滇东南老乌锰矿床地球化学特征及其成因制约

段建兵¹² 符亚洲^{1*} ,肖加飞¹ 张正伟¹

1. 中国科学院 地球化学研究所, 矿床地球化学国家重点实验室, 贵阳 550002; 2. 中国科学院大学, 北京 100049

摘 要:为查明滇东南老乌锰矿的成矿环境、锰质来源及矿床成因 本文对该矿床开展了系统的矿物学、元素地球化学和同位 素地球化学研究。结果表明,矿石品位为12.18% ~41.24%;锰矿物组合特征为氧化锰矿与碳酸锰矿混生,其中氧化锰矿以 褐锰矿为主,碳酸锰矿主要为钙菱锰矿、锰方解石、锰白云石等,可见少量含锰硅酸盐矿物;成矿环境为陆缘与盆缘接壤的边 缘斜坡相的中低盐度浅海沉积环境,成矿物理化学条件主要为在弱氧化-弱还原之间起伏变化;主要成矿方式为陆源沉积成矿 基础上叠加热液和生物作用成矿。

关 键 词: 地球化学; 矿床成因; 老乌锰矿; 滇东南 中图分类号: P618.32 文章编号: 1007-2802(2016) 03-0540-12 **doi**: 10.3969/j.issn.1007-2802.2016.03.018

Geochemical Characteristics and Their Constraints on the Genesis of the Laowu Manganese Deposit, SE Yunnan, China

DAUN Jian-bing^{1,2}, FU Ya-zhou^{1*}, XIAO Jia-fei¹, ZHANG Zheng-wei¹

 State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550002, China;
University of Chinese Academy of Science, Beijing 100049, China

Abstract: In order to explore the metallogenic environment, source of ore-forming materials and genesis of the Laowu manganese deposit in the southeastern Yunnan, a systematic study on the mineralogy, elemental geochemistry, and isotop-ic geochemistry of the deposit has been carried out in this paper. Results show that Mn grades of ores vary from 12.18% to $\sim 41.24\%$. Ores are composed of manganese oxides, mainly braunite, and manganese carbonates, mainly manganocal-cite, calcimangite, and kutnohorite, with minor manganous silicates. Orebodies were mainly deposited in a marginal slope facies in the conjunction of the continental and basin margins, in a low salinity neritic sedimentary environment under the physical and chemical condition varying from weak reduction to weak oxidation, with overprints of hydrothermal and biological effects.

Key words: geochemistry; genesis; Laowu manganese deposit; Southeastern Yunnan

中国的锰矿床数量众多,产出区域主要分布在 华北地台北缘的燕辽地区和华南扬子地台周缘,赋 矿岩性主要为泥岩、黑色页岩、碳酸盐岩以及硅质 岩-泥岩-石灰岩组合等(Fan and Yang,1999),其成 矿时代跨度大,主要成矿时期有元古代、南华纪、奥 陶纪、泥盆纪、晚二叠世、中三叠世以及第四纪(Fan and Yang,1999; Liu and Xue,1999)。滇东南地区是 中国典型的中三叠世锰成矿域,其赋矿地层单一, 已发现的锰矿床均产在中三叠统的法郎组中,赋矿 岩性均为一套海相泥岩、粉砂岩、砂岩夹碳酸盐岩 沉积(刘仁福等,1988; Liu and Xue,1999);矿物组 合具有氧化锰矿和碳酸锰矿相混生的特征。区域 上表现为地域小而分布集中,有斗南锰矿带之称。

老乌锰矿是斗南锰矿带中一个重要的海相沉 积锰矿床。前人对斗南锰矿带的研究取得了诸多 成果,这些研究主要集中在矿床地质特征、地层层 序、岩相古地理特征等方面(牟传龙和吴应林, 1991;罗崇迅和杜泽英,1992;章正军等,1998; Du *et*

收稿日期: 2015-06-11 收到 2015-08-26 改回

基金项目:国家自然科学基金项目(41376080 41173020);矿床地球化学国家重点实验室"十二五"项目群(SKLODG-ZY125-08)

第一作者简介: 段建兵(1988 -) , 男, 博士研究生, 研究方向: 矿床地球化学. E-mail: jianyu7534@163.com.

^{*} 通讯作者简介: 符亚洲(1978 -), 男,博士,副研究员,研究方向: 矿床地球化学. E-mail: fuyazhou@mail.gyig.ac.cn.

al. 2013),而关于该锰矿的成矿环境、锰质来源以 及成因等方面的研究相对较少;同时前人的研究主 要是通过野外地质、沉积学和层序地层学等方法, 而地球化学研究工作开展较少且不系统。本文通 过系统的野外调研,在此基础上运用矿物学、元素 和同位素地球化学方法,对老乌锰矿的成矿环境、 物质来源和成因类型等进行研究。

1 矿区地质特征

1.1 岩相古地理

老乌锰矿床位于华南加里东褶皱系右江褶断 束西缘,滇东南斗南海盆南缘的斗南锰矿带(图1), 在岩相上属于台缘斜坡相与浅海相接壤处(钟建 廷,1986;刘宝珺和许效松,1994)。滇东南拉丁期, 区内法郎组受到同期异相沉积的影响,岩性组合存 在较大差异。岩性界线大致从开远到蒙自岩子脚 一线,往西是以内源碳酸盐岩为主的碎屑灰岩含锰 建造,往东则是由以陆源碎屑为主的碎屑灰岩含锰 建造过渡到浊流相的碎屑岩建造。整个成矿区域 宏观上表现为南边的越北古陆和西北的哀牢山隆 起、康滇古陆组成"U"型环抱之势,北东向开口,由 西向东水体逐渐加深,沉积相由古陆-碳酸盐台地 相-陆源碎屑岩相-陆源浊积岩相过渡。由于受印支 运动的影响,斗南锰矿带两侧发生断裂升降运动, 靠近越北古陆一侧上升成滩(礁),另一侧下降形成 斗南海盆,而两者的连接部位斗南台缘斜坡即是锰 成矿集中地带,斗南、老乌、大箐等大、中型锰矿即 发育在其中。斗南海盆西侧是半封闭式的个旧海 盆,产出有中型白显锰矿,两个海盆由越北古陆往 北西潜入海底形成的开远海隆所隔开。滇东南地 区典型的锰矿都不在远离古陆的海盆中心,而是靠 近古陆和海盆边缘斜坡地带,像老乌、斗南、大箐和 岩子脚等锰矿都靠近越北古陆,白显锰矿临近哀牢 山隆起,而北边的牛首山古岛和康滇古陆边缘海 区,至今未发现锰矿床,这暗示锰成矿应受岩相古 地理条件制约(图1)。

1.2 构造

1.3 地层

研究区位于越北古陆北缘,红河断裂和师宗-弥 勒断裂夹持区的东南缘。小江断裂和明苏断裂与 红河断裂交汇大致控制了个旧海盆中的锰矿床,而 北东向的明苏断裂与北西向的文麻断裂交汇构成 的弧形构造与斗南-老乌弧形向斜主要控制了斗南 海盆中的锰矿床,斗南海盆正是在明苏断裂的长期 活动并持续下沉接受周缘古陆沉积的背景下形成 的(图1)。结合锰矿床产出的岩相古地理条件,表 明锰矿的形成受构造与岩相古地理的控制。

of the southeastern Yunnan (after Liu et al. ,1984; Hou et al. ,1997)

