云南抚仙湖主要入湖河流有机碳来源辨识

丁 薇^{1,2},陈敬安^{2,*},杨海全^{2,3},宋以 $z^{2,3}$,陶红 $z^{1,2}$,罗 婧⁴

(1. 贵州大学 资源与环境工程学院,贵阳 550025;2. 中国科学院地球化学研究所 环境地球化学国家 重点实验室,贵阳 550081;3. 中国科学院大学,北京 100049;4. 中国航天建设集团有限公司,北京 100071)

摘 要:通过对云南抚仙湖流域土壤、植被和主要入湖河流有机碳含量和碳同位素组成的对比研究,探讨了抚仙湖主要入湖 河流有机碳来源、空间分布特征及其影响因素。结果表明,抚仙湖入湖河流溶解有机碳(DOC)含量较高,变化范围为 2.79~ 38.02 mg/L,且呈西部(19.20 mg/L)>北部(13.82 mg/L)>东部(3.37 mg/L)的分布特征;河流颗粒有机碳(POC)含量较 低,变化范围为 0.22~2.68 mg/L,且北部(0.84 mg/L)>西部(0.56 mg/L)>东部(0.40 mg/L)。抚仙湖主要入湖河流水体 $\delta^{13}C_{\text{DOC}}$ 值变化范围为-12.6%~-25.5%,且随 DOC 含量增大而略呈偏负趋势,表明抚仙湖入湖河流 DOC 除来源于流域土壤 侵蚀外,农业面源污染和生活污水排放也是重要的贡献源。抚仙湖入湖河流水体 $\delta^{13}C_{\text{POC}}$ 值主要分布范围为-23.2%~ -27.0%。与流域土壤及植物 δ^{13} C-致,远离内源 POC 的 δ^{13} C范围,指示河流 POC 主要来源于流域土壤侵蚀和植物碎屑输入。 关键词:抚仙湖;入湖河流;有机碳;碳同位素;分布特征

中图分类号: X142 文献标识码: A 文章编号: 1672-9250(2016)03-0290-07 doi: 10.14050/j.cnki.1672-9250.2016.03.002

碳是生态系统中最重要的生源要素之一 且与 其他元素的生物地球化学循环过程密切相关^[1]。 河流作为连接陆地与海洋两大碳库的重要通道 构 成了全球碳循环的关键环节 研究全球变化背景下 河流碳循环过程具有重要意义。与河流无机碳相 比,河流有机碳的组成和来源更为复杂,是研究河 流碳循环的热点和难点。河流有机碳可分为溶解 有机碳(DOC: dissolved organic carbon) 和颗粒有机 碳(POC: particle organic carbon)。河流 DOC 促进 了水体微生物的繁殖,而水温、叶绿素a、光化学氧 化和细菌降解等则可能影响水体 DOC 浓度变化^[2]。 河流 POC 约占河流总有机碳通量的一半^[3],是有机 质在河流中运输的主要载体。科学辨识河流 DOC 和 POC 的来源是揭示河流碳循环过程的关键,有机 质稳定碳同位素组成(δ^{13} C) 与碳氮比值(C/N) 被认 为是研究有机碳来源的有效手段^[4]。近年来,不少 学者利用有机质 δ^{13} C与 C/N 比值对不同类型河流有 机质时空分布及来源特征开展了深入研究^[5-8]。

事实上,大型湖泊是湖盆流域内河流的汇集 地,对河流有机碳的深入研究是揭示湖泊有机碳来 源和碳循环过程的基本前提。云南抚仙湖是我国 第二大深水湖,水质良好,其碳循环过程对氮、磷等 养分循环和水生生态系统有重要影响。对抚仙湖 碳循环过程的深入研究有助于揭示与湖泊富营养 化密切相关的氮-磷循环过程及控制因素,进而为制 定合理的湖泊富营养化防控策略提供科学指导。 认识抚仙湖主要入湖河流有机碳来源与变化特征 对深入揭示抚仙湖碳循环具有重要意义,但目前鲜 有该方面的研究报道。为此,本项研究拟通过对抚 仙湖主要入湖河流水体 DOC、POC 及流域植被、土 壤有机碳含量及碳同位素组成变化的对比研究,揭 示入湖河流有机碳的来源、空间分布特征及控制因 素,为深刻认识抚仙湖碳循环过程和制定合理的富 营养化防控策略奠定坚实基础。

