贵州省三都一丹寨成矿带中卡林型金矿 地球化学特征及成矿物质来源初探

谢卓君^{1,2},夏 勇¹,闫宝文³,王泽鹏⁴,谭亲平^{1,2},伍守荣⁵,范二川⁵

 中国科学院 地球化学研究所 矿床地球化学国家重点实验室,贵阳 550002;2. 中国科学院大学,北京 100039;
3. 紫金矿业集团西北有限公司 矿产地质勘察院,乌鲁木齐 830026;4. 贵州省地质矿产勘查开发局 105 地质大队,贵阳 550018;5. 贵州省有色地质勘查局一总队,贵阳 551400

摘 要:为探讨三都一丹寨成矿带中卡林型金矿地球化学特征及成矿物质来源,总结了最近的研究成果以及相关数据,结果 表明,三都一丹寨卡林型金矿中与成矿相关的方解石、萤石呈现中稀土富集型,方解石 δ^{13} C_{PDB}=一1.61~-5.82%, δ^{18} O_{SMOW} =13.97~19.24%,挥锑矿和雄黄 δ^{34} S=14.5%~22.37%,辉锑矿和辰砂²⁰⁸Pb/²⁰⁴Pb=37.160~40.330,²⁰⁷Pb/²⁰⁴Pb=15.351 ~16.330,²⁰⁶Pb/²⁰⁴Pb=17.101~20.080,表明三都一丹寨卡林型金矿成矿物质(碳、氧、硫、铅)可能主要来自该区地层,与黔 西南卡林型金矿(成矿物质可能主要来自深部岩浆)有明显区别。其 δ D和 δ^{18} O值显示成矿流体可能主要为卤水和变质流体 组成的混合流体,并且到达浅部时混入了大气降水,成矿流体在其演化过程中,可能与有机质发生了同位素交换,或者发生过 多期成矿作用。

关 键 词:卡林型金矿;地球化学特征;卡林型金矿对比;排庭金矿床;苗龙金矿床 中图分类号:P618.51 文献标志码:A 文章编号:1007-2802(2014)03-0326-08 doi:10.3969/j.issn.1007-2802.2014.03.006

Geochemical Characteristics and Metallogenic Materials Source of Carlin-Type Gold Deposits in the Sandu-Danzhai Metallogenic Zone, Guizhou

XIE Zhuo-jun^{1,2}, XIA Yong¹, YAN Bao-wen³, WANG Ze-peng⁴, TAN Qin-ping^{1,2}, WU Shou-rong⁵, FAN Er-chuan⁵

 State Key Laborary of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China; 2. University of Chinese Academy of Sciences, Beijing 100039, China; 3. Zijin Mining Group Northwest Co., LTD, Urumqi 830026, China; 4. No. 105 Geological Party, Guizhou Bureau of Geology and Mineral Exploration & Development, Guiyang 550018, China; 5. No. 1 General Party, Guizhou Bureau of Non-ferrous Geological Exploration, Guiyang 551400, China

Abstract: To discuss geochemical characteristics and the source of ore-forming material of Sandu-Danzhai Carlin-type gold deposits in the Sandu-Danzhai area, compared with deposits in the southwestern Guizhou province, and systematically summarized results of prior researches. It indicated that metallogenesis related calcite and fluorite in the Sandu-Danzhai ore belt are MREE enriched. The $\delta^{13} C_{PDB}$ and the $\delta^{18} O_{SMOW}$ values in calcites are $-1.61\%_0 \sim -5.82\%_0$ and $13.97\%_0 \sim 9.24\%_0$, respectively. The δ^{34} S values of stibnite and realgar are $14.5\%_0 \sim 22.37\%_0$ with an average of $18.05\%_0$. The lead isotope ratios, 208 Pb/ 204 Pb, 207 Pb/ 204 Pb and 206 Pb/ 204 Pb, of stibnite and cinnabar are $37.160 \sim 40.330$, $15.351 \sim 16.330$ and $17.101 \sim 20.080$, respectively, indicating that the metallogenic materials (C, O, S and Pb) may mainly come from the strata, which is obviously different from the Carlin-type gold deposits in southwestern Guizhou Province (whose might mainly come from

基金项目:矿床地球化学国家重点实验室"十二五"项目群课题(SKLODG-ZY125-01)

收稿日期:2013-04-10 收到,2013-08-06 改回

第一作者简介:谢卓君(1987—),男,硕士研究方向,矿床地球化学. E-mail: chdxiezhuojun@126.com.