期),含锰岩系集中于该时期的法郎组(T_2f),其上 整合于上三叠统鸟格组砂质碎屑岩,其下伏假整合 于中三叠统个旧组石灰岩,为一套浅海相泥岩、粉 砂岩、砂岩夹碳酸盐岩沉积,产出瓣鳃类、腕足类、 腹足类、藻类等生物化石及其碎片(刘仁福,1988; Liu and Xue,1999; Du *et al.* 2013)。法郎组被细分 为6个岩性段($T_2f_1 ~ T_2f_6$),其中2个主含矿层 (T_2f_4 和 T_2f_5)分别由深灰色粉砂质泥岩、泥质粉砂 岩、灰绿色泥岩夹角砾状灰岩,及锰矿层的中下段 ($T_2f_4^4$ 或 $T_2f_4^2$),以及由具麻点状构造的泥质粉砂岩、 灰色粉砂岩夹紫红色薄层及锰矿层等组成中上段 ($T_2f_5^2$)(刘仁福,1988;郑荣才和张锦泉,1991; Liu and Xue,1999)。老乌锰矿位于法郎组的上含锰段 ($T_2f_5^2$),分为上(V_a)、下(V_b)2个分矿段,厚度分别 为0.35 m和1.95 m,典型的东段剖面特征见图 2。

层位		柱状图	厚度 /m	岩性描述					
T ₂ f ₅ ³		··· ·· ·· ··	不详	灰黑色粉砂质岩					
	V. /		0.35	上矿层,以红褐色锰矿为主体, 下部为灰白色锰矿,夹黑色薄层					
		M M M M M M M M M M M	4.11	具麻点状构造含锰结核 泥质粉砂岩					
		M · · M · · M · · M · · M · · M · · M · · M · · M · · · M	1.11	上紫色层,含锰结核粉砂岩					
$T_2 f_5^2$			4.01	灰色粉砂岩					
		M ·· M ·· M ·· M ·· M ·· M ··	1.20	下紫色层					
		M M M	4.45	具麻点状构造含锰结核 泥质粉砂岩					
	V _b		1.95	下矿层,红褐色与深灰色锰矿互层, 水平层理发育,部分层见方解石脉					
$T_2 f_5^{-1}$			不详	泥岩					

图 2 老乌锰矿东段地层剖面图

Fig. 2 The stratigraphic column of the Laowu manganese deposit

2 样品与分析方法

本研究所用的 23 件样品均采自滇东南文山州 老乌锰矿法郎组含锰建造,采样方法为垂直矿层连 续取样。23 件样品中锰矿石样品 17 件,顶底板和 夹层样品各 3 件,其中 LW1-1—LW1-5 取自上矿段 V_a ,LW-2—LW-19 取自下矿段 V_b 。对所有样品进 行了主量、微量及稀土元素分析测试(表 1、表 2), 并选取4 件样品分别进行扫描电镜观察和 X 射线 衍射矿物学分析(XRD),选择7 件锰含量较高的岩 矿石样品进行碳、氧同位素分析(表 3)。

从每件样品中挑选出 200 g,常温下蒸馏水洗 净,105℃烘箱烘干,鄂式碎样机初碎后保留100g, 将剩余 100 g 样品磨至 200 目。主量、微量及稀土 元素测试在广州澳实矿物实验室完成,分析仪器分 别为 XRF(荷兰 PANalytical Axios Max)、ICP-AES (美国 Varian VISTA ICP735-ES)及 ICP-MS(美国 Perkin Elmer Elan 9000)。扫描电镜和碳、氧同位素 测试在中国科学院地球化学研究所环境地球化学 国家重点实验室完成 XRD 实验在该所矿床地球化 学国家重点实验室完成。扫描电镜为 JSM6460-LV, XRD 分析仪器为 D/Max-2200 型 X 射线衍射仪。 碳、氧同位素测试所使用分析方法为 100% 磷酸法, 在25℃时 样品与磷酸发生反应,将反应释放出来 的 CO_2 在 Isoprime-GC 连续流质谱仪上进行碳、氧 同位素测定。 δ^{13} C以 V-PDB 为标准, δ^{18} O以 V-SMOW 为标准,分析精度为±0.2%(2σ)。

3 分析结果

3.1 矿物学特征

通过对手标本观察、显微镜及扫描电镜、XRD 分析,可知老乌锰矿床中矿石矿物主要以氧化锰矿 为主,碳酸锰矿含量次之,同时含少量含锰硅酸盐; 脉石矿物主要有方解石、白云石、石英、斜长石、蒙 脱石、伊利石、叶蜡石、高岭石等,典型样品如 LW-15 (图 3)。其中氧化锰矿组成比较单一,除表生氧化 矿外(这里不做讨论),主要锰矿物为褐锰矿,水锰 矿含量很少。或受 Mn 与 Ca 或 Mn 与 Mg 之间的类 质同象作用控制,碳酸锰矿中很少有纯净的菱锰 矿,而主要是钙菱锰矿、锰方解石、锰白云石等,偶 见黄铁矿细晶零星分布;少量含锰硅酸盐主要呈斑 点状或镶嵌状分布在菱锰矿或氧化锰矿物间,以蔷 薇辉石{ Ca(Mn^{2+})₄ [Si₅O₁₅]} 和锰辉石{(Mn,Mg)₂ [Si₂O₆]} 为代表。

褐锰矿主要呈条带状、变余砂粒状(图 4a)或不 规则团块状(图 4b)。不规则团块直径 0.5 ~ 4.0 mm,可能由于交代溶蚀或后期破碎的缘故,少 有团块保存完整,环带与核心特征少见,这与斗南

	Table 1	Major e	element o	composit	ions for	rocks	and ore	es of the	e Laowu	ı manga	anese de	posit		(%)
样品	岩性	SiO_2	$\mathrm{Al}_2\mathrm{O}_3$	$\mathrm{Fe}_2\mathrm{O}_3$	CaO	Na ₂ O	K ₂ 0	TiO ₂	P_2O_5	SO_3	MnO	MgO	LOI	共计
LW1-1	富锰粉砂岩	23.93	6.75	3.37	12.46	0.66	1.41	0.31	0.44	2.75	19.21	4.79	22.93	100.61
LW1-2	锰矿石	25.55	6.38	2.20	8.55	0.39	1.30	0.28	0.27	0.09	23.24	6.08	23.23	99.43
LW1-3	锰矿石	22.69	4.51	2.06	11.50	0.66	0.50	0.21	0.19	0.07	31.09	4.97	18.50	99.38
LW1-4	锰矿石	15.32	2.36	0.79	15.89	0.60	0.10	0.10	0.12	0.09	41.24	2.58	16.91	99.30
LW1-5	含锰粉砂岩底板	43.45	9.69	3.09	9.68	1.04	2.29	0.46	0.14	0.07	8.92	3.64	15.81	99.03
LW-2	含锰粉砂岩顶板	35.28	9.70	5.46	7.27	0.30	1.51	0.44	0.49	0.61	11.26	9.11	16.65	99.07
LW-3	锰矿石	18.65	1.78	1.13	22.28	0.18	0.24	0.09	0.25	0.27	19.87	2.75	29.93	99.02
LW-4	含锰粉砂岩	43.89	10.20	4.31	6.30	0.74	2.04	0.48	0.37	0.34	10.49	5.82	14.78	100.72
LW-5	含锰粉砂岩	45.33	10.32	4.26	6.06	0.78	2.03	0.47	0.38	0.28	9.80	5.57	14.41	100.55
LW-6	含锰粉砂岩	37.03	10.18	5.22	6.59	0.40	1.77	0.47	0.42	0.59	11.45	8.12	17.35	100.62
LW-7	锰矿石	33.86	8.76	4.65	5.83	0.44	1.69	0.39	0.47	1.30	17.36	6.46	17.87	100.49
LW-8	锰矿石	30.20	8.69	4.21	6.13	0.45	1.75	0.40	0.47	0.22	19.34	6.70	20.24	100.42
LW-9	锰矿石	35.26	10.31	4.49	5.70	0.43	2.24	0.45	0.53	0.15	14.85	6.69	17.57	99.94
LW-10	富锰碎屑岩	34.72	9.78	4.34	5.75	0.38	2.11	0.44	0.50	0.15	15.78	6.73	18.01	100.01
LW-11	含锰粉砂质泥岩	35.83	10.97	5.05	5.50	0.32	2.15	0.50	0.52	0.62	12.18	7.94	16.66	99.29
LW-12	富锰粉砂岩	32.01	7.55	2.17	7.91	0.95	1.68	0.35	0.39	0.21	20.51	3.54	20.73	99.72
LW-13	粉砂质氧化锰矿	35.95	8.48	6.65	6.32	0.62	2.16	0.39	0.17	0.04	15.90	4.45	17.12	99.55
LW-14	锰矿石	33.26	7.93	3.52	6.72	0.67	1.98	0.38	0.16	0.03	22.25	4.04	16.82	99.54
LW-15	锰矿石	35.56	8.36	3.68	6.24	0.81	2.04	0.38	0.17	0.03	21.93	4.08	14.57	99.66
LW-16	锰矿石	33.58	7.90	3.50	7.07	0.79	1.87	0.38	0.17	0.04	23.19	4.23	15.05	99.63
LW-17	锰矿石	36.23	9.14	4.05	6.04	0.83	2.38	0.41	0.18	0.03	19.83	3.86	14.63	99.24
LW-18	锰矿石	29.04	7.18	6.51	10.53	0.70	1.83	0.35	0.18	0.06	17.22	3.52	20.77	99.28
LW-19	含锰粉砂岩底板	48.05	10.45	2.40	6.55	1.49	2.50	0.52	0.17	0.06	9.83	3.02	14.89	100.88
均值		33.20	8.18	3.86	8.27	0.62	1.73	0.38	0.31	0.47	18.08	5.19	18.07	99.85

