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The concentrations of the platinum group elements (PGEs: Ir, Ru, Rh, Pt, Pd) were determined in 29 extrusive
and intrusive carbonatites from 7 locations in China. The samples were analyzed using an improved Carius
tube with high temperature and high pressure. All samples are characterized by low total PGE contents
(0.07–2.5 ppb), and only trace magmatic sulfides are observed in thin sections. The carbonatites may reach
sulfur saturation because they are known to be derived by small degrees of partial melting (b1%). The PGEs
may be compatible in sulfides with very high sulfide–carbonatite melt partition coefficients. Segregation of
an immiscible sulfide melt can result in the loss of PGEs in the carbonatites. Compared with the intrusive and
silicate-poor extrusive carbonatites, the silicate-rich extrusive carbonatite contains relatively abundant
clinopyroxene and titanomagnetite and higher IPGE (Ir and Ru) contents. This implies that IPGEs may be
compatible in these mineral phases. The low IPGE abundances and fractionated patterns in the intrusive and
silicate-poor extrusive carbonatites reflect that they may have experienced significant fractionation of
sulfides and IPGE-rich mafic silicates and oxides before final emplacement. The high PGE compositions in the
silicate-rich extrusive carbonatite may represent mantle materials entrained by the rising carbonatite magma.

© 2008 Elsevier B.V. All rights reserved.

1 . Introduction

Carbonatites are magmatic, carbonate-rich rocks derived from the
mantle (Bell and Blenkinsop, 1987; Keller and Hoefs, 1995). They have
been found on all the continents except Antarctica and two oceanic
localities (e.g. Bell, 1989), and contain valuable information about the
nature of the mantle (e.g. Bell and Tilton, 2001; Hoernle et al., 2002;
Tappe et al., 2007). However, a major question concerning carbonatite
petrogenesis is whether or not the compositions of the rocks
represent those of the parental magmas (e.g. Ionov and Harmer,
2002; Woolley and Church, 2005; Xu et al., 2007). Most intrusive
carbonatites have aureoles of alkali metasomatized country rocks,
reflecting the loss of alkalis and probably other elements. Bailey
(1993) and Woolley and Church (2005) suggested that extrusive
carbonatites were essential for understanding the wider aspects of
cabonatite magmatism. Intrusive and extrusive carbonatites reflect
not only the physical differences of their emplacement, but also
possibly compositional differences. Due to their highly siderophile and
chalcophile nature, platinum group element (PGE) systematics have
the potential to provide key information about mantle processes, such
as partial melting, melt percolation and mantle metasomatism (e.g.

Büchl et al., 2002; Momme et al., 2006; Ionov et al., 2006). However,
the geochemical behavior of PGEs in the mantle is not well-
understood because of the limited availability of PGE data on
mantle-derived rocks. Thus, comparison of PGEs in intrusive and
extrusive carbonatites may provide new information on petrogenesis
of carbonatites and geochemical behavior of PGEs in the mantle
source.

Carbonatites may contain platinum group minerals. For example,
Rudashevsky et al. (2001) identified isoferroplatinum, cooperite,
sperrylite, mertieite in the carbonatites from Phalaborwa and Kovdor,
Russia. However, reports of PGE abundances of carbonatites are
sparse. Although Xu et al. (2003b) determined PGE contents of
carbonatites from Maoniuping, Southwest China, the technique they
used involved the digestion by sodiumperoxide fusion andmay not be
suitable for PGE-poor carbonatites. To obtain reliable PGE data, the
PGE contents of representative carbonatites from China were
determined using our newly developed dissolution technique. The
dissolution technique utilizes aqua regia to digest 10 g of sample in an
improved Carius tube at a temperature of 300 °C (Qi et al., 2007). In
this paper, we report new PGE data and discuss the behavior of the
PGEs during the formation and evolution of carbonatites.