通讯作者简介:夏勇(1960—),男,研究员,博士生导师,研究方向:矿床地球化学. E-mail: xiayong@vip.gyig.ac.cn.

the deep magma). The δD and $\delta^{18} O$ results indicates that the ore-forming fluids were primarily mixed brine-metamorphic fluids and atmospheric water might have infiltrated in at the shallow. The isotopes of the ore-forming fluid might have exchanged with organic matter during its evolution, or mutiperiodic mineralization happened.

Key words:Carlin-type gold deposit; geochemical characteristics; comparision of Carlin-type gold deposit; paiting gold deposit; Miaolong gold deposit

贵州的卡林型金矿床主要赋存在晚古生代至早 中生代(贵州西南)和早古生代(贵州东南)沉积岩 中,沿着扬子克拉通西南缘分布。它们与美国内华 达州卡林型金矿床具有相似的特征:赋矿岩石为不 纯碳酸盐岩、钙质和碳质细碎屑岩;富集 Au、As、 Sb、Hg、Tl等元素;金以次显微自然金颗粒或者呈 不可见金固溶体分布在含砷黄铁矿环带和毒砂中, 黄铁矿和毒砂呈微细粒浸染状分布;热液蚀变包括 去碳酸盐化、硅化、黏土化等;成矿晚期普遍发育辉 锑矿、雄黄和雌黄(Hofstra and Cline, 2000; Hu *et al.*, 2002; Arehart, 1996; Su *et al.*, 2008)。

in the Guizhou Province (modified after Gao et al., 2002)

近些年,对贵州西南(黔西南)卡林型金矿床研 究较多,而对贵州东南卡林型金矿床研究较少。一 些初步的研究结果显示,三都一丹寨成矿带中卡林 型金矿床成矿流体盐度较高,具有卤水性质(李红阳 等,2002),成矿流体的形成可能与古油藏的形成与 演化有很大关系,显示出与黔西南卡林型金矿床不 同的地球化学特征(陈庆年等,1998;邵树勋等, 1999);丹寨宏发厂矿石全岩 Rb-Sr 等时线年龄为 400±29 Ma和114±6 Ma(贾荣芬等,1993),排庭 和羊勇矿床石英裂变径迹测年为66.7 Ma和65.4 Ma(李红阳等,2002),现有的年代学数据范围变化

> 较大,可靠性值得考虑,但是该成矿带中与 汞、金矿有关的控矿构造主要形成于燕山运 动(严钧平等,1989),因此,笔者认为该成矿 带中卡林型金矿可能形成于燕山运动期间。

> 本文主要就贵州东南部三都一丹寨成矿 带中排庭金矿床和苗龙金锑矿床从矿石矿物 和脉石矿物的稀土元素和同位素等进行研究 以及对比黔西南卡林型金矿,探讨该区卡林 型金矿的地球化学特征及成矿物质来源。

1 矿床地质特征

贵州三都一丹寨成矿带处于华南褶皱系 西缘与扬子准地台黔南台陷交界处,成矿带 中分布有宏发厂、四相厂、苗龙、排和、排庭、 羊勇、高硐等一系列卡林型金(汞、锑)矿床、 矿点,构成了三都一丹寨汞-金-锑矿化带(图 1)(高振敏等,2002)。

排庭金矿床位于丹寨县城南东方向约 10 km 处,是继苗龙锑-金矿、四相厂一宏发厂 汞-金矿后首次发现的产于中下寒武统地层 中的微细浸染型金矿床。主矿体金平均品位 4.05×10^{-6} g/t,矿床规模已达中型(董光贵, 2007;伍守荣,2008)。矿区出露地层有:前震 旦系下江群隆里组(Ptxjl)中至厚层细至中 粒变余砂岩、震旦系上统陡山沱组(Zbds)薄 至中厚层灰岩及泥灰岩,留茶坡组(Zblc)薄 至中厚层硅质岩、含磷块岩结核,下寒武统九 门冲组(\in_1j)黑色页岩和泥质灰岩,变马冲 组($\in_1 b$)黑色碳质页岩和泥质灰岩,乌训组($\in_1 w$) 砂质泥岩、粉沙质泥岩、碳质泥岩,中寒武统都柳江 组($\in_2 d$)中厚层泥岩、泥质灰岩、白云岩。其中变马 冲组($\in_1 b$)、乌训组($\in_1 w$)、都柳江组($\in_2 d$)为主要 的赋矿层位。区内断层主要有北北东、北东及北东 东向三组。按断层规模可分为三级,一级有巫湾断 层,二级有雄期断层,共同构成矿区基本构造格架。 三级断裂有北东东向、北东及南北向、北西向等,多 为赋矿断裂(图 2)。