1 研究区概况

抚仙湖(102°49′12"~102°57′26" E,24°21′28"~ 24°38′00" N) 处于亚热带常绿阔叶林-红壤地带,年 平均气温15.6 ℃,年降雨量800~1100 mm^[9],流 域面积674.69 km²,最大水深158.9 m,平均水深

收稿日期: 2015-11-25; 改回日期: 2016-03-20

基金项目:国家自然科学基金(U1302231);贵州省重大基础应用研究计划(黔科合J重大字[2015]2001)。

第一作者简介:丁薇(1991-),女,硕士研究生,从事湖泊生物地球化学研究。E-mail: dingwei@vip.skleg.cn.

^{*} 通讯作者: 陈敬安(1973-) ,男 ,博士 研究员 ,从事环境地球化学研究。E-mail: chenjingan@vip.skleg.cn.

95.2 m 是我国第二大深水湖^[10]。抚仙湖沿岸土 地利用类型主要为牧草地和水田^[11],湖水大部分由 雨季入湖河流及其坡面径流汇入,少部分由地下水 补给。近年来流域内旅游业发展迅速,生活污水和 地表径流构成的面源污染突出,尤其是北岸污染较 重。抚仙湖主要入湖河流有东大河、梁王河、尖山 河、牛摩河等,其中,东大河和梁王河流域面积较 大,尖山河流域土壤主要是红紫泥土和红壤^[12],牛 摩河污染源主要来自于农田回水和农村生活 污水^[13]。

2 样品采集与分析

2.1 样品的采集及前处理

分别于 2015 年 1 月 7 日(晴)、9 日(雨) 在距离 抚仙湖入湖口约100 m 处采集抚仙湖东部居乐 (JL)、塘子基沟(TZJG),西部大马沟(DMG)、基流 及降雨时牛摩河(NMH、NMH′)以及北部沙盘河 (SPH)、山冲河(SCH)、梁王河(LWH)、东大河 (DDH)、尖山河(JSH)的表层水样(约10L)现场利 用多参数水质分析仪(YSI6600-V2)测定 pH、水温 (t)、电导率(EC)、溶解氧(DO)等水质参数(表1)。 除居乐、塘子基沟、大马沟及牛摩河外,其余河流均 为降雨时采集。根据不同的土地利用类型,分别在 南部(S)、北部(N) 采集耕地(S-1、S-3、N-1)、草地 (S-2)、林地(S-4)、其他林地(N-2)的表层土壤(0~ 20 cm) 样品 装入布袋 ,冷藏保存。同时,在同一位 置采集流域内分布最广的乔灌木(柏树、桉树、杨 树) 及草本植物的新鲜叶片,装入样品袋,带回实验 室分析。采样点分布见图1。

所用玻璃瓶均预先用 10%(体积比) 盐酸浸泡,

经超纯水淋洗,于450 ℃灼烧4h,滤膜(Waterman GF/F)和铝箔纸于马弗炉中450 ℃灼烧4h。塑料 瓶用10% 盐酸浸泡,经超纯水淋洗后于60 ℃烘 干。样品前处理方法如下:

		Table 1	water quanty	parameters or			winter	
河流	t	рН	DO	EC	TDS	碱度	TP	NH ₃ —N
编号	/℃	P	/(mg/L)	/(mS/cm)	/(mg/L)	/(mmol/L)	/(mg/L)	/(mg/L)
JL	17.1	8.5	8.3	0.611	0.429	6.2	0.28	0.65
TZJG	15.7	7.9	7.0	0.377	0.268	3.9	0.33	1.66
DMG	15.7	7.7	2.5	0.443	0.314	3.9	0.78	5.27
NMH	13.7	7.9	3.9	0.852	0.620	6.9	0.80	4.70
NMH	9.6	8.0	9.6	0.765	_	3.2	0.78	8.34
SPH	9.3	7.9	10.9	0.450	0.343	2.1	0.60	7.65
JSH	8.5	8.2	10.7	0.232	0.179	2.1	1.47	5.61
LWH	10.5	8.0	10.0	0.354	0.266	2.3	0.47	3.41
DDH	10.0	8.1	10.2	0.574	0.439	3.3	0.38	2.05
SCH	9.3	8.0	10.0	0.898	0.687	2.9	0.85	8.85