2. Samples

Twenty nine carbonatite samples were collected from Daluxiang
(DLX), Maoniuping (MNP) in Sichuan Province, Miaoya (MY),
Shaxiongdong (SXD) in Hubei Province, Huayangchuan (HYC),
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Huanglongpu (HLP) in Shanxi Province, Lixian (LX) in Gansu Province
(Fig. 1) for PGE analyses. The DLX andMNP carbonatites are associated
with syenites and emplaced in the western margin of the South China
block. Unlike most known carbonatites within plates generated by
anorogenic processes (e.g. rifting), they occur in a continental collision
zone, formed by the Indo–Asian continental collision since the
Paleocene period (ca. 65–45 Ma; Yin and Harrison, 2000; Xu et al.,
2003a; Hou et al., 2006). The MY and SXD carbonatites are situated in
the northern margin of the South China block. Xu et al. (in press)
obtained the zircon U–Pb age of 441.8 Ma from the SXD syenites
associated with carbonatites and suggested that they formed in a
rifting environment. The HYC and HLP carbonatites occur in the
southern margin of the North China block. K–Ar dating of phlogopite
and Re–Os on molybdenite gave ages of 181 Ma (Yu, 1992) and 221Ma
(Huang et al., 1994), respectively. These carbonatites formed in a

complex tectonic environment, whichmay be relatedwith the Triassic
collision between the South and North China blocks along the Qinling
(e.g. Meng and Zhang, 2000).

The LX carbonatites are located at the contact between the Qinling
and Qilian orogenic belts. The rocks are volcanic and associated with
Cenozoic kamafugites (Yu et al., 2003, 2006). They consist of
pyroclasitcs and lava. Presently, there are only 49 known extrusive
carbonatite occurrences (Woolley and Church, 2005).

Brief descriptions and modal abundances for all of the samples
used in this study are given in Table 1. They are calciocarbonatites and
composed dominantly of calcite. The sample LX-2 contains relatively
abundant mantle materials of lapilli and clinopyroxene. The lapilli are
spherical and essentially consist of randomly distributed microlites of
clinopyroxene, titanomagnetite, apatite, melilite and calcite in a
volcanic glass groundmass.

Fig. 1. Sample locations in China. 1, Daluxiang; 2, Maoniuping; 3, Miaoya; 4, Shaxiongdong; 5, Huayangchuan; 6, Huanglongpu; 7, Lixian.

Table 1
Carbonatite samples in this study: modal abundances, nature, associated silicate rocks and ages

Sample Modal abundances Nature of
occurrence

Associated
silicate rocks

Ages

Daluxiang 80–90% calcite, 2–5% alkali feldspar,
2–4% quartz, 1–3% arfvedsonite,
1–3% celestite, 1–2% fluorite, ~1% REE minerals,
0–1% aegirine, b1% apatite, b1% sulfides

Dyke Syenite –

Maoniuping 92–95% calcite, 1–2% alkali feldspar, 1–2% arfvedsonite,
1–2% aegirine, 1–2% biotite, b1% apatite, b1% REE minerals

Sill Syenite 31.7±0.7 Ma K–Ar dating on arfvedsonite

Miaoya 80–95% calcite, 1–8% biotite, 1–3% alkali feldspar,
1–3% sulfides, 0–2% quartz, 1–2% REE minerals,
0–1% graphite, b1% apatite

Stock Syenite –

Shaxiongdong 80–90% calcite, 2–6% alkali feldspar, 3–5% biotite,
3–5% aegirine, 1–2% REE minerals, b1% apatite,
b1% pyrochlore, b1% magnetite and sulfides

Dyke Syenite 441.8±2.2 Ma U–Pb dating on
zircon from associated syenite

Huayangchuan 92–95% calcite, 1–2% alkali feldspar, 0–1% quartz, 0–1%
celestite, 0–1% barite, 0–1% phlogopite, b1% arfvedsonite,
b1% aegirine, b1% apatite, b1% magnetite and sulfides

Dyke Syenite 181 Ma K–Ar dating on phlogopite

Huanglongpu 92–96% calcite, 1–2% alkali feldspar, 0–2% quartz,
0–1% celestite, b1% phlogopite, b1% apatite,
b1% molybdenite, b1% magnetite and sulfides

Dyke Syenite 221 Ma Re–Os dating on molybdenite

LX (Lixian)-1 95% calcite, 2% phlogopite, 1% clinopyroxene,
1% nepheline, 1% apatite and titanomagnetite

Lava, pyroclastics Kamafugite 22–23 Ma Ar–Ar dating on phlogopite
from associated kamafugite

LX (Lixian)-2 74% calcite, 20% lapilli, 2% clinopyroxene, 1% melilite,
1% phlogopite,1% nepheline, 1% apatite and titanomagnetite

The modal abundances are estimated by point counting and backscattered electron images. References for ages are from Yu (1992), Huang et al. (1994), Pu (2001), Yu et al. (2006) and
Xu et al. (in press). Notably, abundant microlites of clinopyroxene and titanomagnetite occur in the lapilli of sample Lixian-2.

