powders and stored at −5 °C until analysis.

2.2. Analytical methods

All chemical reagents usedwere purchased fromSinopharmChemical
Reagent Shanghai Co., China, except KBH4 (Sigma Chemical Co., St. Louis,
MO, USA) and KI (Tianjin Fuchen Chemicals Reagents Co., China). pH,
electrical conductance (EC), and dissolved oxygen (DO) of water samples
were measured in the field. Dissolved organic carbon (DOC) of the water
sampleswasmeasured using aHigh TOC analyzer (Elementar, Germany).
Total anddissolved Sb, As andHg concentrationsweredeterminedusing a
hydridegeneration-atomicfluorescence spectrometer (HG-AFS). Approx-
imately 0.1 g of fish and algae were oxidized with 3 mL of high purity
HNO3 (65% v/v) in acid-cleaned digestion vessels, the mixture allowed to
digest overnight at room temperature (or for 2–3 h at 60 °C). The vessels
were thenheated slowly to125 °C for1 handheatedcontinuously tokeep
slightly boiling (b140 °C).When the solution decreased to approximately
1 mL, 1 mL H2O2 (30%, v/v) was added and samples were heated for an
hour. Once cooled the solutionswere carefully transferred andmadeup to
the 25 mL volume with Milli-Q water. One hour later an aliquot of 5 mL
was transferred into sample bottles, to which 1 mL of ultrapure HCl
(30%, v/v) and 1 mL of preliminary reductant (10% (m/v) analytical grade
KI+ 2% (m/v) analytical grade ascorbic acid) was added. The samples
were made up to 10 mL volume with Milli-Q water and left for 30 min
until they were analyzed using the AFS-810 (Beijing jitian, China). The
operating conditions of AFS instrumentwere optimized andall calibration
curves demonstrated good linearity (rN0.999). Total and dissolved Sb, As
and Hg in the water were measured using the samemethod as that used
for the digested solution.

2.3. Quality control

Quality control consisted of method blanks, blank spikes, matrix
spikes, blind duplicates and certifiedmaterials (CRMs). The CRMs include
DOLT-3 (Dogfish liver) (from National Research Council, Canada),
GBW08573 (Yellow-fin tuna) and GBW07603 (Bush leaves) (both from
National Research Centre for Certified Reference Materials, China). All
samples with outlier were analyzed again, by repeating the digestion and
measurement procedure. The recoveries (Measured value/Certified
value×100%) for Sb, As and Hg in CRMs were in the range of 85–107%,
92–112% and 89–117%, respectively. The relative standard deviation
(RSD) of duplicated samples was less than 9%.

2.4. Statistical analyses

The statistical package SPSS for windows 11.5 (SPSS Inc., Chicago,
Illinois, USA) was used for data analyses. Correlation coefficients were
studied using Pearson correlation analysis. Independent-sample t

Table 1
Mean Sb, As and Hg concentrations in environmental compartments in XKS Sb mine
area reported by the previous literature (mg kg−1).

N Sb As Hg Reference

XKS area
Mine
tailing

– 1291 332 4.59 He (2007)

Seepage
watera

– (8.4–11.3) (0.04–1.20) – He (2007)

Mine
drainage

18 10.1±7.39 0.127±0.3 0.003±0.003 Zhu et al.
(2009)

Soil – (100.6–5045) 35.1 14.9 He (2007)
Radish root 36 5.6 (0.17–85.1) (0.06–0.4) He (2007)
Radish leaf 36 54 (0.98–34.5) (0.19–2.52) He (2007)
Residents' hair 67 15.9 4.21 1.79 Liu et al.