表1 冬季抚仙湖主要入湖河流水质参数 Table 1 Water quality parameters of inflow rivers of Fuxian Lake in winter

注:"一"代表无数据。

现场使用滤膜过滤水样,分别取100 mL和2L 滤液装于玻璃瓶中,加6 mol/L 盐酸酸化至 pH<2。 前者用于测定 DOC 的质量浓度,后者带回实验室旋 转蒸发浓缩,经冷冻干燥仪(TechconpFD-3-85-MP)干燥后研成粉末。待过滤一定量水样后,用镊 子取下滤膜、折叠,置于铝箔纸中,冷冻干燥后用浓 盐酸(12 mol/L) 熏蒸24 h,60 °C 恒温干燥后密封 保存。采集的土壤样品除去较大的石块及动植物 残体,自然风干后碾磨过60 目筛,加入过量 0.5 mol/L 盐酸,反应24 h 以去除无机碳,用超纯 水洗涤至中性 60 °C 烘干后研磨过筛。植物叶片用 超纯水洗净,45 °C 恒温干燥 72 h,磨碎过100 目筛。

2.2 分析方法

所有样品的测定均在中国科学院地球化学研 究所环境地球化学国家重点实验室完成。采用 TOC 分析仪(ELEMENTAR, high TOC II) 高温催化 氧化法测定 DOC 含量,检出限为 0.2 mg/L。利用 Elementar 元素分析仪(Vario macro cube) 测定样品 POC 含量,分析误差<±5%。取适量经预处理样品 (0.5~1.0 mgC) 与 2~3 gCuO 丝混合装入石英管 内 经真空线系统抽真空后熔封,放入马弗炉内 800 °C烧4 h 待冷却后将 CO₂ 气体导出 经纯化后 使用气体稳定同位素质谱仪(MAT252) 测定 δ^{13} Cpoc 与 δ^{13} Cpoc。有机质 δ^{13} C对应国际标准 PDB,以国际 纤维素标样 IAEA-C3(δ^{13} C = -24.91‰) 为参考标 准,分析误差<±0.2‰。其计算公式如下:

$$\delta^{13}C(\%) = [(^{13}R_{sample} - ^{13}R_{standard}) / ^{13}R_{standard}] \times 1000 , ^{13}R = {}^{13}C / {}^{12}C$$

式中,R_{sample}表示样品测量值,R_{standard}表示国际标 准值。

3 结果与讨论

3.1 植物与土壤有机碳含量及其稳定碳同位素组 成特征

抚仙湖流域植物与土壤有机碳含量及碳同位 素组成如表 2 所示。乔灌木有机碳含量略高于草本 植物,变化范围分别为 42.31%~49.35%和 40.17% ~44.35%。土壤有机碳含量一般为 1.35%~ 4.53%。已有研究表明,降雨强度与土壤有机碳流 失量呈正相关^[14],样品 N-2 为暴雨时采集,土壤有 机碳流失量大,其有机碳含量仅为 0.23%,较其他 样点明显偏低。 表 2 冬季抚仙湖土壤及植物有机碳含量及其δ¹³C同位素组成

Table 2 The Concentrations , C/N and δ^{13} C of organic matter in soil and plants of Fuxian Lake in winter

样品编号	POC/%	$\delta^{13}C_{POC}/\%$	C/N
S-1(耕地)	1.89	-24.7	11.0
S2(草地)	4.53	-17.6	18.0
S-3(耕地)	1.35	-22.4	12.0
S-4(林地)	3.57	-20.0	12.0
N-1(耕地)	2.45	-25.9	10.0
N-2(其他林地)	0.23	-27.2	11.7
南部→柏树	48.83	-27.4	44.0
北部→桉树	49.35	-27.8	31.0
北部-杨树	42.31	-28.3	26.0
南部芨芨草	42.44	-13.0	89.0
北部	41.60	-13.3	68.0
北部-竹叶	40.17	-28.0	16.0
北部-混合草本	44.35	-30.8	18.0