202 C. Xu et al. / Lithos 105 (2008) 201–207



Author's personal copy

3. Analytical methods

The PGE concentrations were determined on a VG Plasma-Quad
Excell ICP-MS at the University of Hong Kong. The conventional Carius
tube method for PGE analysis yields total procedural blanks as low as
0.04 ng for Pt and 0.005 ng for other PGEs, but uses small amounts
(usually 1–2 g) of sample (Meisel et al., 2003). To increase the sample
mass and reduce the nugget effects, an improved Carius tube method
was used in this study. The HCl and HNO3 were purified by sub-boiling
distillation. Water was obtained from 18 MΩ cm grade Millipore
purification system. Spike solutions with enriched stable isotopes
101Ru, 105Pd, 193Ir, and 194Pt were prepared from pure metals (US
Services Inc., Oxbow, N.J.). An ICP multi-element standard solution of
100 µg/ml Pt, Pd, Rh, Ru and Ir (AccuStandard, USA) was used and
diluted as required for calibration of the spike and mono-isotope
element Rh. For pre-concentration of PGEs by Te co-precipitation, the
Te solution (2mg/ml)was prepared by dissolving 0.5 g of TeO2 in 10ml
of concentrated HCl and diluted to 200 ml with distilled water. The
SnCl2 solution (20%, w/v) was prepared by dissolving 50 g of SnCl2 in
250ml of 6 M HCl, and then purified by Te-coprecipitationmethod (Qi
et al., 2004). The Carius tube used in this study is a conventional 75 ml
borosilicate glass tube similar to those described by Shirey andWalker
(1995). They were filled with 60% aqua regia and heated to about 80 °C
and 5 h for cleaning. The high pressure autoclave was made of
stainless steel with inner length of 280 mm and diameter of 28 mm
(Fig. 2).

For analysis,10 g of samplewas weighed into 125ml Savillex Teflon
beaker and mixed with spike solution. After decarbonating of the
sample with about 20 ml of 10 M HCl, the sample was evaporated to
dryness and transferred to a Carius tube for further digestion with
10 ml of 12 M HCl and 6 ml of 16 M HNO3. The sealed Carius tube was
placed in the high pressure autoclave, which was then filled with
about 55 ml water. The external pressure produced by water balanced
the internal pressure of the Carius tube to keep it from exploding. The
autoclavewas sealed and heated to 300 °C in an electric oven for about
15 h. After slowly cooling in air to room temperature, the Carius tube
was opened, and the solution was transferred into a 50 ml centrifuge
tube and then rinsed with about 15 ml water. The tube was

centrifuged at 2200 rpm for 6 min. The centrifuged solution was
transferred back into the beaker, dried down and reconverted into the
chloride form by HCl. The residue was dissolved by 40 ml of 2 M HCl
and used for preconcentrating PGEs by Te-coprecipitation. After this
step, a Dowex 50 WX 8 cation exchange resin and a P507 extraction
chromatograph resin combined in the same column were used to
remove all the main interfering elements, including Cu, Ni, Zr and Hf
(Qi et al., 2004). The final solution obtained from the exchange
procedure was evaporated to 2 ml and made up to 5 ml for ICP-MS
measurement. The Pt, Pd, Ru and Ir were determined by isotope
dilution. For Rh a 194Pt spike was used as an internal standard as
described by Qi et al. (2004). Total procedure blanks are listed in
Table 2. Additional information on accuracy and precision can be
found in Qi et al. (2007).

Whole rock Ni and Cu were analyzed by solution ICP-MS at the
University of Hong Kong. Details are given in Liang et al. (2000).
Replicate analyses and results from standards indicated that the
accuracy of the element determinations was better than 10%.

4 . Results

Concentrations of PGEs in the carbonatites are listed in Table 3 and
are normalized using the primary mantle values (Fig. 3).