苗龙金-锑矿床位于三都县之北约 7 km 处,金 平均品位 5.32×10⁻⁶ g/t,矿床规模已达中型(李红

Fig. 2 Geological sketch map of the Paiting gold deposit (modified after Fan, 2010)

阳等,2002;王尚彦等,2006)。矿床位于苗龙复向斜 内,断裂有近南北、东西、北西和北东向四组,其中 F_2 断裂(图 3)对该区金矿化起控制作用(董光贵, 2007)。主要赋矿层位为寒武系三都组($\in_3 S$)和奥 陶系锅塘组营上坡段(Ogt^y),岩性为薄层条带状灰 岩、层纹状泥灰岩、厚层砾屑灰岩等。

排庭金矿床和苗龙金-锑矿床的矿石矿物组合 主要有毒砂、黄铁矿、辉锑矿,伴生有少量的闪锌矿 和磁黄铁矿等。毒砂和黄铁矿是主要的载金矿物, 呈微细粒浸染状分布在矿化岩石中。脉石矿物主要 有石英、白云石、方解石,次为重晶石、萤石等。其

> 中,苗龙金矿萤石较为发育,有白色、浅绿色, 形成于矿化晚期,而排庭金矿尚未见到。围 岩蚀变有硅化、方解石化、白云石化、重晶石 化、黄铁矿化、毒砂化等,其中金矿化主要位 于以硅化、黄铁矿化、毒砂化为主的多种蚀变 叠加的部位,而且金矿化中一般有机炭含量 较高。

2 样品及测试方法

排庭金矿样品采自岩心和平硐(样品代 号 ZK 和 PD),苗龙金锑矿样品采自坑道(样 品代号 ML),在系统的野外和岩矿鉴定的基 础上,进行样品处理,所有单矿物先统一碎 样,然后在双目镜下剔除杂质,使其纯度达到 99%以上,最后用玛瑙研钵研磨至 200 目。

(1)稀土元素分析:方解石和萤石的稀土 元素测定在中国科学院地球化学研究所矿床 地球化学国家重点实验室完成,稀土元素分 析采用 Finnigan MAT 公司 ELEMENT 型 高分辨等离子体质谱仪(ICP-MS)测定,微量 元素重复性测试相对标准偏差小于 10%。

(2)碳-氧分析:方解石的碳、氧同位素比 值测定在中国科学院地球化学研究所环境地 球化学国家重点实验室完成,分析采用 100% 磷酸法,使用的质谱计型号为 MAT252,δ¹³ C 以 PDB 为标准,δ¹⁸ O 分别以 PDB 和 SMOW 为标准,分析精度为±0.2‰。

(3)硫同位素分析:辉锑矿的硫同位素比 值测定在中国科学院地球化学研究所环境地 球化学国家重点实验室完成,采用 Cu_2O 作为 氧化剂制备 SO_2 ,然后将制备 SO_2 通入 MAT-252 型质谱仪,测定其硫同位素组成,硫同位 素 相 对 标 准 选 用 V-CDT,分 析 精 度 为 ±0. 2‰。

(4)铅同位素分析:辉锑矿的铅同位素分析在核 工业北京地质研究院完成,采用 ISOPROBE-T 热 电离质谱仪,检测方法和依据 GB/T17672-1999《岩 石中铅锶钕同位素测定方法》,相对湿度 20%,温度 20° ,标样 NBS981 的分析结果为:²⁰⁶ Pb/²⁰⁴ Pb = 16 924,²⁰⁷ Pb/²⁰⁴ Pb=15.477,²⁰⁸ Pb/²⁰⁴ Pb=36.652;铅 同位素的比值误差以 2 $_{\sigma}$ 计,绝对误差 2 $_{\sigma}$ 0.005。 3 矿床地球化学特征