表1 老乌锰矿岩矿石主量元素组成

锰矿中具有典型环带与核心的微锰结核有所区别。 碳酸锰矿呈不规则团块状的较少,而主要以砂粒 状、条带状或脉状为主。扫描电镜观察及能谱分析 发现,氧化锰与碳酸锰无明显界限,呈条带状过渡 性互层(图4c中①、②),或是泥质的碳酸锰矿胶结 氧化锰的情况较多;细方解石脉较为发育,常穿切 原岩和锰矿物,与不同锰矿物共生或伴生(图4d)。 从穿插情况来看,同期和后期的热液活动均有发生。 3.2 主量元素

由 23 件样品的主量元素组成(表 1) 可见, 锰矿 石样品的 MnO 含量为 12.18% ~41.24%(均值为 18.95%),顶底板及夹层的值为 8.92% ~11.26%。 烧失量(LOI)为 14.57% ~29.93%(平均值为 18.07%)。高的 LOI 应该与样品中方解石等碳酸 盐及黏土矿物的含量较高有关,XRD 矿物分析显示 这些样品中氧化锰矿、碳酸锰矿、高岭石等矿物含 量较高。锰矿层与顶底板中的 P、S 含量都很低,分 别为 0.07% ~0.23% ρ .01% ~1.25%。相比顶底 板及夹层,锰矿层亏损 Si、Al、Ti、K,而富集 Mn、Fe、 P和 Mg。Mn/Fe 值范围为 2.27 ~57.4(均值为 8.08),图 5a 显示虽然 Mn/Fe 值变化范围较宽,但 除 LW1-4 和 LW-3 外,整体表现集中。Al 和 Si、Al 和 Ti 分别表现出良好的相关性, $R_{Alsi} = 0.88$, R_{Alsi}

10 ⁻⁶)	Ce*2	1.14	1.08	0.96	0.83	1.02	1.03	0.94	1.05	1.03	1.05	1.01	1.03	1.06	1.03	1.06	1.00	1.10	1.09	0.99	0.96	0.98	0.97	1.00	1.02	
×)	Ce*1	1.10	1.03	0.92	0.80	0.98	0.99	0.90	1.01	0.99	1.01	0.97	0.98	1.01	0.98	1.01	0.96	1.06	1.05	0.95	0.92	0.94	0.93	0.96	0.98	
	Eu *	0.68	0.76	0.76	0.73	0.70	0.71	0.89	0.66	0.64	0.72	0.69	0.70	0.67	0.67	0.65	0.59	0.73	0.71	0.73	0.73	0.74	0.83	0.73	0.71	
	ZREE	103.45	73.63	62.36	73.40	115.82	119.19	40.46	124.04	127.82	126.22	106.28	109.39	130.37	125.60	133.26	90.63	114.52	108.54	90.47	89.94	103.45	86.13	83.45	101.3) o
	Y	20.6	17.1	13.2	16.6	21.8	23.8	8.6	23.7	24.0	25.3	20.7	22.4	26.1	24.8	27.6	18.0	17.3	20.5	18.0	17.6	19.5	17.9	22.1	20.3	ı(1984
	Lu	0.27	0.24	0.19	0.13	0.32	0.35	0.08	0.34	0.37	0.38	0.31	0.31	0.37	0.38	0.40	0.25	0.26	0.27	0.27	0.25	0.30	0.26	0.34	0.3	Boyntoi
	Yb	1.83	1.52	1.11	0.78	2.02	2.26	0.54	2.34	2.31	2.36	1.89	1.98	2.39	2.38	2.47	1.68	1.65	1.65	1.67	1.73	1.86	1.65	2.31	1.8	日,据
eposit	Tm	0.33	0.25	0.17	0.17	0.35	0.35	0.09	0.39	0.41	0.41	0.35	0.34	0.39	0.43	0.41	0.28	0.27	0.29	0.26	0.26	0.35	0.27	0.36	0.3	求粒陨
iese d	Er	1.95	1.64	1.24	1.08	2.17	2.35	0.67	2.45	2.38	2.59	2.08	2.10	2.50	2.58	2.63	1.68	1.75	1.90	1.86	1.71	1.98	1.73	2.24	2.0	*2为3
angar	Ho	0.71	0.56	0.46	0.41	0.79	0.83	0.24	0.82	0.86	0.86	0.76	0.77	0.91	0.89	0.91	0.60	0.62	0.69	0.63	0.64	0.70	0.59	0.73	0.7	·和 Ce
m m	Dy	3.21	2.52	1.95	1.97	3.41	3.66	1.04	3.73	3.87	3.86	3.18	3.38	4.02	3.87	4.05	3.00	2.58	3.07	2.84	2.67	3.12	2.73	3.32	3.1);Eu
e Lao	Tb	0.55	0.43	0.33	0.37	0.58	0.64	0.20	0.62	0.66	0.67	0.58	0.59	0.70	0.69	0.73	0.53	0.47	0.54	0.51	0.47	0.55	0.46	0.54	0.5	ı(1989
of th	Gd	3.33	2.60	1.93	2.53	3.69	3.86	1.16	4.08	3.90	4.01	3.48	3.72	4.01	4.14	4.46	3.31	2.89	3.32	2.84	2.77	3.15	2.89	3.42	3.3	Lennar
l ores	Eu	0.73	0.63	0.49	0.60	0.85	0.92	0.35	0.89	0.85	0.97	0.81	0.86	0.94	0.92	0.98	0.65	0.72	0.81	0.70	0.68	0.78	0.80	0.81	0.8	,据 Mc
ss and	Sm	3.25	2.46	2.00	2.47	3.77	4.04	1.25	4.16	4.22	4.21	3.65	3.78	4.59	4.29	4.78	3.40	3.14	3.66	3.05	2.95	3.31	3.02	3.36	3.4	(SAS)
r rocl	PN	15.5	11.1	9.9	12.6	18.8	19.4	6.1	20.0	19.7	20.3	17.4	17.6	20.8	20.1	21.4	16.2	16.4	16.8	14.4	14.2	16.6	14.20	14.80	16.2	〔岩(P
ons fo	Pr	4.49	3.38	2.99	3.49	5.57	5.73	1.84	5.52	60.9	5.90	5.19	5.16	6.15	5.93	6.24	4.55	5.17	5.14	4.44	4.31	5.05	4.23	3.82	4.8	利亚引
positic	Ce	46.2	31.6	25.7	28.0	49.3	50.6	16.8	52.6	55.1	53.9	44.7	46.1	56.1	53.0	56.9	37.1	52.9	48.3	37.9	37.2	43.3	35.20	32.00	42.9	均澳大
E com	La	21.1	14.7	13.9	18.8	24.2	24.2	10.1	26.1	27.1	25.8	21.9	22.7	26.5	26.0	26.9	17.4	25.7	22.1	19.1	20.1	22.4	18.10	15.40	21.2	古宙平
d REJ	n	2.0	2.3	1.8	2.3	2.6	2.8	0.6	2.7	2.6	2.9	2.2	2.4	3.0	3.8	5.2	3.9	2.1	1.6	2.0	1.7	2.3	1.9	4.5	2.6	为后太
nt an	Th	6.2	5.7	4.0	1.6	8.8	8.6	1.5	9.6	9.1	9.1	7.9	7.9	9.3	8.6	9.4	7.0	7.2	6.8	7.3	6.7	8.2	6.4	10.2	7.3	Ce * 1 y
eleme	Ba	143.5	130.0	92.2	99.4	192.5	158.0	273.0	216.0	196.5	175.5	161.5	163.0	191.0	189.0	190.0	157.0	197.0	169.5	174.5	161.0	189.5	165.5	222.0	174.2	化值:
race	Sr	490.0	405.0	306.0	276.0	253.0	299.0	448.0	287.0	277.0	378.0	277.0	337.0	350.0	304.0	335.0	218.0	246.0	225.0	237.0	257.0	238.0	274.0	201.0	302.0	标准
2 I	Rb	61.5	58.3	23.3	5.0	99.4	65.9	11.1	94.6	91.7	79.9	74.6	80.0	101.5	90.06	92.7	73.0	94.7	84.0	87.9	78.0	102.5	78.1	101.5	75.6	N) ^{1/2} °
Table	Zn	71.0	70.0	48.0	37.0	83.0	86.0	22.0	87.0	88.0	95.0	78.0	71.0	84.0	75.0	91.0	54.0	76.0	67.0	74.0	79.0	74.0	65.0	77.0	71.9	1 _N ×Gd
	Cu	51.0	48.0	11.0	23.0	83.0	49.0	9.0	55.0	59.0	52.0	38.0	51.0	54.0	46.0	58.0	255.0	8.0	15.0	17.0	17.0	17.0	5.0	104.0	48.6	N/(Sn
	Ni	54.0	63.0	65.0	70.0	53.0	77.0	16.0	74.0	88.0	72.0	85.0	55.0	57.0	57.0	78.0	61.0	68.0	49.0	55.0	51.0	52.0	51.0	100.0	63.6	* = Eu
	Co	27.0	39.0	41.0	55.0	34.0	60.0	17.0	70.0	0.66	67.0	107.0	42.0	43.0	48.0	70.0	62.0	103.0	74.0	62.0	66.0	56.0	73.0	82.0	60.7	^{1/2} , Eu
	Cr	80.0	60.0	30.0	10.0	60.0	90.06	20.0	90.06	100.0	100.0	80.0	80.0	90.06	90.06	100.0	60.0	50.0	50.0	50.0	50.0	60.09	50.0	70.0	66.3	×Pr _N)
	Λ	151.0	91.0	24.0	36.0	156.0	159.0	31.0	181.0	177.0	180.0	124.0	154.0	165.0	169.0	199.0	365.0	93.0	42.0	44.0	41.0	52.0	134.0	684.0	150.5	/(La _N
	Se	7.0	6.0	5.0	2.0	10.0	10.0	2.0	10.0	10.0	10.0	9.0	9.0	10.0	10.0	11.0	7.0	8.0	8.0	8.0	8.0	9.0	8.0	11.0	8.2	= Ce _N
	样品	LW1-1	LW1-2	LW1-3	LW1-4	LW1-5	LW-2	LW-3	LW-4	LW-5	1-W-6	LW-7	LW-8	6-W.1	LW-10	LW-11	LW-12	LW-13	LW-14	LW-15	LW-16	LW-17	LW-18	LW-19	平均值	注: Ce*