The carbonatites have low total PGE concentrations ranging from
0.07 ppb to 2.5 ppb. They have mantle-normalized patterns with
positive slopes enriched in Pd relative to Ir (Fig. 3). The intrusive
carbonatites have lower Ni, Cu and Ir contents relative to the extrusive
ones. Some DLX and MNP samples display (Pt/Pd)n ratios N1, and MY
and SXD show relatively low (Pt/Ir)n ratios. However, none of the
samples show obvious differences in PGE absolute or relative
abundances, although these intrusive carbonatites were emplaced in
different tectonic settings and have different ages and isotopic
compositions (e.g. initial 87Sr/86Sr ratios for DLX, MNP, MY, SXD,
HYC, HLP are 0.7078–0.7080, 0.7060–0.7061, 0.7036–0.7051, 0.7030–
0.7032, 0.7050–0.7053, 0.7048–0.7056, respectively; Xu et al., 2003a,
2007, in press and unpublished). In contrast, the extrusive carbona-
tites show relatively high Cu, Ni and Ir abundances. Sample LX-2 has
relatively high PGE (specially Ir, Ru and Rh) contents and little
fractionation between Pt and Ir. The sample is richer in silica
(SiO2=11.02%) than LX-1 (SiO2=2.67%; Xu et al., unpublished). The
latter in general has a similar PGE concentration and distribution
pattern to the intrusive carbonatites.

5 . Discussion

All the carbonatites collected in this study are characterized by
quite low concentrations of PGEs. This is surely a consequence of the
very poor affinity of PGEs for carbonates. PGEs are inferred to be
compatible in sulfides and experimentally determined Ni–Cu sulfide
melt /silicate melt partition coefficients (Ds) for PGEs are on the
order of 104 (Peach et al., 1990; Fleet et al., 1991, Peach et al., 1994,
Fleet et al., 1996; Bezmen et al., 1994). Petrographic observations
indicate that sulfide modal abundance is b1% in all the samples
except for the MY (Table 1). The low content of sulfides can be
caused by their removal during the alteration (Chazey and Neal,Fig. 2. Experimental configuration.

Table 2
Platinum group element abundances (ppb) in the analytical blank

Samples 1 2 3 4 5

Ir 0.002 0.003 0.003 0.002 0.002
Ru 0.002 0.001 0.002 0.002 0.003
Rh 0.003 0.002 0.002 0.002 0.002
Pt 0.025 0.023 0.019 0.018 0.024
Pd 0.033 0.036 0.040 0.031 0.039

203C. Xu et al. / Lithos 105 (2008) 201–207
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2005). Alternatively, the carbonatites reached sulfur saturation and
the resulting immiscible sulfide melt was effectively removed. All
carbonatites, except for the LX and MY samples, have narrow ranges
of δ13C (−5.94 to −8.24, −6.6 to −7.0, −5.7 to −6.1, −6.8 to 7.0, −5.5 to
−6.9‰) and δ18O values (7.6–8.6, 6.4–7.4, 6.9–8.1, 7.6–8.4, 8.7–10.9‰
for DLX, MNP, SXD, HYC and HLP, respectively; Xu et al., 2003a, 2007,
in press and unpublished). These values suggest a primary magmatic,
mantle-derived origin for the carbonatites (Keller and Hoefs, 1995),
i.e. unaffected by superficial secondary processes (Fig. 4). The δ13C
and δ18O isotopes of MY carbonatites, ranging from −2.9 to −6.7‰
and 9.5 to 13.2‰ (Xu et al., unpublished), are outside the ‘primary
carbonatite field’ and show consistent enrichment. This may indicate
sedimentary contamination or high temperature fractionation as
modeled by Demény et al. (1998). Continental material typically has
high concentration of sulfur (Wedepohl, 1995), and assimilation of
such material may increase sulfur in the magmas. This may explain
why MY carbonatites containing relatively high sulfides. However,
they do not show higher PGE contents than other carbonatites,
suggesting that PGEs in the carbonatites are not affected by enrich-
ment of sulfur via wall-rock assimilation.