(2009)

Control area
Typical fresh
water
worldwide

– b1 (μg L−1) – – Filella et al.
(2002b)

Typical
Chinese
soils

– (0.8–3) – – Qi and Cao
(1991)

Plant in
Sb/As/Hg
mine area,
Germany

134 0.31 – – Hammel
et al.
(2000)

Typical
urban
residents'
hair

22 0.53 0.28 0.34 Liu et al.
(2009)

N, number of analyzed samples.
ND, not determined.

a From the Sb smelter furnace clinker.
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tests were performed to test the significance of different environ-
mental compartments. Statistical tests were considered statistically
significant if Pb0.05.

3. Results and discussion

3.1. Sb, As and Hg in the water

The average concentrations of Sb, As and Hg in water were
53.6 ±46.7 μg L− 1, 4.75±4.02 μg L− 1 and 0.69±0.75 μg L− 1,

respectively (Table 3). The percentage of dissolved Sb relative to total Sb
in thewaterwas larger than that of As andHg (85.2%, 57.3% and 48.4%, for
Sb, As and Hg, respectively). Antimony concentrations in water were
significantly higher than those in some Sb and metal mine areas
worldwide (Table 4). In contrast, Sb concentrations were within the
range of values reported by other authors in mine contaminated waters
(Telfordet al., 2009), andwere lower than thosepolluteddirectlyby theSb
mine drainage (Zhu et al., 2009). However, As concentrations were lower
than those generally reported in other contaminated areas (Frisbie et al.,
2002; Culioli et al., 2009; Kazi et al., 2009; Telford et al., 2009). Mercury

Table 2
Samples and sampling site description.

Site Site name Sampling date Distance (km)a Site descriptions Water samples Fish samples Fish species

A Nankuang Jul. 2008 1 Pond 3 4 Crucian (Carassius auratus)
B Shuichang Dec. 2007, Jul. 2008 1 River 12 – –

C Shuichang Dec. 2007, Jul. 2008 1 Reservoir 6 19 Crucian, wild carp (Hemiculter leucisculus)
D Yangjia Dec. 2007, Jul. 2008 1.5 Pond 6 14 Crucian, grass carp (Ctenopharyngodon idellus)
E Shengli Dec. 2007, Jul. 2008 3 Reservoir 6 15 Grass carp, Crucian, herring (Mylopharyngodon Peters)
F Shengli Jul. 2008 3 Paddy field 3 2 Grass carp
G Fuyuan Jul. 2008 4 Reservoir 6 8 Grass carp, Crucian, carp (Cyprinus carpio)
H Minzhu Dec. 2007, Jul. 2008 5 Reservoir 6 8 Grass carp, Crucian, bighead crap (Aristichthys mobilis)
I Tongxing Jul. 2008 8 Pond 3 3 Grass carp

a Distance was the sampling site away from the Sb smelting site (same in the following tables).

Fig. 1. Map of the study area and description.
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concentrations in thewaterwere slightly higher than those in someurban
areas (Moore and Sutherland, 1980; Fang et al., 2004), but were
significantly lower than those in Hg smelting (Li et al., 2008) and
industrially polluted areas (Ferreira et al., 1979). In fact, He (2007)
reported an elevated mean concentration of Hg of 14.9 (9.67–21.3)
mg kg−1 in soils, compared with a baseline value in this area of 0.06 to
0.08 mg kg−1 (Wen and Chi, 2007). This suggests that, in addition to Sb,
As andHg contaminationwas also observed in the vicinity of the XKS Sb
mine.

Concentrations of Sb, As and Hg in water have been comparedwith
drinking water guidelines (Table 5) because the river (site B) and
reservoirs are used as water supplies for local residents. The average
Sb concentration exceeds the Chinese and WHO guidelines by 13 and
3 times, respectively. In contrast, As and Hg concentrations were near
and below the WHO guidelines respectively.