表 2 老乌锰矿岩矿石的微量和稀土元素组成

表3	老乌锰矿床岩矿石的碳、氧同位素组成
Table 3	C and O isotopic compositions for rocks
and	ores of the Laowu manganese deposit

样品	岩性	$\delta^{13}C_{V-PDB}$ Mm /% /%	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\delta^{18}O_{SMOW}$ /%0	温度 /℃
LW1-2	锰矿石	-7.61 23.2	24 - 2.84	27.98	35.18
LW1-4	锰矿石	-4.93 41.2	24 - 5.50	25.24	49.92
LW-2	含锰粉砂岩顶板	- 10.09 17.2	22 - 3.87	26.92	40.66
LW-13	锰矿石	-7.07 15.9	90 -4.15	26.63	42.21
LW-15	锰矿石	-7.41 21.9	93 - 3.85	26.94	40.58
LW-17	锰矿石	-7.36 19.8	33 - 3.86	26.93	40.59
LW-19	含锰粉砂岩底板	-6.48 9.8	3 -4.01	26.78	41.42

=0.99(*n*=23)。图 5b 显示 SiO₂/Al₂O₃ 值变化范 围为 3.27~10.48 样品总体值围绕 3.6 左右波动, 仅 LW1-4 和 LW-3 两个样品值较高。

3.3 微量和稀土元素

老乌锰矿的微量元素含量在锰矿层、顶底板和 夹层中差别比较明显(表 2),顶底板和夹层中的 Sc、V、Cu、Zn、Rb、Zr、Nb、Th等元素明显高出锰矿 层。其微量元素 NASC(Gromet *et al.*,1984)标准化 蜘网图(图 6)显示矿层、顶底板和夹层的元素配分 形式基本一致且都表现出 Co、Ni、Sr 富集而 Rb 和 Ba 亏损,反映各锰矿层是在相似的成矿环境中形成 的,并可能具有相似的物质来源。

由图 5e 可看出 绝大部分样品的 U/Th 值小于 1.仅 LW1-4 大于 1。V/(V + Ni) 值变化范围为 0.27~0.87 (图 5d),其中上矿层样品 LW1-4~ LW1-5 与下矿层下段的 LW-12~LW-19 均有起伏, LW-2~LW-11 显示整体环境趋于稳定。V/Cr 值为 0.8~9.77 除 LW-12 和 LW-19 外 其余样品值均接 近 2 或在其左右波动(图 5e)。Sr 和 Ba 的变化范围 分别为 201×10⁻⁶~490×10⁻⁶和 92.2×10⁻⁶~273 ×10⁻⁶ Sr 在锰矿层中富集明显 Sr/Ba 值为 0.91~ 3.41(均值 1.83),矿层的 Sr/Ba 值一般比顶底板和 夹层高(图 5f)。

由稀土元素分析结果可见(表 2),所有样品 Σ REE值为 40.46×10⁻⁶~133.26×10⁻⁶,均值 (101.3×10⁻⁶)与大陆沉积地壳平均值接近(117× 10⁻⁶,Ronov *et al.*,1974)。如图 5g,上矿层 LW1-1 ~LW1-5 的 Σ REE值变化较大;下矿层 LW-2~LW-19 的 Σ REE值呈现出稳定性的波动。 Σ LREE/ Σ HREE为 5.29~9.92,平均值为 7.53,属轻稀土富 集型。Ce^{*}为0.83~1.14,弱的正负异常或异常不 明显(图 5 h)。Eu为0.59~0.89,中等负异常。 Ce/La值为1.5~2.2,下矿层样品变化较小,仅LW-3 较突出,而上矿层变化较为显著(图 5i)。Y/Ho值

