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The abundances of trace elements including Sr, Ga and rare earth elements (REE) and halogens in apatite crystals
from four intermediate-felsic plutons in the Zhongdian terrane in the Sanjiang region have been determined
using electron microprobe and laser ablation inductively coupled plasma mass spectrometry to evaluate the po-
tential of apatite as a petrogenic-metallogenic indicator. The selected plutons include one that is notmineralized
(the Triassic Xiuwacu pluton, or the TXWCpluton), one that hosts a porphyry-type Cu deposit (the Pulang pluton,
or the PL pluton), one that hosts a porphyry-typeMo deposit (the Tongchanggou pluton, or the TCG pluton), and
one that hosts a vein-type Mo deposit (the Cretaceous Xiuwacu pluton, or the CXWC pluton). Except for the
CXWC pluton, the other three plutons have adakite-like trace element signatures in whole rocks. The results
from this study show that REE, Sr and halogens in apatite can be used to track magma compositions, oxidation
states and crystallization history. Apatite crystals from the adakite-like plutons are characterized bymuch higher
Sr/Y and δEu than the non-adakite-type pluton. Thismeans that apatite, which is not susceptible to alteration, is a
useful tool for identifying the adakite-like plutons that no longer preserve the initial Sr/Y ratios in whole rocks
due to weathering and hydrothermal alteration. Based on apatite Ga contents and δEu values, it is inferred that
the parental magmas for the two adakite-like plutons containing porphyry-type Cu and Mo mineralization are
more oxidized than that for the non-adakite-typepluton containing vein-typeMomineralization. Apatite crystals
from the vein-type Mo deposit have much lower Cl/F ratios than those from the porphyry-type Cu and Mo de-
posits. Apatite crystals from the adakite-like pluton without Cu or Mo mineralization is characterized by much
lower Cl/F ratios than those from the adakite-like plutons that host the porphyry-type Cu and Mo deposits.
The results from this study confirm the apatite is a useful petrogenetic indicator as well as mineral exploration
tool.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Apatite is an important accessory mineral in granite rocks and is a
sink for whole-rock P and some rare earth elements (REE) and halogens
(Ayers and Watson, 1993; Henerson, 1980; Nagasawa, 1970; Roeder
et al., 1987; Warner et al., 1998; Wass et al., 1980). Experiments
covering a wide variety of melt compositions, pressure and tempera-
tures (e.g. Harrison and Watson, 1984; Jahnke, 1984; London et al.,
1999; Pichavant et al., 1992; Watson, 1979, 1980; Wolf and London,
1994, 1995) have shown that the solubility of apatite in magma de-
creases with decreasing temperature and increasing polymerization of
magma. Therefore, apatite may appear as an early phase on liquidus in
non-peraluminous magma (Harrison and Watson, 1984). In view of its
86 851 5891664.
stability, which is not susceptible to hydrothermal alteration andmeta-
morphism (Ayers andWatson, 1991; Creaser and Gray, 1992; Ekstrom,
1972), apatite could record and preserve information on parental
magma.

Particularly, halogen compositions in apatite have been applied to
estimate contents of F, Cl and H2O in liquid and melt and speculate
voliatite saturation according to the changes of halogens ratios(e.g.
Boudreau and Kruger, 1990; Boudreau and McCallum, 1989; Boyce
and Hervig, 2009; Boyce et al., 2010; Cawthorn, 1994; Elkins-Tanton
and Grove, 2011; Meurer and Boudreau, 1996; Schisa et al., 2015;War-
ner et al., 1998). Trace elements in apatite such asMn, Sr, LREE, Th, Y, Eu
and Ce have been used to indicate magma composition and oxidation
state (e.g. Belousova et al., 2001, 2002; Cao et al., 2012; Piccoli and
Candela, 2002; Sha and Chappell, 1999; Tepper and Kuehner,
1999).Moreover, 87Sr/86Sr of apatite could record initial 87Sr/86Sr values
in systems providing an additional approach to trace magmatic process
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and source (e.g. Creaser and Gray, 1992; Tsuboi, 2005; Tsuboi and
Suzuki, 2003; Zhang et al., 2011) In addition, apatites have also been tra-
ditionally used for U-Th-Pb dating (e.g. Chew et al., 2011; Corfu and
Stone, 1998; Gaweda et al., 2014).