Using elemental ratios to distinguish metals' source origin is a
simple and theoretically possible approach and has been applied in
other studies in Pb/Zn smelting impacted areas (Eckel et al., 2002; Bi
et al., 2006). Antimony and As are generally spatially correlated in the
environment (Byrd, 1990). The different behavior of Sb and As during
the Sb smelting process (e.g. boiling points of Sb and As are 1587 and
603 °C respectively) will result in different Sb/As ratios in different
environmental compartments. According to the literature related to

the study site (Table 3), the data for mine drainage shows that Sb/As
ratios were extremely high with an average of 79.5 (Zhu et al., 2009);
Sb/As ratios in seepage water from the smelter furnace clinker (mean:
15.3) were also relatively higher in comparison to that of mine tailings
(mean: 3.89) and soils (mean: 2.87) (He, 2007). Data suggest that the
Sb smelting activities lead to the high Sb/As ratios in the polluted
water. We postulate that most As (b.p. 603 °C) evaporated during the
high temperature Sb (b.p. 1587 °C) smelting process due to its lower
boiling point resulting in little retention in mine drainage. The Sb/As
ratio in the pond (site A) located closest to the Sb smelting site is
extremely high (mean: 48.9). The Sb/As ratios in the river (site B) in
the vicinity of the Sb smelting site were also relatively high (mean:
18.2). This river (site B), despite no direct mine drainage input, had
probably been polluted indirectly by the mine discharge. In fact, it is
likely that Sb may gradually leach out from the abandoned mine
tailings up stream of the river.

Trends in Sb, As and Hg concentrations in water with distances from
the XKS Sb smelting site are shown in Fig. 2. Antimony and As
concentrations near the Sb mine area (distance≤1.5 km) were
significantly higher than those reported at the other sites, indicating
that Sb and As concentrations were highly affected by Sb smelting
activities. However, a similar trend was not observed for Hg. In fact, the
lowest Hg concentrations (mean: 0.049 μg L−1) were found in the pond
water (site A) affected to a great extent by Sb smelting operations. This
mainly attributed to that Hg concentrations in water were less affected
by the Sb smelting.Moreover, most Hgmay also be evaporated and little
retained in the mine drainage due to its low boiling point (357 °C). In
fact, Sb mine tailing (He, 2007) and mine drainage (Zhu et al., 2009)
were characterized by relatively lower Hg concentrations in this area
compared to the soils. In general, Hg pollution appeared to have been
derived mainly from metal smelting flue gas dusts, which subsided
rapidly and resulted in significant decrease of Hg concentrations in soils
with increasing distance from themetal mined areas (Sterckeman et al.,
2002; Li et al., 2008).

Variations of Sb and As concentrations in the water with different
seasons were also observed (Fig. 3). Water samples collected in the
reservoir (siteC)andpond(siteD)closest to the smelter (distanceb1 km)

Table 3
Total Sb, As and Hg levels in water in XKS Sb smelting area (μg L−1).

Site Site
descriptions

Distance
(km)

Sb As Hg Sb/As

Mean±S.D. Mean±S.D. Mean±S.D. Mean

A Pond 1 81.8±7.3 1.68±0.08 0.05±0.02 48.7
B River 1 156±4 8.91±1.62 0.2±0.1 17.5
C Reservoir 1 103±37 11.3±0.5 0.76±0.68 9.12
D Pond 1.5 43.7±32.7 6.6±3 0.99±0.75 6.62
E Reservoir 3 6.67±0.74 1.65±0.55 0.76±0.67 4.04
F Paddy fied 3 8.7±1.2 0.69±0.05 0.05±0.03 12.6
G Reservoir 4 10.4±0.1 0.56±0.06 0.09±0.01 18.6
H Reservoir 5 8.66±0.46 1.16±0.08 0.68±0.59 7.47
I Pond 8 13.2±1.7 4.41±0.82 1.91±0.35 2.99

Table 4
Comparison of Sb, As and Hg concentrations in water and fish muscle.

