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Abstract To assess the impact of antimony (Sb) on mi-
crobial community structure, 12 samples were taken from
an Sb tailings pile in Guizhou Province, Southwest China.
All 12 samples exhibited elevated Sb concentrations, but
the mobile and bioaccessible fractions were small in com-
parison to total Sb concentrations. Besides the geochemi-
cal analyses, microbial communities inhabiting the tailing
samples were characterized to investigate the interplay be-
tween the microorganisms and environmental factors in
mine tailings. In all samples, Proteobacteria and
Actinobacteria were the most dominant phyla. At the ge-
nus level, Thiobacillus, Limnobacter, Nocardioides,
Lysobacter, Phormidium, and Kaistobacter demonstrated
relatively high abundances. The two most abundant gen-
era, Thiobacillus and Limnobacter, are characterized as
sulfur-oxidizing bacteria and thiosulfate-oxidizing bacteria,
respectively, while the genus Lysobacter contains arsenic
(As)-resistant bacteria. Canonical correspondence analysis
(CCA) indicates that TOC and the sulfate to sulfide ratio
strongly shaped the microbial communities, suggesting the

influence of the environmental factors in the indigenous
microbial communities.

Keyword Illumina sequencing . Antimony . Sulfur-oxidizing
bacteria . Canonical correspondence analysis

Introduction

Mine tailings or mill tailings, which can account for more
than 80–99 % of the raw ore by weight (Edraki et al.
2014), are the remained materials after extracting econom-
ically minerals from ore (Diaby et al. 2007). These mate-
rials contain high concentrations of sulfide and metal(-
loid)s such as arsenic (As), copper (Cu), and cadmium
(Cd) (Dold and Fontboté 2001; Johnson and Bradshaw
1977). In addition, they contain limited organic matter
and nutrients (Johnson and Bradshaw 1977; Krzaklewski
and Pietrzykowski 2002). Mine tailings can be major
sources of contamination, and microbiological activities
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within mine tailings play an important role by influencing
the morphology and chemistry of metal(loid)s (Schippers
et al. 2010). For instance, various sulfur-oxidizing bacteria
(SOB) and Fe-oxidizing bacteria (FeOB) can harness the
energy via redox reactions occurring in mine tailings
(Garcia et al. 2001; Li et al. 2014). These microbially
mediated reactions are important determinants of the acid-
ity generation, metals mobilization, and release of key
nutrients (such as phosphate and metal cations) required
not only for their own metabolism but for plant growth
and eutrophication potential (Uroz et al. 2009; Welch
et al. 1999). A number of bacteria from diverse genera
such as Azospirillum, Sphingomonas, Shewanella, and
Staphylococcus are implicated in such processes (for de-
tailed information, see the review of (Uroz et al. 2009)).

Antimony (Sb) is a naturally occurring metalloid that
commonly co-occurs with As (Filella et al. 2002). Sb
and its compounds are considered priority pollutants by
the US Environmental Protection Agency (USEPA
1979) and the European Union (Communities of the
Europe 1976). Sb is mined mostly from hydrothermal
ores where stibnite (Sb2S3) is the dominant mineral
form, along with other Sb-bearing minerals such as
berthierite (FeSb2S4) and gudmundite (FeSbS) (Fowler
and Goering 1991). Sb mine tailings remain after ex-
traction of Sb from the primary ores. Extraction agents
such as Na2CO3 are sometimes added during smelting.
These could neutralize the acidity caused by weathering
of S-bearing Sb minerals (Anderson 2012). The biogeo-
chemical changes due to physical and chemical process-
es that occur in Sb tailings after extraction may change
Sb speciation. This affects bioavailability and mobility
of Sb species, which may affect toxicity to aquatic and
terrestrial organisms. Much of the transformation pro-
cesses these minerals undergo are catalyzed by mi-
crobes; therefore, characterization of microbial assem-
blages in mine tailings can inform the study and predic-
tion of biogeochemical changes of Sb mine tailings.

We investigated the microbial communities in an Sb
mine tailings pile, located in Dushan County, Guizhou
Province, Southwest China. These Sb tailings originated
from the local Banpo Sb Mine and are characterized as
neutral pH. Inefficient metals extraction due to outdated
metallurgy technology results in elevated concentrations
of Sb (as high as 5181 mg/kg) and As (as high as
206 mg/kg) in the Sb tailings. These metals thus pose
potential threats to the surrounding ecological environ-
ment. We selected this Sb tailing to study (1) the vari-
ation of Sb extractable fractions along with other met-
al(loid)s within the mine tailings, (2) microbial commu-
nity and diversity in the tailings, and (3) the correlation
between microbial communities with Sb extractable
fractions and other geochemical parameters.