乔灌木δ¹³C变化范围为-28.3%。-27.4%。,草本 植物δ¹³C变化范围较大,介于-30.8%。-13.0%。之 间 除芨芨草外流域植物δ¹³C均位于 C3 型植物δ¹³C 变化范围(-32%。-20%)^[15],反映其光合碳同化 过程主要受 C3 途径控制。芨芨草属于 C3-C4 中间 型植物,但该植物具有 C3 植物的光合生理特性^[16] (图 2)。土壤有机碳δ¹³C变化范围为-17.6%。--27.2%。整体处于 C3 型植物δ¹³C的变化区间,反映 土壤有机质是由分解的植物残体逐渐转化和积累 起来的^[17-18],但土壤有机质δ¹³C比植物δ¹³C略微偏 正 表明土壤有机质在形成过程中¹²C优先流失^[19]。

Fig.2 The δ^{13} C of organic carbon in vegetation and soil of Fuxian Lake in winter

3.2 入湖河流有机碳含量分布特征及其影响因素
抚仙湖入湖河流 DOC 与 POC 含量如表 3 所
示。DOC 含量变化范围为 2.79~38.02 mg/L ,在空

间上呈现西部(19.20 mg/L) >北部(13.82 mg/L) > 东部(3.37 mg/L)。人类生产生活排放的有机废弃 物会显著增加河流中的有机碳含量^[8],西部牛摩河 河口处分布大量农家乐,有明显的生活污水及废水 汇入^[20],导致其 DOC 含量最高,远高于全球河流 DOC 含量平均值(5~6 mg/L)^[7]。牛摩河基流 DOC 含量约为降雨时河水中 DOC 含量的2.6倍,这 可能是由于降雨的稀释作用降低了河水 DOC 含 量^[21]。北部农业面源污染较为严重^[10],DOC 含量 普遍偏高。东部流域无明显的外源污染,河水 DOC 含量低于全球河流 DOC 平均值^[7]。

表 3 冬季抚仙湖主要入湖河流 POC 和 DOC 的浓度及其碳同位素组成

Table 3 The Concentrations , C/N and δ^{13} C of DOC and POC in rivers of Fuxian Lake in winter

	河流	POC /(mg/L)	δ ¹³ C _{POC} /‰	C/N	DOC /(mg/L)	δ ¹³ C _{DOC} /‰
东部	JL	0.24	-25.6	6.0	2.79	-17.4
	TZJG	0.56	-25.2	5.0	3.95	-23.5
	DMG	0.48	-25.8	2.6	10.74	-25.4
西部	NMH	0.68	-25.4	5.6	38.02	-25.5
	NMH′	0.52	-24.5	3.5	14.81	-22.5
	SPH	0.57	-25.3	4.8	9.58	-25.2
北部	JSH	0.22	-23.2	6.0	23.62	-24.3
	LWH	2.68	-25.7	8.8	9.13	-22.1
	DDH	0.28	-27.0	5.0	6.52	-12.6
	SCH	0.43	-24.5	4.7	20.27	-17.6

抚仙湖入湖河流 POC 含量较低,变化范围为 0.22~2.68 mg/L,呈现北部(0.84 mg/L)>西部 (0.56 mg/L)>东部(0.40 mg/L)的分布特征(图 3),总体低于全球河流 POC 平均含量(1~ 5 mg/L)^[22]。人为干扰程度及不同的土地利用类 型都会对河流水体中颗粒有机碳的含量产生较大 影响^[4]。梁王河流域以农业用地为主,土壤有机碳 含量高(N-1),降雨时大量表层土壤及周边废弃物 随地表径流进入河道,导致梁王河 POC 含量最高。 而尖山河流域周围土壤有机碳含量低(N-2),降雨 时高混浊河流随着流域侵蚀强度的增加,被扰动的 土壤层厚度加大,侵蚀输出物中矿物成分增加,稀 释有机碳含量^[23],造成 POC 含量低。降雨时牛摩 河的 POC 含量低于牛摩河基流,说明降雨对牛摩河 的稀释效应远大于冲刷效应^[7]。