3.1 稀土元素特征

稀土元素(REE)地球化学性质相似,在 地质作用过程中往往作为一个整体迁移,因 而广泛用于矿床成矿流体来源与演化的示 踪研究(彭建堂等,2002,2004)。本文整理 了排庭和苗龙与矿化蚀变有关的方解石、萤 石稀土元素数据(表 1)以及对比黔西南水 银洞与矿化蚀变有关的方解石稀土元素数 据(夏勇等,2009),稀土元素标准化据 Sun 和 McDonough(1989)。

由图 4 可知,排庭和苗龙与成矿相关的 方解石、萤石呈现中稀土富集型,总体呈现 微弱的负 Eu 异常(δ Eu=0.74~0.93),弱 的负 Ce 异常(δ Ce=0.70~0.98)。这与黔 西南卡林型金矿床中方解石(图 4)及锑矿 床中方解石、萤石呈现中稀土富集型相一致 (夏勇等,2009;张瑜等,2010;Yan *et al.*, 2012),目前我们只是发现了这样一种现象, 并认为这可能跟成矿热液的性质有关,但具 体形成机制有待进一步研究。

3.2 **硫同位素特征**

硫同位素组成是示踪成矿流体中硫来 源最直接、最有效的方法。辉锑矿、雄黄是 卡林型金矿成矿晚期矿物,它们的硫同位素

组成能够有效地指示成矿流体中硫的来源。本文整 理了关于三都一丹寨卡林型金矿中辉锑矿和雄黄的 硫同位素数据以及对比黔西南大厂、灰家堡金矿田 辉锑矿、雄黄硫同位素数据(表 2,图 5)。图 5表明: 三都一丹寨卡林型金矿 ô³⁴ S 的变化范围在 14.5‰ ~22.37‰,均值 18.05‰。这与黔西南大厂锑矿、 灰家堡金矿田中辉锑矿、雄黄差别较大(-4.88‰~

表1 排庭和苗龙方解石、萤石稀土元素组成

	Table 1	REE	content	s of calo	cite and	fluorite	in rela	tion to r	ninerali	zation a	t Paitin	g and M	liaolong	(1	10 ⁻⁶)
样品编号	样品名称	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
ZK5-7-1		0.58	2.23	0.75	7.38	10.7	3.51	18.23	2.64	14.5	2.81	6.83	0.92	5.34	0.7
ZK5-7-2		0.66	2.22	0.7	7.22	10.4	3.46	18.96	2.52	14	2.8	6.69	0.88	5.19	0.71
ZK7-7-1	排庭	1.11	4.52	0.88	5.33	2.77	1.44	4.05	0.65	3.6	0.75	1.88	0.23	1.27	0.16
ZK7-7-2	方解石	0.12	0.43	0.11	0.7	0.27	0.15	0.4	0.05	0.29	0.07	0.16	0.02	0.1	0.01
PD-2-3-1		0.33	1.28	0.3	2.44	2.44	1.04	3.52	0.54	2.76	0.52	1.27	0.17	0.93	0.12
ML-28-3-1	苗龙萤石	0.32	1.04	0.26	2.12	1.2	0.47	2.32	0.29	1.53	0.3	0.6	0.04	0.14	0.02
ML-28-3-2		0.31	0.96	0.23	2.03	1.12	0.43	2.1	0.27	1.35	0.27	0.5	0.03	0.14	0.01
ML-28-1	苗龙	2.38	11.3	2.65	18	8.11	2.38	8.63	1.47	8.62	1.87	4.63	0.56	3.14	0.4
ML-28-5	方解石	3.71	14.3	2.72	15.8	5.92	1.79	5.64	0.83	3.97	0.77	1.79	0.22	1.24	0.15
ML-28-6		3.38	15.5	3.55	23.4	9.89	2.9	10.35	1.72	10.2	2.18	5.39	0.69	3.95	0.49

5.86‰,均值为 1.52‰)。前人在研究灰家堡金矿 田时根据辉锑矿和雄黄的硫同位素组成认为其硫可 能主要来自深部岩浆(张瑜等,2010)。三都一丹寨 成矿带中主要的含硫矿物为硫化物,表明其成矿流 体中氧逸度较低,因而其成矿流体中的 δ^{34} S 与辉锑 矿、雄黄的均值 17.34‰相近,这与幔源储库(δ^{34} S= 0~3‰)(Chaussidon and Lorand, 1990)相差甚远, 分布于海水硫(δ^{34} S 具有较高的正值(张静等, 2008))范围内,反映出三都一丹寨卡林型金矿成矿 流体中的硫来源与黔西南卡林型金矿具有明显区 别,三都一丹寨卡林型金矿成矿流体中的硫可能主 要来自该区海相地层中。