It is well accepted that carbonatite magmas are generated by
extremely low degrees of partial melting (Fb1%) of a carbonated
peridotitic or eclogitic source (Nelson et al., 1988). The melts derived
by small degree partial melting of primitive mantle are more likely to
be S-saturated (Mitchell and Keays, 1981; Hamlyn et al., 1985; Zhou
et al., 1998). As discussed by Keays and Lightfoot (2007), the low PGE
concentrations together with low Pd/Cu ratios are the excellent
hallmarks of S-saturated magmas, and the Pd/Cu ratios can be used
to indicate S-saturation of magmas undergoing fractionation. Many
carbonatites have low Pd/Cu ratios less than 1×10−4 (Table 3). Al-
though the Ds between sulfide melt and carbonatite melt for PGEs
are unknown, they are surely high (possibly greater than 1×104).
Segregation of an immiscible sulfide melt may lead to the loss of
PGEs in the carbonatites. Many low degrees of melting derived ba-
salts from the continental sector of the Cameroon Line, West Africa,
and the Atlantic and Indian Ocean, determined by Rehkämper et al.
(1999) and Bézos et al. (2005), also show similar PGE contents
(ranging from 0.11 to 2.17 ppb, 0.04 to 2.55 ppb, respectively) to the
intrusive and extrusive carbonatites. They suggested that sulfide
segregation played an important role in controlling the PGE concen-
trations in these basalts.

Notably, the intrusive and silicate-poor extrusive (LX-1) carbona-
tites have relatively low PGE (specially Ir, Ru and Rh) contents and
fractionation of Pt and Ir. These features are distinct from the silicate-
rich extrusive sample LX-2 (Fig. 3). This difference possibly reflects a
common factor because the former in general has similar total PGE
contents and distribution patterns. Table 1 shows that the silicate-
rich extrusive carbonatite contains relatively abundant titanomagne-
tite and clinopyroxene. Experimental and petrological studies indi-
cate that IPGEs (Ir and Ru) are more compatible in magnetite and
pyroxene than PPGEs (Pt and Pd) (Capobianco et al., 1994; Puchtel
and Humayun, 2001; Righter et al., 2004). Fractional crystallization of
these mineral phases can result in the loss of IPGEs and positive
primary mantle-normalized PGE patterns. In addition, because Cu is
much less chalcophile than Pd (Ds for Cu and Pd in sulfide melt/
silicate melt are ~700 and ~35 000, respectively; Peach et al., 1990),
Cu-rich sulfide fractionation can result in low and variable Pd/Cu
ratios. However, some intrusive and silicate-poor extrusive carbona-
tites show relatively high Pd/Cu and (Pt/Ir)n ratios (Fig. 5).
Experiment shows that Cu is more soluble than other metals in
volatile-rich fluids (Ballhaus et al., 1994). Therefore, the relatively
high Pd/Cu ratios in these carbonatites may be due to segregation
and loss of volatile-rich fluids.

Most chemical analyses of carbonatites do not represent the
compositions of their melts. However, we suggest that the silicate-rich
sample, LX-2, may approximate a carbonatite melt composition
because (1) it contains relatively high PGE contents and unfractio-
nated relative abundances; (2) it is extrusive. Fig. 6 shows that the
sample LX-2 is strongly enriched in light rare earth elements (LREEs),
but has lower total REE contents than intrusive carbonatites. Woolley
et al. (1991) also found that extrusive carbonatites generally had lower
contents of incompatible elements than intrusive ones. Ionov and
Harmer (2002) suggested that relatively low REE abundances may be
common in mantle-derived carbonate liquids, and enrichments in
highly incompatible elements in many carbonatites may require
fractionation of liquids during ascent. The above study also shows that
the intrusive carbonatites may experience marked fractionation of
sulfides, mafic silicates, oxides and volatile-rich fluids. In addition, Ds
of REEs between melt and carbonate mineral are much less than 1
(Bühn et al., 2001). Re-crystallization and accumulation of carbonate
minerals from a fractionated, late-stage melt should cause an increase
in abundances of REEs and many other lithophile elements in most

Table 3
Nickel, copper (ppm) and platinum group element (ppb) contents of the intrusive and extrusive carbonatites