Materials and methods

Site information, sample description, and sampling
procedure

The Xiaohe Sb tailings pile is located in Dushan County,
Guizhou Province, Southwest China (25° 47′ 48.4″ N, 107°
32′ 52.2″ E) (Fig. 1). The tailing wastes were deposited there
starting in June 2006 from the Banpo SbMine (25° 49′ 8.2″N,
107° 37′ 29.1″ E). Samples were collected in October 2014
following the procedure of Chen et al. (Chen et al. 2013).
Briefly, tailings with different depositional faceswere selected
for physicochemical and microbial community analysis
(Fig. 1). Twelve tailings samples (B1–B12), about 0.5 kg
each, were collected using a soil corer from the top 0–5 cm
of the tailings piles. Each sample was mixed and homogenized
before transferring to a 500-ml sterile serum bottle and then
transported to the laboratory (within 5 h) in cool boxes.
Thereafter, samples were stored in freezers at −20 °C (samples
used for molecular analysis) and 4 °C (for physicochemical
characterization), respectively.

Chemical analysis

The samples were freeze-dried for 48 h and thoroughly
ground using mortar and pestle before passing through a
200-mesh sieve for the subsequent analysis. To measure pH,
10-g dry ground tailing samples were placed into a 100-ml
Erlenmeyer flask and mixed with 25-ml Milli-Q water, shaken
for 5 min, and then left to equilibrate for 20 min. A calibrated
HACH HQ30d pH meter (HACH, Loveland, USA) was used
to measure pH, oxidation-reduction potential (Eh) and electri-
cal conductivity (Ec). For nitrate and sulfate measurement, 10-
g dry samples were placed into a 100-ml Erlenmeyer flask,
mixed with 50-ml distilled water and shaken for 5 min, and
followed by 4 h of equilibration. The supernatant was filtered
through a 0.45-μm membrane after centrifuging at 3500 rpm
for 10 min. The sulfate (SO4

2−), chloride (Cl−), and fluoride
(F−) concentrations were determined by ion chromatography
(Dionex ICS-1500, Sunnyvale, CA, USA).

For major elements analysis, 1-g ground sample was
combusted at 900 °C for 2 h and the difference in sample
weight before and after combustion was reported as loss on
ignition. Total sulfur (TS), soluble sulfur, total organic carbon
(TOC), and total carbon (TC) in tailings were measured using
an elemental analyzer (vario MACRO cube, Elementar,
Hanau, Germany) (Schumacher 2002). Trace elements were
determined by ICP-MS (Agilent, 7700×, California, USA)
after digestion using USEPA method 3050B (Kimbrough
and Wakakuwa 2002). For trace elements analysis, certified
reference materials (SLRS-5 (Fornieles et al. 2011; Rueda-
Holgado et al. 2012)) and internal standards (Rh at 500 μg/L
(Ning et al. 2015)) were used for accuracy testing. Standard
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reference material GBW07310 (Chinese National Standard)
was used for analytical quality control. The measured total
Sb concentration in GBW07310 was 6.5±0.8 mg/kg, which
is comparable to the certified value of 6.3± 0.9 mg/kg. All
chemical analyses were determined in triplicate.

Mineral composition and morphology analysis

Scanning electron microscopy (JSM-6460LV, JEOL, Tokyo,
Japan) and energy dispersive X-ray spectrometry (EDAX-
GENESIS, Mahwah, USA) (SEM-EDS) were employed to
determine the presence and morphology of minerals, based
on the methods of McBeth et al. (2013). The SEM was oper-
ated at 15 kV with a working distance of 10 mm. For EDS

analysis, an accelerating voltage of 20 kV was used to obtain
sufficient X-ray counts.

Sequential extraction analysis of metals (metalloids)
in tailing samples

A three-stage sequential extraction was adapted from the pro-
cedure for As byWenzel et al. (2001) and Gault et al. (2003) to
target a range of metal(loid) phases in the tailings. Briefly, 1 g
of tailing sample was placed in a 50-ml centrifugation tube.
The Beasily exchangeable fraction^ (Mexc) was extracted by
adding 10 ml of 0.05 M (NH4)2SO4 solution and shaking for
4 h. The samples were centrifuged and supernatant was re-
moved for total metal(loid) concentration analysis by ICP-
MS. Next, the Bspecifically-sorbed surface-bound fraction^