表 2 三都一丹寨卡林型金矿硫同位素值 Table 2 Sulfur isotopic compositions of the Carlin-type gold deposits in Sandu-Danzhai

样品位置	测定矿物	$\delta^{34} S_{CDT}(\%_{0})$
排庭		20.46
苗龙		21.65
苗龙	辉锑矿	21.68
苗龙		17.72
苗龙		18.47

3.3 碳、氧同位素特征

与成矿有关的方解石的 C、O 同位素可以有效 地指示成矿流体中 C、O 来源。Hoefs(1980)研究热 液系统的碳来源时,认为碳来源主要有 3 种:(1)海 相碳酸盐岩中的碳,其 δ^{13} C_{V-PDB}平均值在 0% 左右; (2)深部来源的碳, δ^{13} C_{V-PDB}均值在 $-5\% \sim -8\%$; (3)沉积岩中有机化合物、变质岩和岩浆岩中的石 墨, δ^{13} C_{V-PDB}普遍低于 -20%。本文整理了关于三

图 5 硫同位素组成对比图

都一丹寨成矿带卡林型金矿中与成矿有关的方解石 的碳同位素数据(表 3,图 6)以及对比黔西南灰家堡 金矿田中与成矿有关的方解石的碳同位素数据,从 图 6 中可以看出排庭和苗龙金矿跟矿化有关的方解 石碳(δ¹³C_{PDB}=-5.82‰~-1.61‰)落在了黔西南 灰家堡金矿田中与成矿有关的方解石的碳同位素组 成范围内,同时落在了灰岩、碳酸盐岩、球粒陨石、金 刚石、大理石的碳同位素组成范围内以及地幔碳同 位素组成范围附近。结合该区地质资料(矿区范围 内没有岩浆岩出露,主要出露大量碳酸盐岩),碳来 自碳酸岩或球粒陨石或金刚石的可能性不大,我们 认为碳可能主要来源于海相碳酸盐岩的溶解,但不 能排除深部碳的加入。

表 3 排庭和苗龙与矿化有关的方解石碳氧同位素数值 Table 3 Carbon and oxygen isotopic compositions of calcite in relation to mineralization at Paiting and Miaolong

投口炉口	长口本派	$\delta^{13}C_{PDB}$	$\delta^{18}O_{PDB}$	$\delta^{18}O_{SMOW}$
作吅细丂	作吅木ぷ	(‰)	(‰)	(‰)
ZK5-7-2		-4.03	-11.64	18.91
ZK7-7-1		-3.08	-13.97	16.51
ZK7-7-2	排庭	-1.66	-16.43	13.97
PD-2-3-1		-5.82	-12.50	18.02
PD-2-3-2		-5.72	-12.29	18.24
ML-28-1		-1.74	-11.32	19.24
ML-28-3	苗龙	-1.98	-11.40	19.16
ML-28-5		-1.61	-11.44	19.12
ML-28-6		-1.79	-11.55	19.00