3.3 入湖河流有机质 C/N 与有机碳同位素组成 特征

C/N 常用于追溯有机质的来源,当 C/N<12 时, 指示有机质主要来源于水生植物; 当 C/N>12 时, 则表明有机质具有明显的陆源特征^[24]。抚仙湖入 湖河流 POC 的 C/N 比值介于 2.6~8.8 之间,明显 低于全球河流的平均值(约11)^[25],基本处于河流 水生植物 C/N 变化范围,这可能有三方面的原因。 其一 本项研究的河流采样点位于入湖口附近,河 流水动力减弱 水生植物来源有机质所占比例高于 河流上游,因此 C/N 较低。其二,河流入湖口附近 农业面源污染和村落生活污水排放可能对河流有 机质 C/N 有较大影响,已有研究表明,含有高浓度 NH₄和尿素的废水会造成河流水体有机质 C/N 小 干 $4^{[26-27]}$ 。大马沟及牛摩河水体因受到 NH_{4}^{+} 污染, 氨氮浓度高(表1),因而其有机质C/N较低。其 三,已有研究表明,玄武岩风化作用形成的蒙脱石 细小颗粒^[26]可吸附 C/N 小于 3 的碱性氨基酸^[28], 这些细粒粘土矿物与有机质夹杂在一起,实验分析 过程中 POC 滤膜用浓盐酸熏蒸去除碳酸盐后仍然 含有粘土等细粒颗粒物 因此导致有机质 C/N 测定 结果偏低。对梁王河上、中、下游水体 POC 的 C/N

Fig.3 Distributions of the DOC and POC concentrations in rivers of Fuxian Lake in winter

的对比研究发现,上游与中游水体 POC 的 C/N 分 别为 11 和 14,但下游接近入湖口处水体 POC 的 C/N 减小为 4,在一定程度上证实了上述假设。由 此看来,在利用有机质 C/N 判别河流有机质来源 时,需保持谨慎,尤其是在有高浓度含氮废水输入 的河流不能应用。

抚仙湖入湖河流 $\delta^{13}C_{DOC}$ 介于-12.6%~-25.5% 之间,变化范围较大,平均值为-21.6%(表 3),呈现北部(-20.4%) > 东部(-20.5%) > 西部 (-24.5%)的变化趋势(图 4A)。一方面,河流 DOC 来源于流域陆源植物和土壤有机质分解,其碳 同位素组成首先继承了母体的同位素特征,入湖河 流 $\delta^{13}C_{DOC}$ 基本在流域土壤及植物 $\delta^{13}C$ 的变化范围内 (表 2)。另一方面,农业面源污染和生活污水排放 可能影响河流水体 $\delta^{13}C_{DOC}$,导致各采样点 $\delta^{13}C_{DOC}$ 存 在明显差异,且随 DOC 含量增大而略呈偏负趋势 (图 5):西部和北部农业面源污染和生活污水排放 严重的地方,河流 DOC 含量比东部地区河流高,但 $\delta^{13}C_{DOC}$ 值比东部偏负。

抚仙湖入湖河流 δ^{13} C_{POC}变化范围为-23.2‰~ -27.0‰,平均为-25.2‰,较 δ^{13} C_{DOC}明显偏负,呈现 北部(-25.1‰)>西部(-25.2‰)>东部(-25.4‰) 的分布特征。由图 6 可见,入湖河流 δ^{13} C_{POC}与土壤 δ^{13} C_{POC}更接近,同时接近 C3 型植物碳同位素组成, 其 δ^{13} C_{POC}明显偏负。抚仙湖北岸主要为林地及耕 地,土壤 δ^{13} C 明显偏负(表 2),导致东大河 δ^{13} C_{POC}最 负。随着土壤深度的增加,如单糖类的易降解类物 质逐渐减少,纤维素等难降解物质逐渐增加,难降 解物质比易降解物质富含 δ^{13} C^[29]。降雨时地表径 流急剧增加,土壤侵蚀强度加大,进入水体中的物 质混入了这些富含¹³C的难降解物质^[30],导致降雨时 牛摩河δ¹³С_{РОС}较基流偏正。