Fig. 1 Sample location map
including tailings pile and tailings
pond. Field photographs of the 12
tailings samples and sample
numbers are labeled in each
subfigure. Blue line represents
river and red line represents
boundary of antimony tailing
pond (color figure online)
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(Msrp) was extracted by adding 10ml of 0.05MNH4H2PO4 to
the solids remaining after the previous step, and shaking for
16 h. Finally, a fraction containing Bamorphous hydrous ox-
ides of iron (and aluminum)^ (Mamr) was targeted by extrac-
tion with 10 ml of 0.2-M ammonium oxalate buffer (pH 3.0)
for 4 h in the dark. Acid-washed glassware was used and all
reagents were analytical grade (Kemoiou, Tianjing, China).
Extractions were performed at room temperature (∼20 °C),
and all shaking was done at 200 rpm. After each extraction
stage, samples were centrifuged at 3000 rpm for 15 min, and
the supernatant was collected and analyzed by ICP-MS
(Agilent, 7700×, California, USA).

High-throughput sequencing of the V4–V5 regions of 16S
rRNA genes

Total genomic DNAwas extracted using the FastDNA® spin
kit (MP bio, Santa Ana, USA) following the manufacturer’s
protocol. All DNA extracts were stored at −80 °C until further
analysis. DNA concentration and purity was monitored on
1% agarose gels. The V4–V5 regions of 16S rRNA genewere
amplified using the 515f/907r primer set (515f:5 ′-
G T GYCAGCMGCCGCGGTAA - 3 ′ , 9 0 7 r : 5 ′ -
CCYCAATTCMTTTRAGTTT-3′). 16S rRNA tag-encoded
ultra-high-throughput sequencing was carried out on the
Illumina MiSeq platform at Novogene (Beijing, China).
Sequences were analyzed with the Quantitative Insights Into
Microbial Ecology (QIIME) pipeline (Caporaso et al. 2010).
Default settings for Illumina processing in QIIME were used
(r = 3, p = 0.75 total read length; q = 3; n = 0), and then
UPARSE (Edgar 2013) was used to cluster operational taxo-
nomic units (OTUs) at 97 % similarity. Taxonomy was
assigned to the OTUs using the RDP classifier (Wang et al.
2007). Chao1 and Shannon indices were used to estimate
species richness for the six libraries (Schloss et al. 2009).
The reads were deposited into the NCBI short reads archive
database under accession number of SRP067961.

Statistical analyses

Circos software (http://circos.ca/) was used to graph the
bacterial community of each sample at phylum and genus
level in different weathering stages. The similarity of
microbial communities indifferent tailing samples was
determined using weighted UniFrac after the samples had
been rarefied to the size of the smallest sequencing library.
Principal coordinate analysis (PCoA) was then conducted on
the weighted UniFrac (Kuczynski et al. 2012). Canonical cor-
respondence analysis (CCA) performed by CANOCO 4.5
(Microcomputer Power, Ithacha, NY) was used to measure
the major physicochemical parameters that had the most sub-
stantial influence onmicrobial community structure. CCAwas
performed to discern possible linkages between the microbial

communities (limited to those genera with relative abundance
>1 % in at least one sequencing library) and selected physico-
chemical parameters. A symbol’s position in relation to a vec-
tor head indicates the correlation between the community and
the environmental factors. The length of a vector reflects the
relative importance of those environmental factors in discrim-
inating the overall microbial community within one library
(Zhang et al. 2008). Manual forward selection with Monte
Carlo permutation tests was then performed to determine the
significance of the environmental variables with 999 permu-
tations (Lepš and Šmilauer 2003). The correlations between
geochemical parameters were determined by Spearman’s rank
correlation using SPSS (v19) package. Unless stated, p values
<0.05 were considered statistically significant.

Results

Distribution of antimony and arsenic in the weathering
tailings

A total of 12 samples (named B1–B12) were taken from the
mine tailings. Different Sb extractable fractions, including to-
tal Sb concentrations (Sbtot) and various extractable fractions,
are summarized in Table S1. The Sbtot varied from 1534 in
sample B11 to 4963 mg/kg in B9. The Sb concentrations in
the bioaccessible fractions including easily exchangeable Sb
(Sbexc) and specifically sorbed (Sbsrp) (Savonina et al. 2012)
ranged from 25.6 (B11) to 148 mg/kg (B10) (Table S1), ac-
counting for 3.87 % (B9) to 8.64 % (B11) of Sbtot in the
tailings samples (Fig. 2). Meanwhile, the less mobilizable
and bioaccessible Sb concentrations associated with amor-
phous crystalline hydrooxides of Fe and Al (Sbamr) ranged
from 18.9 (B11) to 163 mg/kg (B7) (Table S1). SEM-EDS
images also revealed the presence of Sb-bearing minerals in
all tailing samples. Representative sample images are present-
ed in Fig. 3.