Area Water or fish Sba Asa Hga Area description Reference

China River 152 (135–163) 8.7 (7.1–12) 0.22 (0.08–0.4) Sb mine This study
Reservoir 36 (7.3–140) 3.6 (0.56–10) 0.89 (0.09–1.4)
Pond 48 (13–87) 4.1 (1.5–10) 0.96 (0.05–1.9)
Fish 25 (1.8–144) 49 (9–152) 35 (2.7–243)

Chinab River (mine drainage input) 7049 (6064–7502) 5.3 (5.5–7.3) 1.4 (0–5.9) Sb mine Zhu et al. (2009)
Australia Stream (mine drainage input) 381±23 46±2 – Sb–As mine Telford et al. (2009)
New Zealand River 25 (14–30) 8 (5.5–8.6) – Abandoned Sb smelting Wilson et al. (2004)
Turkeyc River 0.02–0.1 – – Sb mine Duran et al. (2007)
USA River 0.17–8.3 0.11–1.6 – Ag/Pb/Zn smelting Mok and Wai (1990)
China River – 8.4 (0.06–21) – As smelting Tao et al. (2007)
Pakistan Lake – 97 (35–158) – Village Kazi et al. (2009)
Bangladesh Tubewell water 0.0015–1.8 0.7–640 – Countrywide Frisbie et al. (2002)
China Lake – – 0.16 (0.12–0.2) Urban Fang et al. (2004)
China Stream water – – 0.94 (0.09–2.3) Hg smelting Li et al. (2008)
Canada Lake – – b0.2 Industrially polluted Moore and Sutherland (1980)

Fish – – 1220–3680
France River – 1498 (18–2330) – Abandoned As smelting Culioli et al. (2009)

Fish – 220–630 –

Brazil River – – 1.9 (0.01–10) Industrially polluted Ferreira et al. (1979)
Fish – – 50

Thailand Pond – 770 (550–990) – Abandoned tin mining Jankong et al. (2007)
Fish – 3530 (2620–4440) –

France Fish 80 (23–180) 980 (620–1370) – Abandoned As smelting Foata et al. (2009)
Mediterranean Fish – 11,910 (2380–52,420) – Marine environment Storelli and Marcotrigiano (2004)
Spain Fish – 100 (8–993) – Agricultural pollution Bordajandi et al. (2003)
Argentina Fish – – 189 Hg cell factory Arribere et al. (2003)

a Water and fish muscle expressed in μg L−1 and μg kg−1 wet weight, respectively.
b The river is polluted directly by the Sb mining and smelting drainage from the same area as this study.
c Dissolved Sb.
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in July 2008 exhibited significantly higher Sb and As concentrations than
those in December 2007. This can be attributed to fluctuations in
precipitation between the different seasons. Summer, in this study area,
has the highest rainfall approximately 42–44% of the annual amount. July
is thepeakof the rainy seasonandDecember isdry season. In July,moreSb
and As from atmospheric emission precipitation due to the Sb smelting
activities were accumulated in the reservoir and pond. In contrast, less
variations in Sb and As concentrations were observed at the other
reservoirs (sites E and H) (distanceN3 km). This suggests mine drainage
and smelter wastes, rather than deposition of smelter dust, greatly
impacted pollutant concentrations at these sites closest to the smelter.
River water (site B) showed limited variations of Sb and As concentration
partly due to its constant mixing and flow effects. Moreover, sediment
entrainment and mixing were not important due to low sediment loads.
This river is generally shallow(b1 m) andmainly pavedwith small stones
at the bottom.

No significant increase in Hg concentration in the water from
reservoir (C) and pond (D) was detected during the rainy season.
Instead, a slight decrease was observed due to the diluting process
during the rainy season. This again suggests that Hg concentrations in
the water were less affected by the Sb smelting. This study cannot
exclude the possibility that Hg was derived from another source. In
fact, the highest Hg concentrations in water were found in the pond
(site I) which was probably greatly affected by other anthropogenic
sources, being in close proximity to Lengshuijiang city.