(a) 变余砂状结构 .猛矿物以灰白色到白色褐锰矿为主(BSE); (b) 蚀变团块状结构 .原砂状结构叠加成矿溶液蚀变而成(单偏光);
(c) 条带状互层结构 .经溶蚀的砂粒状氧化锰矿(褐锰矿)和碳酸锰矿(含锰方解石)呈过渡性互层(BSE);
(d) 脉状结构 .褐锰矿经不完全溶蚀或贯穿形成脉状碳酸锰矿(含锰方解石)(BSE)
图 4 老乌锰矿中矿石的典型结构类型
Fig. 4 Typical structures of ores in the Laowu manganese deposit

Fig. 5 The variation tendency charts of element ratios for rocks and ores of the Laowu manganese deposit

为 27.2~40.5 ,上下矿层的大部分样品均在较小范 围内变化 ,仅 LW1-4 和 LW-3 值突出(图 5j)。

3.4 碳、氧同位素

老乌锰矿的 7 个含锰岩系岩(矿) 石的碳、氧同 位素测试结果(表 3) 表明,其 $\delta^{13}C_{V-PDB}$ 变化范围为 -10.09% ~ -4.93%,锰矿石和底板岩石的 $\delta^{13}C_{V-PDB}$ 值与矿石差别不大,除 LW-2 样品值 (-10.09%)较为分散外,其他样品则主要集中在 -7.61% ~ -4.93%。正常海相碳酸盐的 $\delta^{13}C_{V-PDB}$ 值在 $0 \pm 2\%$,特别是显生宙以来 $\delta^{13}C_{V-PDB}$ 值几乎都 接近于 0,而在地质时代交界的层位或是局部有机 物活动强烈的地方,可出现 $\delta^{13}C_{V-PDB}$ 异常或更负的 $\delta^{13}C_{V-PDB}$ 值(郑永飞和陈江峰,2000)。所测试样品 的 $\delta^{13}C_{V-PDB}$ 值(郑永飞和陈江峰,2000)。所测试样品 沉积碳酸盐岩值,推测成矿层位存在着一定程度的 有机物活动。锰矿石和顶底板岩石的 $\delta^{18}O_{SMOW}$ 值为 25. 24‰ ~ 27. 98‰ ,接近于现代正常海相碳酸盐的 $\delta^{18}O_{SMOW}$ 值(28‰ ~ 30‰)。这些均一的氧同位素组 成可能反映它们有着相似的源区,同时也可能反映 成矿环境中的氧同位素组成近于平衡(Pfeifer *et al.* 1988; Xie *et al.* 2013)。

当成矿环境与周围海水达到同位素平衡,且成 岩过程中蚀变作用对同位素比值的影响可排除时, 锰矿中的方解石等碳酸盐矿物的氧同位素组成可 用来重建成矿时的古温度。前人曾提出海相方解 石和文石可代表平衡的同位素组成且可用来分析 古温度(Wierzbowski 2002; Rosales *et al.* 2004)。虽 然海相碳酸盐经重结晶或是与地下水的同位素交 换会造成 $\delta^{18}O_{SMOW}$ 值的下降,但是本文所测的 $\delta^{18}O_{SMOW}$ 值较为均一且与现代海相碳酸盐矿物接近, 表明锰矿层所受的蚀变作用是有限的。因此,采用 氧同位素外部测温法所得的古温度具有一定的参 考意义。笔者采用 Craig(1965)的公式并取三叠纪 海水 $\delta^{18}O_{SMOW}$ 值为0,计算所得老乌锰矿样品的成矿 古温度范围为 35~50°C(表 3)。

4 讨论

4.1 锰源

前人在对滇东南法郎组含锰建造和斗南锰矿 的研究中对锰质来源做了许多探讨,苏俊华(1983) 和钟建廷(1986)等认为斗南锰矿的锰质主要来自 斗南海盆周边的古陆剥蚀区;而刘仁福等(1988)和 罗崇迅和杜泽英(1992)等认为滇东南法郎组含锰 建造的物质主要为热液来源。

Al、Ti 和 Si 在沉积岩中的含量特征常指示沉积 岩的物源信息。老乌锰矿中 Al、Ti、Si 的含量分别

为 1.78% ~ 10.97% (均值 8.10%)、0.09% ~ 0.50%(0.38%)和15.32%~45.33%(33.2%),三 者表现出良好的相关性(R_{si-Al} = 0.88 , R_{si-Ti} = 0.91 , $R_{AI-Ti} = 0.99 \ n = 23$)。Al 通常来自碎屑矿物或是黏 土矿物(Crerar et al., 1982), 如表 4 所示相比其他 类型锰矿(大洋结核与结壳除外)老乌锰矿中 Al 的 含量较高,说明成矿过程中陆源碎屑及黏土类沉积 物的贡献较大(Choi and Hariya ,1992); Ti 在热液作 用中属干活动性较弱的元素。且 Ti 的含量高低能够 指示碎屑含量的多少(Sugisaki et al. 1984) 老乌锰 矿中高 Ti 特征也说明在矿床形成过程中有较多陆 源碎屑物质的加入。Al 和 Ti 良好的相关性佐证了 这一结论。沉积物中 Si 除了来自陆源碎屑和黏土 物质外 还可能源自生物作用或热液(Brusnitsyn et al. 2013)。Taylor 和 McLennan(1985) 认为陆壳中 SiO₂/Al₂O₃值为 3.6,老乌锰矿的 SiO₂/Al₂O₃值变

表 4 不同类型的锰矿床主量和微量元素特征 Table 4 Major and trace element contents of various types of manganese deposits

地区	中国①	日本 2	土耳其③	土耳其④	南太平洋 [©])
矿床	贵池	Wakasa	Binkilic	Cayirli	锰结壳均值	
类型	沉积	热液	沉积-成岩	火山-沉积	水成	床
SiO ₂ /%	50.97	58.16	10.65	63.02	9.17	33.20
${\rm TiO}_2$	0.14	0.04	0.02	0.03	1.79	0.38
$\mathrm{Al}_2\mathrm{O}_3$	3.69	0.55	2.85	0.65	2.46	8.18
$\mathrm{Fe}_2\mathrm{O}_3$	3.04	0.92	2.46	0.68	30.29	3.86
MnO	9.61	32.50	33.39	29.22	28.1	18.08
MgO	0.98	0.19	1.27	0.20	2.18	5.19
CaO	13.65	4.15	18.96	0.24	3.78	8.27
Na ₂ O	0.23	0.04	0.39	0.05	2.38	0.62
K ₂ O	0.34	0.10	0.56	0.11	0.65	1.73
P_2O_5	0.25	0.10	0.31	0.04	1.45	0.31
a/×10 ⁻⁶	212.56	13.79	6892.00	1229.40	1745.00	174.00
V	167.86	258.00	106.00	143.70	710.00	150.54
Cr	107.21	10.00	26.00	13.70	35.00	66.25
Co	4.77	2.00	59.00	25.21	5508.00	60.71
Ni	89.39	28.00	167.00	69.40	4237.00	63.58
Cu	31.03	50.00	26.00	154.90	1100.00	48.58
Zn	137.36	26.00	49.00	66.70	688.00	71.92
Pb	16.49	112.00	—	6.50	1207.00	32.50
Rb	37.89	2.00	—	2.90	9.00	75.64
Sr	741.34	85.00	2100.00	243.40	1521.00	301.96
Y	21.75	5.00	15.00	33.00		20.30
Zr		12.00	32.00	4.00	610.00	90.75
Mn/Fe	5.06	39.00	15.03	97.17	1.02	8.08

注: ①据 Xie 等(2006); ②据 Choi 和 Hariya(1992); ③据 Gültekin (1998); ④据 Karaku 等(2010); ⑤据 Hein(2002)。

化趋势如图 5b 23 件样品中 21 件样品值与 3.6 接近 判断成矿物质应主要来自陆源。其中 LW1-4 和 LW-3 高出 3.6 较多 成暗示矿层有热液或生物来源的加入(Brusnitsyn *et al.* 2013)。