3.4 入湖河流水体有机碳来源分析

与碳氮比值(C/N)相比 稳定碳同位素在有机 碳溯源分析研究中具有更高的准确性 稳定碳同位 素技术的应用可更好地研究河流颗粒有机碳的来 源^[4]。河流水体有机碳主要来自土壤有机质的侵 蚀、陆地植物残屑及人类生产生活排放的有机废弃 物^[31]。河流水体 DOC 通常包括外源和内源两种类 型,外源主要有土壤侵蚀、污水输入、大气降水等, 内源则为 POC 降解、细菌及其分泌物等^[32]。抚仙 湖入湖河流 POC 含量与 DOC 含量之间并没有明显 的相关性(r=-0.08 p=0.83),DOC 含量远远高于 POC 二者之间也未表现出一定的负相关关系 因此 未体现 POC 向 DOC 的降解转化。此外 若 DOC 主 要由 POC 降解转化而来,则二者的δ¹³C值应表现出 继承性 但河流水体 $\delta^{13}C_{\text{poc}}$ 与 $\delta^{13}C_{\text{poc}}$ 之间并未呈现 出明显的相关关系(r=-0.43,p=0.21)。因此,抚 仙湖入湖河流 DOC 主要不是由 POC 转化而来。 DOC 与 POC 碳同位素组成的重叠区域均处于流域 土壤碳库的分布范围内 反映河流有机碳主要来源 于土壤机械侵蚀和土壤有机质的降解^[8]。入湖河 流水体 $\delta^{13}C_{\text{poc}}$ 值主要处于-12.6‰~-25.5‰之间, 且随 DOC 含量增大而略呈偏负趋势。西部和北部 农业面源污染和生活污水排放严重的地区,河流水 体 DOC 含量明显高于东部河流 ,而δ¹³C_{DOC}值则比东 部明显偏负。已有研究表明生活污水δ¹³C_{noc}范围约 为-25%~-27% [33-34] 这进一步证实抚仙湖入湖河 流 DOC 除来源于流域土壤侵蚀外 农业面源污染和 生活污水排放也是重要的贡献源。

河流水体 POC 也可分为内源 POC 和外源 POC 两类,内源 POC 来源于河流水生植物,外源 POC 主

Fig.5 Correlation between DOC concentrations and $\delta^{13}C_{DOC}$ values in inflow waters of Fuxian lake

in rivers of Fuxian Lake in winter

要来源于土壤侵蚀、陆生植物残体及人类生产生活 废弃物^[7]。一般认为,内源POC的 δ^{13} C为-22‰~ -19‰^[6]。抚仙湖各河流水体 δ^{13} C_{POC}主要分布范围 为-23.2‰~-27.0‰,平均为-25.2‰,与流域土壤 及植物 δ^{13} C-致,远离C4植物及内源POC的 δ^{13} C范 围 指示河流POC主要来源于流域植物碎屑输入和 土壤侵蚀。

4 结 论

1) 抚仙湖主要入湖河流 DOC 含量较高,变化范 围为 2.79~38.02 mg/L 农业面源污染和流域生活 污水排放是造成部分入湖河流 DOC 含量偏高的主 要原因;河流水体 POC 含量较低,变化范围为 0.22 ~2.68 mg/L 总体低于全球河流 POC 含量。

2) 抚仙湖流域农业面源污染和生活污水排放 可能造成河流水体 POC 的 C/N 偏低,在利用有机 质 C/N 判别河流有机质来源时,需保持谨慎,尤其 是在有高浓度含氮废水输入的河流不能应用。

3) 抚仙湖主要入湖河流水体δ¹³C_{DOC}变化区间为 -12.6‰~-25.5‰, 且随 DOC 含量增大而略呈偏负 趋势。西部和北部农业面源污染和生活污水排放 严重的地方,河流水体 DOC 含量明显高于东部河 流,而δ¹³C_{DOC}值则比东部明显偏负,表明抚仙湖入湖 河流 DOC 除来源于流域土壤侵蚀外,农业面源污染 和生活污水排放也是重要的贡献源。

 4) 抚仙湖各河流水体δ¹³C_{POC}主要分布范围为 -23.2‰~-27.0‰,平均值为-25.2‰,与流域土壤 及植物δ¹³C-致,远离 C4 植物及内源 POC 的δ¹³C范 围 指示河流 POC 主要来源于流域土壤侵蚀和植物 碎屑输入。