Because As and Sb commonly co-occur (Fawcett and
Jamieson 2011; Ritchie et al. 2013), As fractions were also
measured (Table S1). As concentrations were generally lower
than Sb in the current study. Total arsenic (Astot) ranged from
63.1 (B1) to 207 mg/kg (B9), while As concentrations in the
two bioaccessible fractions including easily exchangeable As
(Asexc) and specifically sorbed (Assrp) ranged from 1.75 (B1)
to 5.42 mg/kg (B9).

Other physicochemical parameters

Due to the occurrence of Sb in sulfur-bearing minerals (such
as pyrite, arsenopyrite, and jamesonite) (Ritchie et al. 2013),
various forms of sulfur including total sulfur, sulfate, and sul-
fide (Table 1) and total Fe (Table 2) were measured as well.
Total sulfur concentration averaged 7.10 mg/g but varied from
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1.70 mg/g (B11) to 16.10 mg/g (B6). Sulfate and sulfide
accounted for over 95 % percent of total sulfur, but their rel-
ative amounts varied in the tailings. Sulfate ranged from 0.30
(B11) to 14.80 mg/g (B6), while sulfide varied from 0.80 (B6)
to 1.50 mg/g (B2). The ratio of sulfate to sulfide (sulfate/sul-
fide, which we interpret as an extent of oxidation of the tail-
ings) varied from 0.23 (B11) to 18.5 (B6). Total Fe averaged
8713 mg/kg, varying from 1893 (B11) to 15473 mg/kg (B6).
Other physicochemical parameters such as pH, Eh, and EC
were also tested in this study (Table 2). All samples exhibited
pH greater than 6.5, suggesting minimal acidification during
the weathering process. Eh varied little among samples, rang-
ing from 122.9 to 165.9 mV, suggesting oxidized environ-
ments prevailed in the tailings. In contrast, EC varied signifi-
cantly, increasing from 82 (B11) to 5365 μS/cm (B5). The
concentrations of total nitrogen (TN), TC, TOC, and total
hydrogen (TH) were also determined and are shown in
Table 1. All 12 samples were characterized as relative low
TOC (<5.46 mg/g, B10), TC (<13.78 mg/g, B10), and TN
(<0.73 mg/g, B8), indicating unfavorable conditions for
bacterial growth.

High-throughput sequencing analysis

In total, 1,515,469 sequences were derived from 12 se-
quencing libraries after passing the highly stringent
quality control. Although the current study site may be
less than optimal for bacterial growth (low nutrients,
low TOC), there still were 5098 OTUs detected by
Illumina sequencing among the 12 sequencing libraries.

Libraries B5 and B10 demonstrated the highest OTU
numbers with 2306 and 2016, respectively, while B1
and B9 had the lowest OTU number (1453 and 1531,
respectively). The alpha diversity indices including
Chao1 and Shannon were also determined and exhibited
very similar trend as OTU numbers. For instance, B5
and B10 had the highest Chao1 and Shannon, but B1
and B9 had the lowest Chao1 and Shannon (Table S2).

Proteobacteria accounted for 60.5 % of total valid se-
quences (24.3 to 83.8 % per sample) and were the most dom-
inant phylum in 11 out of 12 sequencing libraries (Fig. 4).
Actinobacteria accounted for 10.3 % of all effective se-
quences, while Chloroflexi, Cyanobacteria, Acidobacteria,
and Gemmatimonadetes each accounted for more than 4 %.
Thirty-three percent of total reads could not be classified be-
yond kingdom (bacteria and archaea) by the RDP classifier.
This high proportion of unclassified sequences suggested that
a large number of microorganisms in the Sb-rich environ-
ments belonged to unrecognized or novel bacterial and ar-
chaeal species. Two archaeal phyla, Euryarchaeota and
Crenarchaeota, were also detected in the current study but
only accounted for 0.4 % of total valid reads. At the class
level, Betaproteobacteria (30 %), Alphaproteobacteria
(16.2 %), and Gammaproteobacteria (12.2 %) were the most
abundant classes accounting for more than 10 % of total ef-
fective reads (Table S3). All other classes accounted for less
than 10 % of to ta l r eads . At the fami ly leve l ,
Hyd rog en oph i l a c e a e , Comamonada c e a e , a n d
Xanthomonadaceae were the top three families, accounting
for more than 5 % of all effective reads (Table S4).
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bioaccesible antimony fractions
(Sbexc and Sbsrp) and non-
bioaccessible antimony fractions
(Sbamr and Sbred). Sbred refers the
difference of total sediment Sb
and the sum of three extractable
Sb fractions. The bioaccesible Sb
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B12