3.2. Sb, As and Hg in fish

The weighted average concentrations of Sb, As and Hg in fish were
218±113, 266±109 and 65.3±34.7 μg kg−1 dry weight, respectively.
As shown in Fig. 2, Sb concentrations were approximately one order of
magnitude higher than As and Hg concentrations in all water samples.
However, some fish samples had higher As and Hg concentrations,
especially at downstream locations. The BCFs(fish/water) of Sb (mean:
10.8) have been significantly lower thanAs (mean: 193) andHg (mean:
206). Relatively low bioavailability of Sb has been reported in soils and
plants (Hammel et al., 2000; He, 2007), in grass and small mammals
(Ainsworth et al., 1990b), in soils and human (Gebel et al., 1998), and in
sediments and aquatic plants (Telford et al., 2009). Our observations
also suggest lower bioavailability of Sb in water and fish.

Positive correlation was found between Sb and Hg concentrations
in fish and those in the water (r=0.14 and 0.49, Pb0.05 and 0.01,
n=197 and 181, respectively); Negative correlation was observed
between As concentrations in fish and the water (r=−0.05, PN0.05,
n=190). This possibly indicates that water was a principal source for
Hg accumulation in fish. The correlations between fish and water for

Table 5
Risk-based drinking water guideline and element concentrations in the drinking water
in the mine area (μg L−1).

Element Risk-based drinking water
guideline

Concentrations in drinking water

WHOa Chinab USEPAc Distanceb1 km DistanceN1 km

Sb 20 5 6 127 (103–152) 10 (8.1–12)
As 10 10 10 9.4 (8.6–11) 1.1 (0.51–1.7)
Hg 6 1 2d 0.51 (0.22–0.79) 0.53 (0.09–0.79)

a WHO (2004).
b China drinking water standard (GB5749-2006) (2007).
c USEPA (2006).
d Inorganic Hg.

Fig. 2. Concentrations of total Sb, As and Hg in water and fish. The calculation of Sb, As and Hg concentrations in the fish was based on both weight and concentration of the organs:
x̄=(x1f1+x2f2+……+xnfn)/(f1+ f2+……fn)=∑xf/∑f (x is the mean concentrations of Sb, As and Hg in each organ, f is weight of each organ).

Fig. 3. Variations of total Sb, As and Hg concentrations in water in different seasons.
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Sb and As concentrations are very weak, suggesting other source (e. g.
ingestion) may play an important contribution to the accumulation of
Sb and As in fish, including algae. Algae are one of the major foods for
the sampled fish, and algae (Hydrodictyon spp) (all sampled from site
B) exhibited high Sb and As concentrations. The average concentra-
tions of Sb, As and Hg in algae were 11,100±3600, 11,000±2100 and
126±53 μg kg−1 dry weight, respectively. This suggestion is also
supported by a previous study in Hungary where no clear relationship
for As was observed between water and fish. Arsenic uptake was
dominated by carp and catfish diet (Soeroes et al., 2005).

The Sb concentrations in algae were higher than the general
concentrations 0.1–0.2 mg kg−1 dry weight, reported previously in
freshwater and marine algae (Sánchez-Rodr guez et al., 2001; Filella
et al., 2007). The As concentrations in algae were similar to those
reported in freshwater in Hungary (7.2 mg kg−1 dry weight)
(Schaeffer et al., 2006) and in shallow coastal zone in Mexico
(13.2 mg kg−1 dry weight) (Sánchez-Rodr guez et al., 2001). Both
Sb and As concentrations in algae were lower than those reported in a
stream polluted by Sb–As mine drainage in Australia (Telford et al.,
2009). In contrast, the BCFs of Sb and As (0.07 and 1.23 respectively)
for water-algae were comparable (0.25 and 1.22 respectively)
(Telford et al., 2009).