参考文献

- [1] 刘丛强. 生物地球化学过程与地表物质循环-西南喀斯特流域侵蚀与生源要素[M]. 北京: 科学出版社, 2007.
- [2] 叶琳琳,吴晓东,孔繁翔,等.太湖入湖河流溶解性有机碳来源及碳水化合物生物可利用性[J].环境科学,2015(3):914-921.
- [3] Gao Q Z , Tao Z , Yao G R *et al.* A preliminary study on the isotope of the riverine particulate organic carbon using AMS in the Zengjiang River , southern China [J]. Quaternary Sciences 2004 24(4): 474-475.
- [4] 谭慧娟,夏晓玲,吴川,等.基于碳稳定同位素示踪的金水河颗粒有机碳来源辨析[J].生态学报,2014,34(19):5445-5452.
- [5] 茅昌平,季峻峰,罗郧,等.长江干流颗粒有机碳及其同位素组成的季节性输送特征[J].地学前缘,2011,18(6):161-168.
- [6] 倪兆奎,王圣瑞,赵海超,等. 洱海入湖河流水体悬浮颗粒物有机碳氮来源特征[J]. 环境科学研究, 2013(3):287-293.
- [7] 张连凯, 覃小群, 杨慧, 等.珠江流域河流碳输出通量及变化特征[J].环境科学, 2013, 34(8): 3025-3034.
- [8] 黄奇波,覃小群,唐萍萍,等.桂江流域河流有机碳特征[J].地质科技情报,2014(2):148-153.
- [9] 高伟,陈岩,徐敏,等.抚仙湖水质变化(1980-2011年)趋势与驱动力分析[J].湖泊科学,2013,25(5):635-642.
- [10] 蒋鸿昆,高海鹰,张奇,等.抚仙湖梁王河流域农业耕作与流域水质响应关系研究[J].环境科学,2007,28(10):2294-2300.
- [11] 徐金涛,张奇,徐力刚.抚仙湖集水域地表径流入湖水量模拟[J].湖泊科学,2007,19(6):718-726.
- [12] 翟子宁,王克勤,苏备,等.抚仙湖流域尖山河入湖河流水质变化研究[J].生态科学,2015(2):129-135.
- [13] 王泉,吴献花,朱春蓉,岳.抚仙湖西岸牛摩河氮素时空分布特征研究[J].玉溪师范学院学报,2013(12):9-12.