Samples DLX-4 DLX-5 DLX-6 DLX-29 MNP-1 MNP-3 MNP-4 MNP-4⁎ MNP-5 MNP-6 MNP-18 MY-1 MY-2 MY-12 MY-15

IC IC IC IC IC IC IC IC IC IC IC IC IC IC IC

Ni 2.61 0.684 bdl bdl 8.14 7.84 8.85 8.85 9.47 9.44 7.65 28.2 18.3 9.80 6.86
Ir bdl 0.003 0.004 0.014 bdl bdl bdl bdl bdl 0.004 bdl 0.014 0.015 0.007 0.002
Ru 0.013 0.015 0.008 0.009 0.013 0.011 0.023 0.028 0.009 0.011 0.009 0.029 0.031 0.033 0.026
Rh 0.011 0.010 0.004 0.01 bdl 0.003 bdl bdl 0.003 0.011 0.031 0.014 0.020 0.003 bdl
Pt 0.357 0.385 0.180 0.188 0.401 0.569 0.539 0.607 1.350 0.996 0.885 0.127 0.216 0.054 0.015
Pd 0.214 0.253 0.164 0.128 0.675 0.154 0.237 0.250 0.407 0.529 0.339 0.702 0.984 0.306 0.063
Cu 15.1 9.12 bdl 2.33 bdl 0.87 7.84 7.84 0.116 0.511 bdl 19.0 11.1 8.10 1.71

Samples MY-16 MY-17 SDX-1 SXD-3 SXD-4 SXD-5 SXD-8 HYC-10 HYC-14 HYC-35 HYC-35⁎ HLP-1 HLP-2 HLP-3 LX-1 LX-1⁎ LX-2
IC IC IC IC IC IC IC IC IC IC IC IC IC IC EC EC EC

Ni 8.01 12.1 bdl bdl 0.023 5.70 4.13 0.663 bdl bdl Bdl 9.41 18.1 7.27 59.3 59.3 260
Ir 0.002 0.004 0.005 0.003 0.004 bdl 0.004 0.002 0.008 0.003 Bdl bdl 0.002 bdl 0.024 0.027 0.194
Ru 0.008 0.023 0.031 0.053 0.011 0.037 0.071 0.030 0.035 0.028 0.032 0.047 0.005 0.008 0.020 0.022 0.278
Rh bdl bdl 0.001 0.014 0.004 0.007 0.006 0.010 0.005 bdl 0.012 0.007 0.003 0.018 0.014 0.015 0.107
Pt 0.030 0.028 0.011 0.142 0.031 0.063 0.090 0.091 bdl 0.034 0.070 0.184 0.090 0.150 0.231 0.289 0.470
Pd 0.034 0.038 0.180 0.523 0.097 0.302 0.568 0.245 0.029 0.056 0.028 0.089 0.069 0.318 0.436 0.546 1.450
Cu 1.70 12.8 5.73 1.98 3.75 15.5 8.06 bdl bdl bdl bdl 1.03 8.08 14.8 11.7 11.7 38.3

DLX, Daluxiang, MNP, Maoniuping, MY, Miaoya, SXD, Shaxiongdong, HYC, Huayangchuan, HLP, Huanglongpu, LX, Lixian; ⁎ replicate PGE analyses of the same sample; bdl, below
detection limit; IC = intrusive carbonatite; EX = extrusive carbonatite.
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intrusive carbonatites and corresponding carbonate minerals (e.g.
Hornig-Kjarsgaard, 1998; Xu et al., 2007); (3) extrusive carbonatites
are characterized by the very rapid rise of a turbulent mixture of solid,
liquid and gas components enabling dense mantle material to be
transported to the surface. However, intrusive carbonatites are likely
to have been emplaced relatively passively, and involve one or more
stages of ponding and differentiation of the magmas within the
mantle or crust, or both, before final emplacement (Woolley and
Church, 2005). The presence of abundant lapilli and clinopyroxene in
the sample LX-2 demonstrates that the high PGE contents may
represent mantle material entrained by the rising carbonatite magma.

6 . Conclusions

All carbonatites in this study contain low abundances of
magmatic sulfides. Their magmas may reach sulfur saturation, and
segregation of magmatic sulfides resulted in significant loss of PGEs
in the carbonatites. The silicate-rich extrusive carbonatite has higher
PGE (specially IPGE) contents and less fractionation between Pt and Ir
than the intrusive and silicate-poor extrusive ones. It also has
relatively abundant clinopyroxene and titanomagnetite. These fea-
tures indicate that the intrusive and silicate-poor extrusive carbona-
tites may have experienced significant fractionation of sulfides and

Fig. 3. Primary mantle-normalized PGE concentrations of carbonatites. A, Daluxiang; B, Maoniuping; C, Miaoya; D, Shaxiongdong; E, Huayangchuan; F, Huanglongpu; G, Lixian.
Normalization values are from McDonough and Sun (1995).

205C. Xu et al. / Lithos 105 (2008) 201–207



Author's personal copy

IPGE-rich mafic silicates and oxides during ascent or emplacement of
magmas.
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