3.3. Sb, As and Hg in fish organ

The uptake and distribution characteristics of Sb, As and Hg in fish
organs are shown in Table 6 and Fig. 4. Significantly higher Sb
concentrations and BCFs in gills than in other organs were observed.
Nevertheless, gills exhibited relatively low Hg concentrations. High
concentrations of Sb in fish gills may be associated with ionic
exchanges, and fish gills can produce mucus which can serve as a
binding site to capture other metals such as aluminum (Handy and
Eddy, 1989; Wilson et al., 1994); Moreover, Sb concentrations in fish
gills may be attributed to the excretory roles of gills (Oladimeji et al.,
1984). To our knowledge, there is only one report (Foata et al., 2009)
published about Sb concentrations in fish in an abandoned As
smelting area. This report showed that kidney and gill have highest
Sb concentrations (kidney (701)Ngills (618)Nother organs (75–258)
μg kg−1 wet weight). In contrast, results in our study show Sb
concentrations in fish gill were exclusively higher than in any other
organs including kidney (Fig. 5). The different results are probably
attributable in part to the different fish species. In our study, Sb
concentrations in crucian (Carassius auratus) gills were much higher
than those in grass carp (Ctenopharyngodon idellus) and significant
differences were observed in the same sites (D, E, F, and G sites,
respectively) (Pb0.05) (Fig. 5). In general, crucian (an omnivorous
fish) and grass carp (an herbivorous fish) mainly inhabit the bottom
and surface layer of aquatic environments, respectively. Sb concen-
trations in sediments are generally 100 times higher than those in the
overlying water (Filella et al., 2002a). Therefore, those bottom feeders
had more access to Sb. Moreover, the carp (at sampling site F), an

omnivorous fish generally residing at the bottom, also exhibited an
elevated Sb concentration in gills than that in grass carp gills. This
suggests that Sb concentration in fish gills was closely related to their
habitats.

The organs with the highest BCF(fish organ/water) for As and Hg are
liver and kidney, respectively (Fig. 4). Fish kidney and liver had
similar BCFs for Sb, As and Hg, and high accumulation of As and Hg
was more pronounced. High As and Hg concentrations in kidney and
liver have been reported in control experiments (Pedlar and
Klaverkamp, 2002) and other field experimental studies (Sindayigaya
et al., 1994; Mason et al., 2000; Celechovska et al., 2005; Culioli et al.,
2009). Many other studies (Karadede and Unlu, 2000; Alcorlo et al.,
2006) have shown that muscle is not an active tissue for metal
bioaccumulation. In fact, whether fish muscle will accumulate Sb, As
and Hg is highly dependent on the environment's geochemical
conditions and the fish species being considered. In addition to fish
muscle, this study indicated that swim bladder and skin also exhibited
relatively lower BCFs for Sb, As and Hg than other organs (Fig. 4). Fish
skin exhibited the lowest Sb, As and Hg concentrations, except that
the lowest Hg concentrations were observed in gills (Table 6). This
indicates that swim bladder and skin were also not active tissue for
the bioaccumulation of those elements.

Table 6
Antimony, As and Hg concentrations in different fish organs (μg kg−1 dry weight).

Fish
organ

Sb As Hg

Meana Meana Meana

Gill 197±163 161±152 7.35±2.87
Kidney 75.9±8.51 286±64 102±44
Liver 74.7±17.2 251±37 140±47
Bladder 70.5±18.8 151±33 56.9±32.5
Muscle 82.8±20.1 164±17 28.4±22
Skin 31±13 141±36 44.8±9.2

a If the data showed normal distribution, arithmetic mean was calculated. If the data
showed logarithmic normal distribution, geometric mean was calculated. If the data
showed skewed distribution, the median was calculated.

Fig. 4. Bio-concentration factors of Sb, As and Hg from water to fish organs.