- [14] 王文欣,庄义琳,庄家尧,等.不同降雨强度下坡地覆盖对土壤有机碳流失的影响[J].水土保持学报,2013,27(4):62-66.
- [15] Ehleringer J R. Implications of quantum yield differences on the distributions of C3 and C4 grasses [J]. Oecologia , 1978 , 31(3): 255-267.
- [16] 邓萍. 芨芨草生物生态学特性及其生物量形成规律的研究[D]. 北京: 中国农业大学, 2007.
- [17] Cerling T E, Quade J, Wang Y, et al. Carbon isotopes in soil and paleosols as ecologic and paleoecologic indicators [J]. Nature ,1989, 341: 138-139.
- [18] Hatté C , Fontugne M , Rousseau D D , et al. δ¹³C variation of loess organic matter as a record of the vegetation response to climatic changes during the Weichselian [J]. Geology , 1998 , 26(7) : 583–586.
- [19] 李龙波,刘涛泽,李晓东,等.贵州喀斯特地区典型土壤有机碳垂直分布特征及其同位素组成[J].生态学杂志,2012,31(2):241-247.
- [20] 魏秀国. 河流有机质生物地球化学研究进展[J]. 生态环境, 2007, 16(3): 1063-1067.
- [21] 陶澍,梁涛.伊春河河水溶解态有机碳含量和输出通量的时空变化[J].地理学报,1997(3):254-261.
- [22] Ludwig W, Probst J L, Kempe S. Predicting the oceanic input of organic carbon by continental erosion [J]. Global Biogeochemical Cycles , 1996, 10(2):161–175.
- [23] 陶贞,高全洲,姚冠荣,等. 增江流域河流颗粒有机碳的来源、含量变化及输出通量[J].环境科学学报,2004,24(5):789-795.
- [24] 张永领. 河流有机碳循环研究综述[J]. 河南理工大学学报: 自然科学版, 2012, 31(3): 344-351.
- [25] 陶贞,高全洲,黄夏坤,等.桂江河流碳的生物地球化学循环:¹⁴C和¹³C示踪[J].第四纪研究,2012,32(3):465-472.
- [26] Balakrishna K, Probst J L. Organic carbon transport and C/N ratio variations in a large tropical river: Godavari as a case study, India [J]. Biogeochemistry, 2005, 73(3): 457-473.
- [27] Milliman J D , Xie Q C , Yang Z S. Transfer of particulate organic carbon and nitrogen from the Yangtze River to the ocean [J]. Am. J. Sci. ; (United States) , 1984 , 284: 7(7) : 824–834.
- [28] Müller P J. C/N ratios in Pacific deep-sea sediments: Effect of inorganic ammonium and organic nitrogen compounds sorbed by clays [J]. Geochim. Cosmochimica Acta, 1977, 41(6): 765-776.
- [29] Benner R, Fogel M L, Sprague E K, et al. Depletion of ¹³C in Lignin and Its Implications for Stable Carbon Isotope Studies [J]. Nature, 1987, 329(6141): 708-710.
- [30] 魏秀国,沈承德,孙彦敏,等.珠江水体悬浮物碳稳定同位素组成与流域土壤侵蚀研究[J]. 沉积学报, 2008, 26(1):151-157.
- [31] Raymond P A , Bauer J E. Riverine export of aged terrestrial organic matter to the North Atlantic Ocean [J]. Nature , 2001 , 409(6819) : 497-500.
- [32] 高全洲,陶贞.河流有机碳的输出通量及性质研究进展[J].应用生态学报,2003,14(6):1000-1002.
- [33] Rogers K M. Stable carbon and nitrogen isotope signatures indicate recovery of marine biota from sewage pollution at Moa Point, New Zealand [J]. Marine Pollution Bulletin, 2003, 46(7): 821-7.
- [34] 王中良,李军,刘丛强,等.天津地表水中有机碳来源的同位素示踪研究[J].地球与环境,2011,39(1):1-8.

Investigation on Sources of Organic Carbon in Major Rivers in the Catchment of Fuxian Lake, Yunnan Province

DING Wei^{1,2}, CHEN Jing'an², YANG Haiquan^{2,3}, SONG Yilong^{2,3}, TAO Hongbo^{1,2}, LUO Jing⁴

(1. College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China; 2. State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China; 4. China Aerospace Construction Group Limited Company, Beijing 100071, China)

Abstract: In this study , δ^{13} C values and concentrations of dissolved organic carbon (DOC) and particle organic carbon (POC) of soils , plants , and inflow water were measured to investigate the spatial distribution , source and controlling factors of the organic carbon in Fuxian Lake , Yunnan Province. The results showed that the inflow waters had high DOC concentrations , ranging from 2. 79 to 38. 02 mg/L , while the concentration of DOC was evidently higher in the west (19. 20 mg/L) and north (13. 82 mg/L) than that in the east (3. 37 mg/L). POC concentrations in the inflow waters were significantly low , ranging from 0. 22~2. 68 mg/L , while the POC concentration was higher in the north (0. 84 mg/L) than that in the west (0. 56 mg/L) and east (0. 40 mg/L). The living sewage and widespread pollution from the overuse of fertilizers and pesticides in the drainage basin caused the high DOC concentrations in the rivers. The $\delta^{13}C_{\text{POC}}$ value ranged from -12. 6% to -25. 5% and displayed slightly decreased trend with the increase of DOC contents , which indicated the DOC in the rivers was of a mixed origin of soils erosion , nonpoint source pollution and sewage discharge. The $\delta^{13}C_{\text{POC}}$ of inflow waters varied mainly in the range of -23. 23% ~ -26. 96% , far from the range of endogenous particulate organic matters , while consistent with the soil and plant of the basin. This indicated the POC was mainly derived from soil erosion and plant fragments input. Key words: Fuxian Lake; inflowing river; organic carbon; carbon; carbon isotope; distribution characteristics

?1994-2017 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net