Thus, apatite could be a reliable petrogenic-metallogenic indicator
(Belousova et al., 2002; Boudreau, 1993; Coulson et al., 2001; Imai,
2004; Martin and John, 1998; Roegge et al., 1974; Treloar and Colley,
1996; Williams and Cesbron, 1977). To test its applicability and explore
some new findings, we have selected four granitic intrusions with vari-
ous types of mineralization and without mineralization in the
Zhongdian arc terrane, a major ore deposits cluster of porphyry-type
and hydrotherm-type deposits, in the Sanjiang region in Yunnan, SW
China. Although previous studies focusing of these plutons and relevant
deposits have determined diagenetic andmetallogenic ages, themagma
and ore-forming material source and fluid properties (e.g. Leng et al.,
2007, 2014, Li et al., 2007, 2014, Wang et al., 2014a, 2014b, Yu and Li,
2014, Zeng et al., 2006), it is still an uncertainty for different properties
of magmas formed in different epochs and tectonic background and
their metallogenic specificity. The results of our study reported in this
paper resolve these issues, which confirm that apatite is not only a
reliable petrogenetic indicator but also a useful exploration tool.
Fig. 1. Regional geological map of the research area, part of the details are based on Wang et a
deposits.
2. Geological background and samples

The Yidun arc is situated between the Songpan-Garzê Fold Belt and
the Qiangtang Block of the eastern Tibetan Plateau. The Yidun arc
formed as a result of westward subduction of the Garzê-Litang oceanic
plate beneath the Zhongza-Zhongdian micro-continental block (Hou,
1993; Li et al., 2007). The Garzê-Litang Ocean formed from Middle to
Late Paleozoic by rifting between the Zhongza-Zhongdian block and
the Yangtze craton. Oceanic subduction beneath the Zhongza-
Zhongdian block in Late Triassic produced the “Indosinian” granodiorite
plutons and associated porphyry-type mineral deposits. In late
“Yanshanian”, the region underwent post-collisional extension. Partial
melting of the continental crust in response to regional decompression
produced the Yanshanian granitoids and associated porphyry-type or
hydrothermal vein-type mineral deposits.

Four intermediate-felsic plutons in the Zhongza-Zhongdian terrane
are selected for this study (Fig. 1). Two of them belong to the Indosinian
arcmagmatism: the Pulang pluton (PL) and the Triassic Xiuwacu pluton
(TXWC). The former hosts a porphyry-type Cu deposit whereas the lat-
ter does not. The other two selected plutons belong to the Yanshanian
post-collisional magmatism: the Cretaceous Xiuwacu pluton (CXWC)
l. (2014a). It shows the location of (a) the Yidun arc and (b) the relevant intrusions and
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and the Tongchanggou pluton (TCG) (Fig. 1). The former hosts a quartz
vein-type Mo deposit whereas the latter hosts a porphyry-type Mo de-
posit. The features of ore deposit geology were described in detail by
previous studies (Li, 2007; Li et al., 2014; Wang et al., 2014a, 2014b,
2015; Yu et al., 2015). Based on the geological features, geochronology
and isotopic geochemistry of the granites and mineralization, those re-
searches confirmed their genetic associations.
3. Petrology

3.1. The Cretaceous Xiuwacu pluton

The CXWC pluton is located ~80 km northwest of Shangri-La city.
This pluton is zoned. It consists of three intrusive phases: biotite granite,
monzogranite and alkali-feldspar leucogranite (Fig. 2). Apatite is pres-
ent and most common in the biotite granite and monzogranite units.
The apatite grains are mostly euhedral crystals surrounded by feldspar,
quartz, biotite and allanite (Fig. 5a,b).