Fig. 5. Comparison of Sb concentrations (mean value) in fish gills at different sites.
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Therefore, water was a principal source for Sb accumulations in
fish. Moreover, Sb concentrations in liver (r=0.87, Pb0.01, n=35),
kidney (r=0.91, Pb0.01, n=31) and gill (r=0.51, Pb0.05, n=42)
were positively correlated with those in water. It can be considered
that liver, kidney and gill were the principal fish organs in which Sb
accumulated. However, no significant correlation for Sb was observed
between muscle, skin, swim bladder and the water. This may be the
reason for the worse correlations between Sb concentrations in whole
fish and water. In spite of the fact that the kidney is generally
recognized as an organ excreting some metabolic products/toxic
material (Hedrick et al., 1993), our results demonstrate enhanced
element concentrations in this critical organ. In comparison, As
(r=0.28, PN0.05, n=42) and Hg (r=−0.11, PN0.05, n=42)
concentrations in fish gill do not exhibit significantly positive
correlations with those in water. This again suggests that fish gill
has unique Sb accumulation characteristics. Moreover, Sb and As
concentrations in other fish organs (especially fish kidney) exhibit
similar correlations with those in water. Only in fish muscle were Hg
concentrations positively correlated with those in water (r=0.51,
Pb0.01, n=58), in spite of fish muscle not being the most active
tissue for Hg accumulation.

It should be noted that the elemental concentrations in fish organs
not only reflect exposure to the elements, but the elemental excretion
from the various organs by metabolic processes. In particular, fish
kidney (Hedrick et al., 1993) and liver (Sorensen, 1991) were
recognized as the excretory and detoxification organs respectively.
Fish gill also has an excretory role (Oladimeji et al., 1984). Therefore
the high elemental concentrations in organs also indicate their high
metabolic activity to remove the toxic elements with the result that
more contaminants are moved to these organs.

3.4. Factors affecting the elements BCFs(fish/water)

The pH in all water samples averaged 7.1 (5.8–7.6) and showed
significantly positive correlation with BCFs for Sb (r=0.19, Pb0.05,
n=197). On the other hand, insignificant correlations were observed
between pH and BCFs for As and Hg (r=−0.08 and 0.06, PN0.05,
n=190 and 181, respectively). In terrestrial environments, a previous
study reported that unlike the other trace elements such as Cd or
Zn, the mobility of Sb decreases with decreasing pH in soils (Hammel
et al., 2000). The literature (Filella et al., 2002b) has shown, under
reducing conditions, the form of Sb present at low to intermediate pH
values is Sb2S3(s); and where as at higher pH values, SbS2− species
predominates. This can probably account for the dissimilar bioaccu-
mulation of Sb in the aquatic environment.

The dissolved organic carbon (DOC) concentrations in water
averaged 2.3 (0.9–9.9) mg L−1 and significant negative correlations
between DOC concentrations and BCFs for Sb (r=−0.16, Pb0.05,
n=197), were higher than that for As and Hg (r=0.02 and −0.08,
PN0.05, n=190 and 181, respectively). Although some previous
studies have shown that dissolved organic matter seems to play an
insignificant role in fate of Sb in aquatic environment (Tanizaki et al.,
1985; Tanizaki et al., 1992a,b), while two other studies reported that
Sb was significantly associated with dissolved organic matter in
polluted lakes (Deng et al., 2001) and coastal sea water (Gillain and
Brihaye, 1985). Our results demonstrate that Sb in water is associated
with the DOC fraction in the smelting water. In general, dominated Sb
(V) form is anionic in natural waters, and predominant natural
organic compounds are also negatively charged (Pilarski et al., 1995).
A competition of absorption via fish gills probably exists between Sb
(V) and DOC.

4. Conclusions

In addition to Sb, serious As contamination was observed in the
XKS Sb mine area. More than 20% of sampling sites had elevated Sb

and As concentrations in drinking water. Sb and As concentrations in
water varied with seasons. Fish gills exhibited the highest Sb
concentrations, which varied according to fish habitats. This study
demonstrated that fish gills and liver were the principal bio
accumulating routes for fish. Significantly lower bioavailability was
observed for Sb compared with As and Hg in aquatic environments.
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