3.4 氢、氧同位素特征

部分之一,严钧平等(1989)通过对汞矿成矿流体和 基本代表大气降水的泉水和坑道裂隙水氢氧同位素 研究提出,贵州汞矿成矿流体水来自于大气降水或 以大气降水为主的混合水。本文整理了关于研究区 卡林型金矿成矿流体氢、氧同位素比值数据(图7), 与汞矿研究数据进行对比发现,卡林型金矿成矿流 体氢、氧同位素集中分布在两个区域内,第一个区域 集中在变质水和岩浆水范围内(只有一个落在岩浆 水范围内),第二个区域位于第一区域下方,与第一 区域相比, ôD 同位素发生强烈的向下漂移。陈衍景 等(2003)研究认为,岩浆热液从 600℃降至 375℃或 更低时,一旦发生矿物沉淀,流体的 δ¹⁸ O_w 就进一步 降低,三都一丹寨成矿带卡林型金矿成矿温度都小 于 250℃,因而,如果成矿流体是岩浆流体的话,那 流体中的 δ¹⁸O_w 随着温度的降低将向左漂移,而与 本区的 δ¹⁸ O_w 大多位于岩浆流体 δ¹⁸ O_w 的右边不 符,而且本区未出露岩浆岩,故岩浆热液的可能性不 大。本区卡林型金矿成矿流体的氢氧同位素值与大 气降水线相差甚远,故也排除了大气降水的可能。 初步的流体包裹体研究表明成矿流体具有卤水特 征,但是挥发分 H_2O,CO_2 和 CH_4 有一定富集(李红 阳等,2002),可能有变质流体的加入,这也与本区发 育大量的中低级变质岩(范二川,2010)相一致,因而 我们认为成矿流体可能主要为卤水和变质流体的混 合流体。从卡林型金矿到汞矿,氧同位素发生向左 漂移现象,这可能是成矿流体携带着汞、金、锑等成 矿物质在向上运移的过程中,由于元素的地球化学 性质的差异,金先沉淀,此时,很少混入大气降水,因 而其氧同位素保持其初始的成矿流体的氧同位素组 成; 汞由于其地球化学活动性较强, 接着向上运移, 在近地表处,大气降水沿着断裂下渗,此时,成矿流,

原始数据据陈庆年等,1998;高振敏等,2002;严钧平等,1989, $\delta^{18}O_{H_2O-SWOM}$ 是采用同位素平衡分馏方程计算而得出来的, $\delta^{18}O_{H_2O-SWOM} = \delta^{18}O_{SWOM} - A * 10^6 T^{-2} - B$ 。其中当测定矿物 为石英时:A=3.38,B=-3.4;方解石:A=2.78,B=-3.4; 白云石:A=3.20,B=-3.4

图 7 三都一丹寨成矿带金矿、汞矿成矿流体中氢、 氧同位素组成投图(底图据 Taylor,1974 修改)

Fig. 7 Projection diagram of hydrogen and oxygen isotopic compositions of ore-forming fluids for Au and Hg deposits in the Sandu-Danzhai metallogenic zone (modified after Taylor , 1974)

体混入了大量大气降水,因而使得氧同位素发生向 左漂移的现象,这也与矿带中深部金矿、浅部汞矿的 汞-金垂直分带(范二川,2010)相对应。氢同位素发 生了强烈的向下漂移现象,这可能是成矿流体与沉 积岩有机质中氢同位素(原油相关有机质 dD 值为 -85‰~-181‰(Hsueh and Samuel,1981))进行了 同位素交换,也有可能是由于多期成矿成矿流体来源 不同或环境影响造成的氢同位素组成变化范围大。

3.5 铅同位素特征

本文通过研究成矿晚阶段的辉锑矿和辰砂铅同 位素组成来示踪成矿物质来源。硫化物中 U 和 Th 含量很低,因此硫化物形成之后 U 和 Th 衰变产生 的放射成因铅可以忽略不计(张乾等,2000),而且认 为矿物形成后没有其它铅的加入,故本次测试的辉 锑矿的铅同位素组成以及收集的辰砂的铅同位素组 成不需要经过校正,能代表它们形成时候的铅同位 素的初始组成(表 4)。

在 Zartman 铅构造模式图解(图 8)上,辰砂和 辉锑矿的铅同位素投点除 1 个数据落在下地壳铅演 化线上外,其余都落在上地壳铅演化线上部或附近, 说明矿石中的铅基本来自上地壳。为了进一步验证 铅的来源,突出铅同位素组成之间的变化关系,本文 采用朱炳泉(1998)的矿石铅同位素的△γ-△β成因, 表 4 三都一丹寨成矿带辰砂、辉锑矿铅同位素组成

	Table 4	Lead isotope composition of the stibulte in the Sandu–Danzhal metallogenic zone								
样品编号	位置	样品名称	$^{206}{\rm Pb}/^{204}{\rm Pb}$	$^{207}\rm{Pb}/^{204}\rm{Pb}$	$^{208}Pb/^{204}Pb$	riangle eta	$ riangle \gamma$			
PD-2-6	排庭	辉锑矿	18.278	15.737	38.440	28.27	44.54			
ML-28-1	苗龙	辉锑矿	18.288	15.697	38.547	25.37	45.04			
ML-28-2	苗龙	辉锑矿	18.237	15.693	38.510	25.28	45.44			
ML-28-3	苗龙	辉锑矿	18.396	15.668	38.680	22.91	43.68			
ML-28-4-2	苗龙	辉锑矿	18.154	15.646	38.380	22.23	42.08			
ML-28-7	苗龙	辉锑矿	18.239	15.702	38.525	25.91	46.25			