Biotite granite is graymedium- to coarse-grained. K-feldspar, plagio-
clase, quartz and biotite are the major phases. Accessory phases include
apatite, sphene, allanite, zircon and fluorite. Monzogranite is gray
medium- to coarse-grained, with smaller amounts of biotite and plagio-
clase than biotite granite. K-feldspar phenocrysts occur locally in
monzogranite, producing a porphyritic texture. Mo mineralization,
which occurs in the quartz veins within the pluton, is composed of
molybdenite, scheelite, bismuthinite, wolframite and tennantite. Zircon
U–Pb age of the host pluton is ~85 Ma (Wang et al., 2014a, 2014b).

Major and trace element compositions of whole rock samples from
the CXWC pluton are listed in Appendix 1. The results show that these
rocks are metaluminous and calc-alkaline granitoids, with Rittmann
index of 2.2–2.4 and A/CNK of 0.99–1.00. These rocks are depleted in
Ba, Sr, P and Ti (Fig. 6b) and enriched in light REE relative to heavy
REE (Fig. 6a), with (La/Yb)N ratios of 6.7–21 and pronounced negative
Eu anomaly (Eu/Eu* b0.6). Previous studies show that this pluton is
characterized by whole rock (87Sr/86Sr)i from 0.7075 to 0.7085, and
εNd(t) from −6.9 to −7.6, and δ18O from 5.9‰ to 8.4‰ (Wang et al.,
2014b).
Fig. 2. Simplified geological map and cross-section of the Cretaceous and Triassic Xiuwacu p
(2014b).
3.2. The Tongchanggou pluton

The TCG pluton is located ~15 km southeast of Shangri-La city. Bio-
tite granitic porphyry is themain intrusive phase (Fig. 3). Plagioclase, bi-
otite and quartz occur as phenocrysts; in addition, the matrix also
contains K-feldspar and Fe-Mg silicate minerals. The accessoryminerals
include apatite, sphene, zircon and allanite. Apatite occurs as euhedral
crystals surrounded by feldspar and biotite (Fig. 5c,d). The TCG deposit
is a porphyry–skarn Mo deposit with skarn-type mineralization in the
shallower depths than porphyry-type mineralization. Molybdenite
and chalcopyrite are the most important ore minerals.

The zircon U–Pb age of the TCG pluton is ~87 Ma (Wang et al.,
2014a). Major and trace element compositions of whole rock samples
from thepluton are listed in Appendix 1. The samples aremetaluminous
and calc-alkaline granitoids with Rittmann index of 2.3 and 2.4 and
A/CNK of 0.94 and 0.95. They are depleted in Ba, Nb, Ta and Ti
(Fig. 6d), enriched in light REE relative to heavy REE (Fig. 6c), with
(La/Yb)N = 39.6 and 40.10 and Eu/Eu* = 0.96 and 1.01. Previous stud-
ies show that the pluton is characterized by (87Sr/86Sr)i = 0.7069 and
εNd(t) from −5.3 to −5.6 (Wang, 2014c; Wang et al., 2014b).
3.3. The Pulang pluton

The PL pluton is located ~36 km northeast of Shangri-La city. It is
composed of quartz diorite porphyrite, quartz monzonitic porphyry
and granodiorite porphyry (Fig. 4). Major mineralization is associated
with quartz monzonitic porphyry, which is composed of K-feldspar,
plagioclase, biotite and quartz as phenocrysts and a matrix containing
fine-grained plagioclase, K-feldspar, quartz, biotite and Fe-Mg silicate
minerals. The accessory minerals in this rock include apatite, sphene
and zircon. Apatite occurs as euhedral crystals surrounded by feldspar
and biotite (Fig. 5e,f). The mineralized porphyry unit shows alteration
zones that are common in typical porphyry Cu deposits worldwide
(Corbett and Leach, 1998; Lowell and Guilbert, 1970). The Cu
mineralization in the PL pluton is closely associated with the biotite
and K-feldspar alteration zones. Major ore minerals include chalcopy-
rite, bornite, covellite, galena and molybdenite.
luton and the associated hydrothermal vein-type Mo deposit modified after Wang et al.
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Fig. 3. Simplified geological map and cross-section of the Tongchanggou and associated porphyry Mo deposit modified after Yu et al. (2015).