B3
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Fig. 3 Representative SEM images (left panel) and the corresponding EDX spectra (right panel) of the sediment samples. Sampling sites were labeled
on the top of each figure
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A total of 256 genera were identified from 12 sequencing
libraries. Only six genera demonstrated relative abundance
greater than 1 % of total sequences. They are Thiobacillus,
Limnobacter, Nocardioides, Lysobacter, Phormidium, and
Kaistobacter (Fig. 5, Fig. S1, and Table S5). Among them,
Thiobacillus and Limnobacter were the most abundant gen-
era. Thiobacillus was most dominant in B1 and B2, with rel-
ative abundances greater than 28 %. Limnobacter demonstrat-
ed relative abundances greater than 10 % in B3, B4, B5, B6,
and B7. These two genera accounted for 14.2 % of total valid
r e a d s . O t h e r g e n e r a , s u c h a s Sph i n gomona s ,
Hydrogenophaga, Iamia, and Methylotenera, only demon-
strated relatively higher abundances in one or a few sequenc-
ing libraries each.

Spearman correlation revealed the correlations be-
tween microbial population (at phylum and genus level)
and selected geochemical profiles (Table S6 and S7).
Among all tested taxonomic groups, sulfate was

positively correlated with Limnobacter (genus) and
Rhodobacter (genus) but was negatively correlated with
Actinobacteria (phylum) and Gemmatimonadetes (phy-
lum). Sbtot and Sbamr were negatively correlated with
Kaistobacter (genus) and Iamia (genus), while Sbsrp
was negatively correlated with Kaistobacter (genus),
Acidobacteria (phylum), and Actinobacteria (phylum).
TOC was negatively correlated with Limnobacter
(genus) and Lysobacter (genus), and pH was negatively
correlated with Thiobacillus (genus).

Effect of environmental factors on microbial communities

Overall, the microbial community shared some similari-
ties according to their sampling locations. For example,
B1–B7, which were collected in close physical proxim-
ity to one another were clustered together, while B8–B9
and B11–B12 were clustered together. B10 is a notable

Table 1 Major elementary compositions of Sb tailings (mean ± standard deviation of three measurements in mg/g)

Sample Total N Total C Organic C Total H Total S Sulfate S Sulfide S Sulfate/sulfide

B1 0.25± 0.11 3.53 ± 0.40 0.58± 0.07 1.56± 0.14 5.10± 0.10 3.50 ± 0.10 1.10 ± 0.10 3.18

B2 0.46± 0.14 5.96 ± 1.16 2.55± 0.67 2.58± 0.44 8.50± 0.10 6.70 ± 0.10 1.50 ± 0.10 4.47

B3 0.37± 0.10 3.11 ± 0.35 0.64 1.75± 0.58 5.10 3.30 1.30 2.54

B4 0.36± 0.03 3.73 ± 0.34 0.92± 0.14 0.12± 0.43 1.90± 0.10 0.80 0.80 1.00

B5 0.29± 0.02 2.73 ± 0.18 0.75± 0.28 2.37± 0.43 11.00± 0.60 9.70 ± 0.20 0.90 ± 0.10 10.78

B6 0.33± 0.11 3.51 ± 0.54 0.72± 0.40 3.23± 0.14 16.10 ± 0.60 14.80 ± 0.10 0.80 ± 0.10 18.50

B7 0.34± 0.04 3.52 ± 0.52 0.92± 0.01 3.25± 0.45 14.10 ± 0.30 12.70 ± 0.20 1.00 ± 0.10 12.70

B8 0.73± 0.34 12.29 ± 1.97 3.82± 1.23 3.27± 0.27 7.00 5.40 ± 0.30 1.10 ± 0.10 4.91

B9 0.45± 0.16 2.85 ± 0.36 1.27± 0.28 2.79± 0.23 7.50± 0.10 6.20 ± 0.10 1.10 ± 0.10 5.64

B10 0.69± 0.07 13.78 ± 3.08 5.46± 0.79 3.19± 1.53 6.00± 0.20 4.20 ± 0.10 1.20 3.50

B11 0.20± 0.01 1.48 ± 0.15 0.65± 0.01 0.92± 0.20 1.70 0.30 ± 0.10 1.30 0.23

B12 0.38± 0.11 3.65 ± 0.55 2.42± 0.67 1.45± 0.16 1.80 0.40 1.40 ± 0.10 0.29

Table 2 Chemical and physical parameters of the tailing samples (mean ± standard deviation of three measurements)