分类图解(图 9),从图解上可以看出,除一个数据落 在造山带铅内,两个数据落在上地壳和地幔混合的 俯冲带铅内,其它的都落在上地壳内,这与本区矿石 铅在 Zartman 铅构造模式图解相对应,进一步说明 铅主要来自上地壳。

4 结 论

综合三都一丹寨成矿带地质资料及地球化学数 据以及对比黔西南卡林型金矿研究,得出以下结论:

(1)三都一丹寨卡林型金矿中与成矿相关的方 解石、萤石呈现中稀土富集型,这与黔西南卡林型金 矿与矿化相关方解石一致。

(2)综合硫、碳-氧、铅同位素数据表明,三都一 丹寨卡林型金矿成矿物质(碳、氧、硫、铅)可能主要 来自该区地层,这与黔西南卡林型金矿(成矿物质主 要来自深部)有明显区别。

辰砂和部分辉锑矿数据据何立贤等(1993);1-地幔源铅;2-上 地壳源铅;3-上地壳与地幔混合的俯冲带铅,3a-岩浆作用,3b-沉积作用;4-化学沉积型铅;5-海底热水作用铅;6-中深变质作 用铅;7-深变质作用下地壳铅;8-造山带铅;9-古老页岩上地壳 铅;10-退变质作用铅

图 9 三都一丹寨成矿带辰砂、辉锑矿铅同位素△γ-△β 成因分类图解(底图据朱炳泉,1998 修改)

Fig. 9 $\bigtriangleup \gamma - \bigtriangleup \beta$ diagram of genetic classification of lead isotope of cinnabarite and stibnite in the Sandu-Danzhai metallogenic zone (modified after Zhu, 1998)

(3) 8D 和 8¹⁸ O 数据表明该区卡林型金矿成矿 流体可能主要为卤水和变质流体组成的混合流体, 并且到达浅部时混入了大气降水,成矿流体在其演 化过程中,可能与有机质发生了同位素交换,或者发 生过多期成矿作用。

致谢:成文过程得到贵州省地质矿产勘查开发 局夏士钧研究员,中国科学院地球化学研究所张乾 研究员以及贵州省有色地质勘查局一总队的帮助, 在此一并致谢。

参考文献 (References):

- Arehart G B. 1996. Characteristics and origin of sediment-hosted gold deposits: A review [J]. Ore Geology Reviews, 11: 383-403.
- Chaussidon M, Lorand J P. 1990. Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-Eastern Pyrenees, France): An ion microprobe study [J]. Geochimica et Cosmochimica Acta, 54(10): 2835-2846.
- Hoefs J. 1980. Stable isotope geochemistry[M]. 2nd ed. Berlin, Heidelberg, New York: Springer-Verlag, 1-200.
- Hofstra A H, Cline J S. 2000. Characteristics and models for Carlin-type gold deposits [J]. Reviews in Economic Geology, 13: 163-220.
- Hsueh W Y, Epstein S. 1981. Hydrogen and carbon isotopes of petroleum and related organic matter [J]. Geochimica et Cosmochimica Acta, 45(5); 753-762.
- Hu R Z, Su W C, Bi X W, Tu G Z, Hofstra A H. 2002. Geology and geochemistry of Carlin-type gold deposits in China [J]. Mineralium Deposita, 37: 378-392.
- Su W C, Xia B, Zhang H T, Zhang X C, Hu R Z. 2008. Visible gold in arsenian pyrite at the Shuiyindong Carlin-type gold deposit, Guizhou, China: Implications for the environment and processes of ore formation[J]. Ore Geology Reviews, 33: 667 -679.
- Sun S S, McDonough W R. 1989. Chemical and isotopic systematics of oceanic basalts: Implication for the mantle composition and process[J]. Saunder A D, Norry M J. Magmatism in the Ocean Basis[M]. Londin: Geological Society Special Dublication, 42:313-345.
- Taylor H P. 1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition [J]. Econmic geology, 42: 108-121.
- Yan B W, Xia Y, Wang Z P, Tan Q P, Wu S R, Fan E C. 2012. Geochemica characteristics and metallogenesis of carlin-type gold deposits in the Sandu-Danzhai metallogenic zone, Guizhou procince, China[J]. Chinese Journal of Geochemistry, 31: 209 -220.
- Zartman R E, Doe B R. 1981. Plumbo tectnoics-the model[J]. Tectonophysics, 75: 135-162.
- 陈庆年,周丕康,夏勇,贾荣芬,刘德汉.1998.贵州丹寨水银厂矿 田微细粒浸染型金矿地质地球化学研究[R].贵阳:贵州工业大 学,1-67.
- 陈衍景,隋颖慧, Franco Pirajno. 2003. CMF 模式的排他性依据和 造山型银矿实例:东秦岭铁炉坪银矿同位素地球化学[J]. 岩石 学报,19(3): 551-568.