通常海水强亏损 Ce(Piper, 1974) 海相沉积岩 中与水成的 Fe、Mn 氢氧化物有关的大部分 REE 都 具有低的 Ce/La 值(0.12),而随着陆源物质和生物 碳酸盐含量的增加 Ce/La 值会相应的增大(Dubinin & Volkov, 1986)。因此 Ce/La 值大小是 Ce 亏损程 度和成矿物质来源的良好指示。老乌锰矿的 Ce/La 值普遍较高(图 5i) 均值达 2.0 其中最小值 2 个样 品 LW1-4、LW-3 也分别有 1.5 和 1.7, 说明陆源和 生物碳酸盐可能是成矿物质的重要来源,而海水仅 可能提供少部分物源。另外 X/Ho值对于指示物质 来源也具有重要意义(Bau et al., 1997)。老乌锰矿 样品的Y/Ho值变化趋势如图 5j ,上、下两个矿层剖 面间差别不明显,大部分样品值在27~30之间或附 近 与大陆上地壳值接近 ,说明来自大陆地壳上部 的陆源应为主要物质来源。样品的 LW1-4 和 LW-3 的Y/Ho值较高 推测可能是由于受到热液和成矿环 境的影响。因为在普通沉积环境中铁锰氢氧化物 会加强对稀土元素的吸收,但在还原性的热液沉积 环境中这一作用将减弱,并且相对 Y 而言,Ho 会被 选择性的更多的释放出来(Bau et al., 1997)。

前人在研究锰矿时注意到生物活动对锰矿成 矿过程的影响(范德廉等,1991; Mandernack et al., 1995; Tebo et al. 2004)。Ostwald(1990) 对澳大利 亚白垩纪 Groote Eylandt 锰矿的研究发现微生物在 整个成矿时期对锰氧化物的沉积有较大影响,如豆 状和鲕状结核型氧化锰中,含有大量被 MnO, 交代 的显微藻类、叠层石和球状、杆状微化石。根据老 乌锰矿的δ¹³C_{V-PDB}(-10.09‰~-4.93‰) 明显低 于现代正常海相碳酸盐岩值,说明锰矿物的形成并 非只受正常沉积作用影响。另外,7个样品的 δ¹³C_{v.PDR}值与 MnO 含量呈负相关(图 7a)。类似的 规律在国内外主要锰矿床中均很常见,如桃江锰 矿、尼科波尔锰矿、大托克马克锰矿和乌尔库特锰 矿等。前人认为这是因为碳酸锰矿形成在一个富 含¹²CO₂ 的沉积环境中 这种¹²CO₂ 主要来自早期成岩 过程中锰氧化物对生物有机质的氧化所释放(Okita et al. ,1988; Polgári et al. ,1991; Kuleshov ,2011)。 郝 瑞霞和彭省临(1998)系统总结了微生物活动对锰成 矿的影响 认为微生物的参与及其对有机质的作用确 实能有效的促进锰的富集,由图 7a 显示的 LW1 - 4

和 LW-2 的值相对分散,说明可能是锰的富集程度 不同或是微生物碳活动水平差异所致。因此,老乌 锰矿中生物有机质的活动不仅影响了碳同位素的 组成,可能也是对锰质改造富集的作用因素之一。

根据上述分析,可认为老乌锰矿的物源应主要 来自陆源,也存在热液和生物作用提供少部分成矿 物质的可能性。尤其在部分矿层中,热液作用比较 明显,如 LW1-4 和 LW-3。

4.2 锰矿的沉积环境

前人研究认为 微量元素 V/(V+Ni) 值可反映 沉积物形成时的氧化还原环境,氧化、弱氧化、弱还 原和还原对应的溶解氧量分别为 0、0~0.2、0.2~ 2、大于 2 mL/L。当 V/(V + Ni) < 0.46 为氧化环 境 0.57~0.46 为弱氧化环境 0.83~0.57 为弱还 原环境 1~0.83 为还原环境(Jones and Manrning, 1994; Wignall ,1994)。通过对老乌锰矿的所有样品 的 V/(V + Ni) 值投图(图 5d) 发现,其氧化还原环 境呈整体波动、局部稳定的变化规律。上矿层 LW1-1-LW1-5 和下矿层下段 LW-12-LW-19 成矿时在 氧化和弱还原环境范围内起伏变化;下矿层的上段 LW-2---LW-11 处于波动状态的弱还原环境,整体变 化平缓;顶底板形成时为弱还原至还原环境。这种 氧化还原环境变化特征与 Du 等(2013)等对该区域 研究所得认识吻合,海平面波动性升降可能是导致 这种氧化还原环境变化的主要原因。

V/Cr 值也能对沉积环境的氧化还原信息做出 特征性的反映,当 V/Cr <2 表示氧化环境, V/Cr >2 时表示还原环境(Dill,1986;秦元奎等,2010)。老 乌锰矿的 V/Cr 值变化特征如图5g 所示,大部分样 品的 V/Cr 值都在2左右波动,反映出整体成矿环 境为弱氧化和弱还原的交替特征,其中上矿层 LW11—LW1-5 和下矿层下段 LW-12—LW-19 的变化稍 大,而样品 LW-2—LW-11 的值都在 2 附近,整体变 化平缓。所得结论与 V/(V+Ni)值的分析结果基 本相同,其中 LW1-4 表现异常可能是由于前文提到 的热液对该矿层的影响较大所致。

页岩和球粒陨石标准化后的 Ce^{*} 值能够反映出 成矿构造环境信息,如洋脊扩张中心 Ce^{*} 为~0.29, 大洋盆地 Ce^{*} 为~0.55,大陆边缘 Ce^{*} 为~0.9~ 1.3(Murray *et al.*,1990)。老乌锰矿中 Ce^{*} 值为 0.80~1.14,说明成矿环境为大陆边缘。通过 La_{N} / Ce_{N} -Al₂O₃/Fe₂O₃ 投图发现(图 7b),成矿环境属于 陆缘与盆缘接壤的边缘斜坡环境。

Sr 含量与海水盐度关系密切且呈正相关(Klein et al.,1996)。老乌锰矿 Sr 含量变化范围为 201 × 10⁻⁶~490×10⁻⁶(均值 302×10⁻⁶),反映该矿床是 在中低盐度的环境中成矿的(Klein et al.,1996)。 Sr/Ba 值大于 4.8 反映深水和高盐度的海相沉积环 境(范德廉,1994;谢建成等,2006)(图 5f),老乌锰 矿 Sr/Ba 值均小于 4.8,其中锰矿层较顶底板和夹 层要高,反映锰矿形成于中低盐度的浅海环境。

4.3 锰矿的成因类型

Mn/Fe 值是反映 Mn、Fe 分异程度与成矿环境 的重要指标之一(Glasby 2006)。从表 4 可见,沉积 (成岩)和水成型锰矿床(贵池、Binkilie 和锰结壳) 的平均 Mn/Fe 值较小,而热液型或与火山有关的锰 矿床(Wakasa、Cayirli)该值明显偏高。从老乌锰矿 的 Mn/Fe 值变化趋势图(图 5a)可见 23 个样品值 中 18 个落在 2~10 之间 5 个大于 10 相较热液型 锰矿而言整体值偏小,而与水成型锰矿相比则偏 大,与火山-沉积型无法对比,因此老乌锰矿的成矿 应以沉积(成岩)作用为主。热液可能在局部矿层

Fig. 8 Discrimination diagrams of Fe-Mn-(Ni + Co + Cu) × 10(a) and REE patterns (b) for the Laowu manganese deposit