Fig. 4. Simplified geological map and cross-section of the Pulang pluton and associated porphyry Cu deposit modified after Li et al. (2011).
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Fig. 5. Occurrences of early crystallized euhedral apatite grains from selected plutons. Ap, apatite; Ab, albite; Bt, biotite; Zrn, zircon; Kfs, K-feldspar; Mag, magnetite; Qtz, quartz; Spn,
sphene.
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The zircon U–Pb age of the PL pluton varies from 211 Ma to 230 Ma
(Pang et al., 2014;Wang et al., 2011). Major and trace element contents
of quartz monzonitic porphyry samples are listed in Appendix 1. These
rocks belong to metaluminous and calc-alkaline granitoids, with
Rittmann index of 2.4 and 2.8 and A/CNK of 0.94 and 0.95, and show de-
pletions in Ba, Nb, Ta and Ti (Fig. 6f) and fractionated REE

Image of Fig. 5


Fig. 6. Chondrite-normalised REE diagrams and primitive mantle-normalised trace element diagrams for selected plutons. Data from Appendix 1; chondrite normalizing values and
primitive mantle values follow Sun and McDonough (1989).
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patterns(Fig. 6e), with (La/Yb)N close to 13–15 and Eu/Eu*= 0.75. Pre-
vious results show that these rocks are characterized by (87Sr/86Sr)i =
0.7065 and εNd(t) = −3 (Li et al., 2007; Pang et al., 2014).

3.4. The Triassic Xiuwacu pluton

The TXWC pluton is located ~85 km northwest of Shangri-La city
with biotite granite as main intrusive phase(Fig. 2). It is mainly
composed of medium- to coarse-grained biotite. K-feldspar plagioclase,
biotite and quartz are major phases. The accessory minerals include ap-
atite, sphene and zircon. Apatite occurs as euhedral crystals surrounded
by feldspar, quartz and biotite (Fig. 5g,h).

Major and trace element contents in whole rocks are listed in
Appendix 1. The samples from the pluton belong to metaluminous
and calc-alkaline granitoids with Rittmann index = 2.2 and A/CNK =
0.95, show depletions in Ba, Nb, Ta, P and Ti (Fig. 6h), and fractionated
REE patterns (Fig. 6g) with (La/Yb)N close to 16 and Eu/Eu* = 0.78.
4. Analytical methods

We select fresh rock sample without obvious alteration. The same
rock sample was divided into two parts: one was used to separate apa-
tite, and the other was prepared for whole-rock analysis.

Apatite crystalswere separated fromwhole rock samples using stan-
dard heavy-liquid and magnetic methods, followed by hand-picking
under microscope. The selected apatite grains were then mounted in
epoxy, polished, and then examined using cathodoluminescence (CL)
images to select good targets for in situ analysis. CL images indicate
that apatite grains from the CXWC, TCGand TXWCplutons have not suf-
fered obvious alteration. A few of the apatite grains from the PL pluton
were possibly affected by alteration, we avoid such altered grains but
selected fresh grains to analyze (Fig. 7).

The contents of major and minor elements in apatite were deter-
mined using a JOEL-1600 electron microprobe at the State Key Labora-
tory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese

Image of Fig. 6


Fig. 7. CL images of representative apatites from the four plutons for in situ analysis.
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Academy of Sciences in Guiyang. The analytical conditions are 25 kV ac-
celerating voltage, 10 nA beam current and 10 μm beam diameter.