Sample pH Eh EC F− Cl− SO4
2− Total Fe Cr Mo Cd

mv μS/cm mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg

B1 6.81 ± 0.04 163 ± 3 2400± 28 0.39± 0.21 8.04 ± 0.35 1420± 225 6704± 1406 58.3 ± 16.1 7.22 ± 0.51 0.65± 0.53

B2 6.82 ± 0.01 165 ± 1 2220± 28 1.23± 0.33 2.09 ± 1.06 1150 ± 155 11893± 1096 124.0 ± 27.8 8.62 ± 5.91 1.17± 0.70

B3 6.80 ± 0.02 165 ± 3 2520± 28 1.83± 1.40 8.15 ± 6.09 1777± 21 5289± 805 84.1 ± 26.8 6.00 ± 0.36 0.50± 0.39

B4 6.94 ± 0.02 153 ± 1 1020± 4 0.83± 0.15 2.63 ± 0.28 502 ± 11 5841± 895 54.9 ± 17.5 7.71 ± 1.01 0.44± 0.50

B5 7.62 ± 0.04 163 ± 5 5370± 21 8.25± 0.04 16.9 ± 0.20 2673± 22 6559± 813 53.8 ± 7.2 8.64 ± 0.33 0.33± 0.14

B6 7.64 ± 0.03 152 ± 1 3860± 14 6.43± 0.10 25.5 ± 0.73 2188± 44 14058 ± 820 70.7 ± 11.0 13.13 ± 0.85 0.29± 0.26

B7 7.56 ± 0.03 156 ± 6 2020± 14 5.17± 0.27 14.3 ± 0.22 1949± 17 15473 ± 658 70.3 ± 7.9 15.17 ± 0.28 0.41± 0.20

B8 7.64 ± 0.05 149 ± 2 2020± 4 1.12± 0.15 1.39 ± 0.23 1340± 14 9775± 632 94.5 ± 47.6 6.65 ± 0.47 1.13± 0.61

B9 7.50 156 ± 2 2220± 14 2.42± 0.18 0.90 ± 0.13 1472± 15 11317± 745 80.6 ± 11.3 9.16 ± 0.84 0.66± 0.16

B10 7.54 ± 0.05 154 ± 2 4790± 127 0.90± 0.03 24.1 ± 1.10 1513± 1 8325± 341 64.4 ± 44.5 9.56 ± 1.37 0.36± 0.15

B11 7.73 ± 0.04 123 ± 3 82.0 ± 2 8.69± 0.17 1.32 ± 0.15 122 ± 4 3766± 495 60.5 ± 11.4 6.08 ± 1.31 0.37± 0.19

B12 7.70 ± 0.03 149 ± 4 1130 ± 9 0.64± 0.01 3.77 ± 0.02 306 ± 2 5562± 619 85.4 ± 34.6 11.61 ± 3.51 0.97± 0.52
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exception that was distantly correlated with other sam-
ples (Fig. 6). CCA was used to correlate the effect of
environmental factors on microbial communities. The
first CCA axis explained 30 % of the total variance
and was positively correlated with pH, TOC, and sul-
fate/sulfide, and negatively correlated with Sbtot and the
three Sb extraction fractions. The effect of the four Sb
fractions on the microbial communities was weaker than
those of TOC, pH, and sulfate/sulfide, as indicated by
the lengths of the vectors (Fig. 7), with Sbsrp demon-
strating the least influence and Sbtot exhibiting the
strongest effect on microbial communities. The strongest
determinant for the microbial communities was TOC
(Fig. 7). Thiobacillus and Limnobacter, the two most
dominant genera, were negatively correlated with TOC.
CCA axis 2, which explained 23.7 % of the total vari-
ance, was positively correlated with all three Sb extract-
able fractions and negatively correlated with the sulfate/
sulfide ratio, pH, and TOC.