- 董光贵. 2007. 黔东南排庭金矿地质特征[J]. 矿物学报,27(增刊): 96-97.
- 范二川.2010. 贵州省丹寨县排庭金矿地质调查设计报告[R]. 1-57.
- 高振敏,李红阳,杨竹森,陶琰,罗泰义,刘显凡,夏勇,饶文波. 2002. 滇黔地区主要类型金矿的成矿与找矿[M].北京:地质出 版社,1-230.
- 何立贤,曾若兰,林立青.1993.贵州金矿地质[M].北京:地质出版社,1-130.
- 贾荣芬,陈庆年,周丕康,夏勇,吴学益.1993.贵州丹寨卡林型金 矿中金的富集阶段与有机质演化关系[J].地质找矿论丛,8 (4):69-81.
- 李红阳,高振敏,杨竹森,罗泰义,饶文波. 2002. 贵州丹寨卡林型 金矿床地球化学特征[J]. 地质科学, 37(1): 1-7.
- 毛景文,王志良,李厚民,王成玉,陈毓川. 2003. 云南鲁甸地区二 叠纪玄武岩中铜矿床的碳氧同位素对成矿过程的指示[J]. 地 质论评,49(6):610-615.
- 彭建堂,胡瑞忠,漆亮,蒋国豪. 2002. 晴隆锑矿床中萤石的稀土元 素特征及其指示意义[J]. 地质科学, 37(3): 277-287.
- 彭建堂,胡瑞忠,漆亮,赵军红,符亚洲. 2004. 锡矿山热液方解石 的 REE 分配模式及其制约因素[J]. 地质论评,50(1):25-32.
- 邵树勋,张乾,潘家永. 1999. 丹寨汞金矿床卤素元素与古油藏关 系探讨[J]. 地质地球化学, 27(4): 23-27.
- 王尚彦,陶平,戴传固,况顺达. 2006. 贵州东部金矿[M]. 北京: 地质出版社,1-179.
- 王泽鹏,夏勇,宋谢炎,游彬,郑新华,汪小勇. 2012.太平洞-紫木 凶金矿区同位素和稀土元素特征及成矿物质来源探讨[J].矿 物学报,32(1):93-100.
- 伍守荣. 2008. 贵州省排庭金矿地质特征与成因分析[J]. 矿产与地 质, 22(1): 55-61.
- 夏勇,张瑜,苏文超,陶琰,张兴春,刘建中,邓一明.2009.黔西 南水银洞层控超大型卡林型金矿床成矿模式及成矿预测研究 [J].地质学报,83(10):1473-1482.
- 严钧平,杨科伍,王华云,曾若兰,丁龙骧,李强,李良玉,向茂木, 黄成林. 1989. 贵州汞矿地质[M]. 北京:地质出版社,1-366.
- 张静,陈衍景,陈华勇,张冠,杨艳. 2008. 河南桐柏围山城层控金 银成矿带同位素地球化学[J]. 地学前缘,15(4):108-124.
- 张乾,潘家永,邵树勋. 2000. 中国某些金属矿床矿石铅来源的铅 同位素诠释[J]. 地球化学,29(3):231-238.
- 张瑜,夏勇,王泽鹏,闫宝文,付芝康,陈明. 2010. 贵州簸箕田金 矿单矿物稀土元素和同位素地球化学特征[J]. 地学前缘,17 (2):385-395.
- 朱炳泉. 1998. 地球科学中同位素体系理论与应用-兼论中国大陆壳 幔演化[M].北京:科学出版社,1-330.