起到较明显地促进作用,如 LW1-4 和 LW-3 两个样 品 Mn/Fe 值表现突出,可能是热液作用的叠加所 致。SiO₂/Al₂O₃ 值在区分锰矿床不同物源特征的同 时,也能揭示成矿作用方面的信息。成矿过程中由 于陆源碎屑物质或玄武质岩石的混入,沉积(成岩) 型锰矿比热液型锰矿的 SiO₂/Al₂O₃ 值要明显偏低 (Bonatti,1975; Wonder *et al.*,1988)。图 5b 显示,老 乌锰矿 SiO₂/Al₂O₃ 值普遍较低(3.6 左右),仅有 LW1-4 和 LW-3 突出,反映该矿床成矿主要以沉积 作用为主导,与 Mn/Fe 值分析结果完全一致。

热液沉积型锰矿床比沉积成岩型锰矿更富集 Cu、Zn、Ni、Ba 和 U 等微量元素,而相较于水成型锰 矿则明显偏低(Nicholson,1992)。表4显示,老乌锰 矿的微量元素含量与沉积型锰矿相近。另外,U/Th >1 也是热液沉积的重要特征(Bostrom *et al.*,1979; Marchig *et al.*,1982),如图 5c 所示,老乌锰矿中除 LW1-4 可能受热液影响较明显外,其余样品值均小 于 1,显示以沉积成因作用为主。在 Fe-Mn - (Ni + Co + Cu) ×10 三角图(图 8a)上 老乌锰矿大部分样 品投在了成岩作用区,同时也显示有部分热液的参 与(Crerar *et al.*,1982)。

通常水成型锰矿的 REE 总量远比热液型锰矿 高,且表现明显的正 Ce 异常,而热液型为负 Ce 异 常(Usui and Someya,1997; Hein *et al.*,1997)。从图 8b 中可见,老乌锰矿 REE 含量与热液型锰矿相近, 但 Ce 没有表现出与之对应的明显负异常,也没有 突出的正异常现象,这可能反映了成矿过程中沉积 作用受到热液作用叠加的情况;所有样品均表现为 Eu 中等负异常,一方面可能说明热液对成矿具有明 显影响(Xie *et al.* 2013),另一方面说明有来自陆源 的物质加入和/或沉积物通过脱水作用加入到成矿 物质中去(Sun and McDonough,1989)。 综上所述,沉积成岩作用是老乌锰矿的主导成 矿作用,在矿化过程中热液作用对各矿层产生了强 度不一的影响。

5 结论

(1)老乌锰矿床位于滇东南地区中三叠世晚期 法郎组中 赋矿岩性为一套海相泥岩、粉砂岩、砂岩 夹碳酸盐岩沉积组合。矿物组合以氧化锰为主,代 表性的为褐锰矿;次要矿物为钙菱锰矿、锰方解石 及少量含锰硅酸盐等;矿石显微结构表现为变余砂 状、蚀变团块状、条带状和脉状;矿石品位为 12.18%~41.24%。

(2) 锰矿物质来源具有多源性。陆源输入为成 矿提供了主要锰质来源,其为次热液和海水来源。 在早期成岩成矿过程中,生物有机质可能对锰质的 提供以及锰的沉淀成矿具有积极的贡献。成矿环 境为陆缘与盆缘接壤的边缘斜坡相的中低盐度浅 海沉积环境,成矿物理化学条件主体为弱还原特 征,矿层间存在氧化还原的波动性变化,可能为成 矿时期海平面波动性升降所致。

(3) 锰矿的成因类型为沉积成岩型锰矿床。虽 然在成矿期间或后期有一定程度热液作用,但沉积 成岩作用仍是主导成矿作用,同时生物作用对成矿 也起到了一定的促进作用。

参考文献 (References):

- Bau M , Möller P , Dulski P. 1997. Yttrium and Lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling. Marine Chemistry , 56(1-2): 123-131
- Bonatti E. 1975. Metallogenesis at oceanic spreading centers. Annual Review of Earth and Planetary Sciences , 3(1): 401-431
- Boynton W V. 1984. Cosmochemistry of the rare earth elements , meteorite studies. In: Henderson P(ed.) , Rare Earth Element Geochem-

istry. Elsevier ,63 - 144

- Boström K , Rydell H , Joensuu O. 1979. Langban: An exhalative sedimentary deposit? Economic Geology , 74: 1002 – 1011
- Brusnitsyn A I. 2013. Geochemistry and genetic model of the ore-bearing sediments of the parnok ferromanganese deposit, Polar Urals. Geochemistry International , 51(8): 623 – 645
- Choi J H , Hariya Y. 1992. Geochemistry and depositional environment of Mn oxide deposits in the Tokoro Belt , Northeastern Hokkaido , Japan. Economic Geology , 87(5): 1265 – 1274
- Craig H. 1965. The measurement of oxygen isotope paleotemperature. In: Tongiorgi E (ed.), Proceedings Spoleto conference on stable isotopes in oceanographic studies and paleotemperatures. Spoleto, Italy: Climate Processes Research Group, 3: 3 – 24
- Crerar D A , Namson J , Chyi M S , Williams L , Feigenson M D. 1982. Manganiferous cherts of the Franciscan assemblage: I. General geology , ancient and modern analogues , and implications for the hydrothermal convection at oceanic spreading centers. Economic Geology , 77(3): 519 – 540
- Dill H. 1986. Metallogenesis of early palaeozoic graptolite shales from the Graefenthal Horst (Northern-Bavaria, Federal Republic of Germany). Economic Geology ,81: 889 – 903
- Du Q D , Yi H S , Hui B , Li S J , Xia G Q , Yang W , Wu X F. 2013. Recognition , genesis and evolution of manganese ore deposits in southeastern China. Ore Geology Reviews , $55:\ 99-109$
- Dubinin A V , Volkov I I. 1986. Rare earth elements in metalliferous sediments of the Eastern Pacific Rise. Geokhimija , 5: 645 662
- Fan D L , Yang P J. 1999. Introduction to and classification of manganese deposits of China. Ore Geology Reviews , 15(1-3): 1-13
- Glasby G P. 2006. Manganese: Predominant role of nodules and crusts. In: Schulz H D , Zabel M (*eds.*) , Marine geochemistry. Berlin Heidelberg: Springer-Verlag, 371 – 427
- Gromet L P , Haskin L A , Korotev R L , Dymek R F. 1984. The "North American Shale Composite": Its compilation , major and trace element characteristics. Geochimica et Cosmochimica Acta , 48 (12): 2469 – 2482
- Gültekin A H. 1998. Geochemistry and origin of the Oligocene Binkiliç manganese deposit, Thrace basin, Turkey. Turkish Journal of Earth Sciences, 7: 11 – 23
- Hein J R , Koschinsky A , Halbach P , Manheim F T , Bau M , Kang J K , Lubick N. 1997. Iron and manganese oxide mineralization in the Pacific. In: Nicholson K , Hein J R , Buhn B , Dasgupta S (*eds.*) , Manganese mineralization: Geochemistry and mineralogy of terrestrial and marine deposits. London: Geological Society of London Special Publication , 119: 123 – 138
- Hein J R. 2002. Cobalt-rich ferromanganese crusts: Global distribution , composition , origin and research activities. ISA Technical Study , No. 2 , International Seabed Authority , 36 – 89
- Jones B , Manning D A C. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology , 111(1-4): 111-129
- Karaku ξ A , Yavuz B , Koç S. 2010. Mineralogy and major-trace element geochemistry of the Haymana manganese Mineralizations , Ankara , Turkey. Geochemistry International ,48(10): 1014 1027

Klein R T , Lohmann K C , Thayer C W. 1996. Sr/Ca and ¹³C/¹²C ratios

in skeletal calcite of *Mytilus trossulus*: Covariation with metabolic rate , salinity , and carbon isotopic composition of seawater. Geochimica et Cosmochimica Acta , 60(21): 4207 - 4221