Discussion

It is surprising to observe such a diversity of microorganisms
inhabiting mine tailings, which contain limited TOC and nu-
trients such as TN but elevated Sb and As concentrations. At
the phylum level, Proteobacteria accounted for the highest
abundances (>60 %) of reads and was dominant in 11 out of
12 samples. Members of Proteobacteria are metabolically
versatile and have been reported to be predominant in a wide
diversity of environments including acid mine drainage,
petroleum-contaminated sites (Sun et al. 2015b, c, d), and in
black shale weathering (Li et al. 2014). Actinobacteria were
the second most dominant phylum, accounting for more than
10 % of total reads. Actinobacteria are ubiquitously distribut-
ed in different habitats including terrestrial and aquatic envi-
ronments (Glöckner et al. 2000; Kaplan and Kitts 2004;
Margesin et al. 2003) and are of importance for their metabolic
versatility and resilience to harsh environments (Arenskötter
et al. 2004; Hamamura et al. 2006; Larkin et al. 2005). Other

Fig. 4 Circos graph showing the taxonomic classification of bacterial reads at phylum level was produced by the Circos software (http://circos.ca/)
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phyla observed in relatively high abundance included
Chloroflexi, Cyanobacteria, and Acidobacteria, which have
been also reported in mining-related areas (Kishimoto et al.
1991; Kuang et al. 2013).

The elevated concentrations of sulfate and sulfide provided
electron donors or acceptors for S-metabolizing bacteria.
Thiobacillus and Limnobacter, which have been identified as
sulfur-oxidizing bacteria (SOB), were the two most abundant
genera identified in the 12 samples, suggesting possible dy-
namic biogeochemical sulfur cycling. Thiobacillus
ferrooxidans, often found in acid mine drainage (Schrenk
et al. 1998), can derive energy for growth from oxidation of
Fe(II) and sulfur compounds with CO2 as the carbon source
(Jensen andWebb 1995). Thiobacillus denitrificans is capable
of autotrophic denitrification (Claus and Kutzner 1985), while
Thiobacillus thioparus strain TK-m can grow autotrophically
on carbon disulfide (CS2) or carbonyl sulfide (COS) (Smith

and Kelly 1988). The capability of autotrophic and
lithotrophic growth by some Thiobacillus species could ex-
plain their dominance in the mine tailings characterized as low
TOC. Moreover, some members of Thiobacillus contain As
resistance genes, which have also been reported to confer
resistance to Sb (Butcher et al. 2000; Kondratyeva et al.
1995). Taking together the autotrophy, sulfur and iron oxida-
tion, and As and Sb resistance, it is not surprising that
Thiobacillus was the most abundant genus in the Sb tailings.
It is also not unexpected to see the enrichment of Limnobacter
in the tailings, as this genus contains species including
Limnobacter thiooxidans and Limnobacter litoralis able to
oxidize thiosulfate (Lu et al. 2011; Spring et al. 2001).
Unlike Thiobacillus, the two Limnobacter species are hetero-
trophic. Unfortunately, thiosulfate was not measured in the
current study. According to previous studies and the elevated
sulfide concentrations in the current study site, we can still

Fig. 5 Circos graph showing the taxonomic classification of bacterial reads at genus level was produced by the Circos software (http://circos.ca/). Only
genera accounting for more than 10,000 reads in all 12 libraries are included in this graph
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propose that Limnobacter spp. may be responsible for the
sulfur or thiosulfate oxidation. Other SOB including
Sulfuritalea, Sulfuricurvum, and Sulfurimonas were also de-
tected, however, at much lower abundances than Thiobacillus
and Limnobacter.

In accordance with the elevated sulfate concentrations, we
observed a number of sulfate-reducing bacteria (SRB) in the
weathered tailings. Because it is unlikely that SRBs would
proliferate in aerobic environments, we hypothesize that
SRBs survive in oxygen-depleted micro-environments in
deeper portions of the sample cores. Members of the family
Thermodesulfovibrionaceae, which have been identified as
thermophilic sulfate-reducing bacteria (Sekiguchi et al.
2008), were detected in all samples with relatively high abun-
dances (up to 1.57 % of reads in some samples). These bac-
teria have also been detected in other mining-related environ-
ments (Medeiros et al. 2015; Sun et al. 2015a). Other SRB,
such as Desulfosporosinus, Geobacter, Desulfocapsa,
Desulfobulbus, and Desulfurispora, were also detected in the
tailings. Detection of both SOB and SRB suggests dynamic
sulfur cycling in the weathered Sb tailings.