The concentrations of trace elements in apatite weremeasured by in
situ LA-ICP-MS at the State Key Laboratory of Isotope Geochemistry,
Guangzhou Institute of Geochemistry, ChineseAcademy of Sciences, fol-
lowing the analytical procedures under the operation conditions given
in Tu et al. (2011). The LA-ICP-MS system consists of an Agilent 7500a
ICP-MS equipped with a Resonetics RESOLution M-50 ArF-Excimer
laser gun (λ = 193 nm, 80 mJ, 10 Hz). The laser ablation spot are
from 30 to 40 μm in diameter. The ablated aerosol was fed to the ICP in-
strument using He gas. The content of Ca was measured using 43Ca and
normalized using the concentration determined by electron probe anal-
ysis. The NIST610 and NIST612 standardswere used for calibration. Off-
line data reductionwas done using the ICPMSDataCal software from Liu
et al. (2008). A total of 57 trace elements were analyzed. The elements
of interest include Ga, Sr, Ba, Y, Zr, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy,
Ho, Er, Tm, Yb, Lu, Th and U. The detection limits for such elements
are from 0.01–0.1 ppm, except Gd and Sm with detection limits of
0.3 ppm. Analyses of NIST610 and NIST612 as unknown samples are
generally consistent with recommended values within 5% for such
trace elements (see Appendix 3). The results have demonstrated high
reproducibility with 0.6% to 1.8% RSD for all the trace elements of
interest.

The concentrations of major elements in whole rocks associated
with selected apatites were determined on fused lithium-tetraborate
glass pellets using an Axios PW4400 X-ray fluorescence spectrometry
at the State Key Laboratory of Ore Deposit Geochemistry, Institute of
Geochemistry, Chinese Academy of Sciences, Guiyang. The analytical
precision is estimated to be b5%. The concentrations of trace elements
in whole rocks were analyzed using a PE DRC-e ICP-MS at the same lab-
oratory described above. Powdered samples (50 mg) were dissolved
using HF and HNO3 acids mixture in high-pressure Teflon bombs for
2 days at about 190 °C. Rh was used to monitor signal drifting during
analysis. The detailed analytical procedures are given in Qi et al.
(2000). The analytical precision is estimated to be b10%.
5. Results

The ideal formula of apatite is A5(XO4)3Z in which the A site is occu-
pied by Ca2+ and other minor or trace cations such as Sr2+, Pb2+,
Mg2+,Mn2+, Fe2+, REE3+, Eu2+, Cd2+ and Na+, the X site is occupied
by P5+ and other minor or trace cations such as Si4+, S6+ and C4+, and
the Z site is occupied by F−, Cl− and OH−. Based on F−, Cl− and OH−

compositions, apatite can be further subdivided into fluorapatite, chlo-
rine apatite and hydroxyapatite. Generally, minor and trace element
concentrations in apatite are controlled by (1) their contents in
magma, (2) their partition coefficients between apatite and melt, and
(3) subsolidus element exchange reactions in the rocks. The thirdmech-
anism may obscure the magmatic information recorded by apatites.
Trying to avoid such interference, We have picked out unaltered
whole-rock samples and apatite crystals from the four selected intru-
sions, then analyzed the chemical compositions of apatite crystals by
EPMA and LA-ICP-MS. The results are listed in Appendix 2.
5.1. Mn-Na-S-Si

Mn enters apatite by substituting Ca2+(Pan and Fleet, 2002). The
MnO contents in apatite from the PL pluton are b0.06 wt.%, with an av-
erage of 0.03 wt.%. These values are much lower than those in apatite
from the CXWC pluton (0.05–0.15 wt.%, average 0.09 wt.%), the TCG
pluton (0.04–0.16 wt.%, average 0.10 wt.%) and the TXWC pluton
(0.01–0.08wt.%, average0.06wt.%). The results show that theMnOcon-
tents in apatite and the host rocks are positively correlated. The MnO
contents in the whole rock samples from the CXWC pluton (0.04–
0.06 wt.%), the TCG pluton (0.06 wt.%) and the TXWC pluton
(0.06 wt.%) are higher than those in the whole rock samples from the
PL pluton (0.02 wt.%).