- Kuleshov V N. 2011. Manganese deposits: Communication 1. Genetic models of manganese ore formation. Lithology and Mineral Resources , 46(5): 473 – 493
- Kuleshov V N. 2012. A superlarge deposit–kalahari manganese ore field (Northern Cape , South Africa) : Geochemistry of isotopes($\delta^{13}C$ and $\delta^{18}O$) and genesis. Lithology and Mineral Resources ,47(3) : 217 233
- Liu H J , Xue Y Z. 1999. Sedimentology of triassic dounan-type manganese deposits , western margin , Yangtze Platform , China. Ore Geology Reviews , 15(1-3): 165 – 176
- Mandernack K W , Fogel M L , Tebo B M , Usui A. 1995. Oxygen isotope analyses of chemically and microbially produced manganese oxides and manganates. Geochimica et Cosmochimica Acta , 59(21): 4409 – 4425
- Marchig V , Gundlach H , Möller P , Schley F. 1982. Some geochemical indicators for discrimination between diagenetic and hydrothermal metalliferous sediments. Marine Geology , 50(3): 241 – 256
- McLennan S M. 1989. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. In: Lipin B R, McKay G A (eds.). Geochemistry and mineralogy of rare earth elements. Review in Mineralogy , 21: 169 – 200
- Murray R W , Buchholtz ten Brink M R , Jones D L , Gerlach D C , Price Russ III G. 1990. Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology ,18(3): 268 – 271
- Murray R W. 1994. Chemical criteria to identify the depositional environment of chert: General principles and applications. Sedimentary Geology, 90(3-4): 213-232
- Nicholson K. 1992. Contrasting mineralogical-geochemical signatures of manganese oxides: Guides to metallogenesis. Economic Geology , 87 (5): 1253 – 1264
- Nozaki Y , Zhang J , Amakawa H. 1997. The fractionation between Y and Ho in the marine environment. Earth and Planetary Science Letters , 148(1-2): 329 - 340
- Okita P M , Maynard J B , Spiker E C , Force E R. 1988. Isotopic evidence for organic matter oxidation by manganese reduction in the formation of stratiform manganese carbonate ore. Geochimica et Cosmochimica Acta , 52(11): 2679 – 2685
- Ostwald J. 1990. The biogeochemical origin of the Groote Eylandt manganese oxide pisoliths and ooliths , northern Australia. Ore Geology Reviews , 5(5-6): 469-490
- Pfeifer H R , Oberänsli H , Epprecht W. 1988. Geochemical evidence for a synsedimentary hydrothermal origin of Jurassic iron-manganese deposits at Gonzen(Sargans , Helvetic Alps , Switzerland) . Marine Geology , 84(3-4): 257 – 272
- Piper D Z. 1974. Rare earth elements in the sedimentary cycle: A summary. Chemical Geology , 14(4): 285 - 304
- Polgári M, Okita P M, Hein J R. 1991. Stable isotope evidence for the origin of the Urkút manganese ore deposit, Hungary. Journal of Sedimentary Petrology, 61(3): 384 – 393
- Ronov A B , Balashov Y A , Girin Y P. 1974. Regularities of rare-earth

element distribution in the sedimentary shell and in the crust of the Earth. Sedimentology , 21(2): 171 – 193

- Rosales I , Quesada S , Robles S. 2004. Paleotemperature variations of Early Jurassic seawater recorded in geochemical trends of belemnites from the Basque-Cantabrian basin , Northern Spain. Palaeogeography , Palaeoclimatology , Palaeoecology , 203 (3 - 4): 253 - 275
- Sugisaki R. 1984. Relation between chemical composition and sedimentation rate of Pacific ocean – floor sediments deposited since the middle Cretaceous: Basic evidence for chemical constraints on depositional environments of ancient sediments. Journal of Geology, 92 (3): 235 – 259
- Sun S S , McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders A D , Norry M J (eds.) , Magmatism in the ocean basins. Geological Society , London , Special Publications , 42 (1): 313 – 345
- Taylor S R , McLennan S M. 1985. The continental crust: Its composition and evolution. Oxford , London: Blackwell , 57 – 72
- Tebo B M , Bargar J R , Clement B G , Dick G J , Murray K J , Parker D , Verity R , Webb Samuel M. 2004. Biogenic manganese oxides: Properties and mechanisms of formation. Annual Review of Earth and Planetary Sciences , 32(1): 287 – 328
- Usui A, Someya M. 1997. Distribution and composition of marine hydrogenetic and hydrothermal manganese deposits in the northwest Pacific. In: Nicholson K, Hein J R, Bühn B, Dasgupta S, eds. Manganese mineralization: Geochemistry and mineralogy of terrestrial and marine deposits. London: Geological Society of London Special Publications, 119: 177 – 198
- Wierzbowski H. 2002. Detailed oxygen and carbon isotope stratigraphy of the Oxfordian in Central Poland. International Journal of Earth Sciences, 91(2): 303 – 314
- Wignall P B. 1994. Black shale. Oxford: Clarendon Press, 1-127
- Wonder J D , Spry P G , Windom K E. 1988. Geochemistry and origin of manganese-rich rocks related to iron-formation and sulfide deposits , western Georgia. Economic Geology , 83(5): 1070 – 1081
- Xie J C , Yang X Y , Du J G , Xu W. 2006. Geochemical characteristics of sedimentary manganese deposit of Guichi , Anhui Province , China. Journal of Rare Earths , 24(3): 374 – 380

- Xie J C , Sun W D , Du J G , Xu W , Wu L B , Yang X Y , Zhou T F. 2013. Geochemical studies on Permian manganese deposits in Guichi , eastern China: Implications for their origin and formative environments. Journal of Asian Earth Sciences ,74: 155 – 166
- 范德廉,刘铁兵,叶杰. 1991. 黑色岩系成岩成矿过程中的生物地 球化学作用. 岩石学报 (2): 65-72
- 范德廉. 1994. 锰矿床地质地球化学研究. 北京: 气象出版社
- 郝瑞霞,彭省临. 1998. 锰的微生物地球化学. 矿物岩石地球化学通报,17(3): 197-200
- 刘宝珺,许效松.1994中国南方岩相古地理图集震旦纪-三叠纪.北 京:科学出版社
- 侯宗林,薛友智,黄金水,林友焕,刘红军,姚敬劬,朱恺军.1997. 扬子地台周边锰矿.北京:冶金工业出版社
- 刘国基,刘作铭,伍昌弟,何勤,周跃军.1984. 滇东南中三叠统锰 矿远景评价调查报告. 昆明: 云南省地质矿产局第二地质大队 内部资料
- 刘仁福,田宝坤,时子祯,郝如锡,李宏臣.1988. 滇东南地区中三 叠世法郎组含锰建造的地球化学特征.地质找矿论丛,3(4):1 -19
- 罗崇迅,杜泽英.1992. 滇东南三叠系法郎组沉积环境及成矿作用. 见:刘宝珺,曾允孚,主编.岩相古地理文集第8辑.北京:地 质出版社,89-102
- 牟传龙,吴应林. 1991. 中国南方三叠纪层序地层及海平面变化. 岩相古地理,11(2): 12-21
- 秦元奎,张华成,姚敬劬. 2010. 广西大新县下雷锰矿床的地球化 学特征及其意义. 地质论评,56(5):664-672
- 苏俊华. 1983. 一个沉积成因类型的褐锰矿-斗南锰矿床. 中国地质 科学院矿床地质研究所所刊,4:33-49
- 谢建成,杜建国,许卫,杨晓勇.2006.安徽贵池地区含锰岩系地质 地球化学特征.地质论评,52(3):396-408
- 章正军,丁俊,赵珉.1998. 滇东南三叠纪层序地层及盆地演化. 武 汉:中国地质大学出版社
- 郑荣才,张锦泉. 1991. 滇东南斗南锰矿重力流沉积及其聚锰环境. 成都地质学院学报,18(4):67-75
- 郑永飞,陈江峰.2000.稳定同位素地球化学.北京:科学出版社
- 钟建廷. 1986. 斗南锰矿成矿规律的初步探讨. 地质论评, 32(6): 583-588

(本文责任编辑:龚超颖)