Other enriched genera have been frequently reported in
mining environments. Kaistobacter was detected in uranium
mining and milling site (Radeva et al. 2013) and heavy metal
contaminated soil (Navarro-Noya et al. 2010). Arenimonas
contains species isolated from a Fe mine, and Nocardioides
was observed in waste mine tailings (Hur et al. 2011).
Unfortunately, the literature contains sparse information about
these genera. Further investigations may be required to reveal
their role in the mine tailings. The genus Lysobacter contains a
species, Lysobacter arseniciresistens, which was isolated
from Fe-mined soil and is arsenite (As(III))-resistant (Luo
et al. 2012). In addition to Lysobacter, Hydrogenophaga con-
tains As-oxidizing bacteria:Hydrogenophaga sp. str. NT-14 is
able to oxidize As(III) and contains arsenite oxidase genes
such as aroA and aroB (Vanden Hoven and Santini 2004).
Given the chemical similarity between As and Sb (Wilson
et al. 2010), we cannot exclude these bacteria’s roles in Sb
resistance and even Sb cycling.

We previously characterized the microbial community of
sediments of a nearby Sb-contaminated river. Sequences
assigned to the genera Flavobacterium, Sulfuricurvum,
Halomonas, Shewanella, Lactobacillus, Acinetobacter, and
Geobacter demonstrated high relative abundances in that
Sb-rich environment (Sun et al. 2016). The remarkable differ-
ence of microbial community composition in two adjacent Sb-
rich environments (river sediment versus mine tailings) indi-
cates that historical factors (sediments or tailings) and envi-
ronmental conditions may be an important filter in governing
the distribution of microbial assemblage.

The CCA analysis elucidated the interaction between the
microbial community and geochemical parameters (Fig. 7). It
is not surprising to see that Sbtot and all extractable Sb

fractions except Sbsrp were important in shaping the microbial
communities due to the elevated concentrations of Sb and
various Sb fractions. pH also strongly shaped the overall mi-
crobial communities based on its vector length. It is reported
that the intracellular pH of most microorganisms is usually
within 1 pH unit of neutral, and any considerable divergence
in the environmental pH should impose stress on the microor-
ganisms (Fierer and Jackson 2006). So, even though pH did
not differ substantially among the 12 samples (ranging from
6.78 to 7.70), the slight variation in pH may not have been
sufficient to directly influence the distribution of acidophilic
and neutrophilic bacteria, but it may be enough to affect the
mobility and bioavailability of metal(loid)s in the tailings,
which could indirectly affect the communities. It has been
reported that adsorption of Sb species is strongly related to
pH (Cai et al. 2015; Leuz et al. 2006; Ritchie et al. 2013; Tighe
et al. 2005). Thus, the pH effect on the microbial community
structure may be indirect, mediated by the bioavailability of
Sb species or other metal(loid)s. TOC also demonstrated
strong effect on the microbial community. Autotrophic
Thiobacillus are negatively correlated with TOC, suggesting
that the availability of organic carbon may impact the distri-
bution of autotrophic and heterotrophic bacteria. This effect
may be more apparent at a low C environment. The ratio
between sulfate and sulfide also exhibited a strong effect on
the microbial community structure. Given that sulfide is oxi-
dized to sulfate as weathering proceeds (Chen et al. 2013;
Schippers 2004), this ratio sometimes was used as an index
of weathering. This index varied substantially across 12 sam-
ples, indicating the occurrence of a possible weathering pro-
cess in the tailing dump. A direct effect of the remarkable
alteration of this index is the change the allocation of SOB
and SRB, resulting in remarkable shift of microbial commu-
nities between samples. The effect of weathering process,
which can generate acidity and release metal(loid)s to the
surrounding environments, on microbial community compo-
sition has been reported previously and may shape the indig-
enous microbial communities in the current study as well
(Chen et al. 2013; Garcia et al. 2001; Li et al. 2014).

In summary, the physicochemical characteristics and mi-
crobial communities of a total of 12Sb mine tailings samples
were analyzed. All these tailings exhibited elevated Sb con-
centrations. In all samples, the bioaccessible and mobile Sb
fractions in the tailings only accounted for a small proportion
of the total Sb, suggesting a limited threat to the surrounding
environment. An in-depth analysis of the microbial commu-
nities by high throughput sequencing revealed the dominance
o f Th i o ba c i l l u s s p p . , L imnobac t e r s p p . , a n d
Thermodesulfovibrionaceae-related bacteria in the tailings.
The enrichment of these sulfur-oxidizing bacteria and
sulfate-reducing bacteria indicates dynamic sulfur cycling in
the tailings. In addition, the enrichment of a wide diversity of
bacteria suggests the metabolic versatility of the microbial
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communities inhabiting the tailing piles. These bacteria may
play an important role in tailings weathering and biogeochem-
ical cycling of Sb. Additional experiments are required to
further elucidate these microbial processes in tailings piles.
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