Na enters apatite by complex substitutions such as Na+ + S6+ =
Ca2+ + P5+, 2Na+ = Ca2++ [V], and REE3+ + Na+ = 2Ca2+.
(RØnsbo, 1989; Sha and Chappell, 1999). The Na2O contents in apatite
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crystals from the selected plutons are close to or below the detection
limit.

S enters apatite by complex substitutions such as Na+ + S6+ =
Ca2+ + P5+ and S6+ + Si4+ = 2P5+(Sha and Chappell, 1999). The
SO3 contents in apatite from the CXWCpluton are mostly below the de-
tection limit andmuch lower than those in apatite from the TCG pluton
(0.08–0.22 wt.%, average 0.13 wt.%), the PL pluton (b0.38 wt.%, average
0.13 wt.%) and the TXWC pluton (0.08–0.18 wt.%, average 0.12 wt.%).

Si enters apatite by complex substitutions such as S6+ + Si4+ =
2P5+ and REE3+ + Si4+ = Ca2+ + P5+(Pan and Fleet, 2002; RØnsbo,
1989; Sha and Chappell, 1999).The SiO2 contents in apatite from the se-
lected plutons are similar (CXWC, 0.10–0.52 wt.%, average 0.25 wt.%;
TCG, b0.19 wt.%, average 0.12 wt.%; PL, 0.08–0.35 wt.%, average
0.16 wt.%; TXWC, 0.15–0.39 wt.%, average 0.27 wt.%). The results
show no absolute correlation between apatite and whole rock Si con-
tents. The CXWC pluton, which has the highest SiO2 contents in whole
rocks among the four selected plutons, does not show the highest SiO2

contents in apatite.

5.2. Halogens

Cl− is present in apatite by substituting F− or OH−(Pan and Fleet,
2002). Our results show a relatively negative correlation between F
and Cl in apatite from the four selected plutons (Fig. 8). The negative
correlation between F and Cl is influenced by the substitution of H2O
for F and Cl. The results also show that all of the apatite crystals are
rich in F (mostly ≥2.8wt.%) and poor in Cl (mostly ≤0.4wt.%). The F con-
tents in apatite from the CXWC pluton (3.27–4.89 wt.%, average
3.97 wt.%) are slightly higher than those of apatite from the TCG pluton
(2.60–4.80wt.%, average 3.00wt.%), from the PL pluton (2.67–3.51wt.%,
average 2.98wt.%) and from the TXWC pluton (2.93–3.77wt.%, average
3.26wt.%). TheCl contents of apatite from theCXWCpluton (someanal-
yses below the detection limit) are generally lower than those of apatite
from the other three plutons (TXWC, 0.04–0.26wt.%, average 0.10wt.%;
TCG, 0.08–0.34 wt.% average 0.17 wt.%; PL, 0.03–0.43 wt.%, average
0.18 wt.%).

5.3. Sr-Zr-Th-Ga-REE

Sr is present in apatite by substituting Ca2+(Pan and Fleet, 2002).
The results show the highest Sr contents in apatite from the TCG pluton
(202–1014 ppm, average 745 ppm), intermediate Sr contents in apatite
from the PL pluton (285–1200 ppm, average 626 ppm) and the TXWC
pluton (346–413 ppm, average 384 ppm), and the lowest Sr contents
in apatite from the CXWC pluton (110–495 ppm, average 292 ppm).
Generally, the Sr contents in the apatite crystals are positively correlated
with those in the whole rocks.

Zr enters apatite by complex substitutions such as Zr4+ + Si4+ =
REE3+ + P5+ and Ca2+ + Zr4+ = 2REE3+ (Casillas et al., 1995). The
Fig. 8. Plots of F (wt.%) vs Cl (wt.%) in apatites from four selected plutons.
CXWC pluton does not have higher Zr contents in whole rocks but has
higher Zr contents in apatite (b11 ppm, average 3 ppm) as compared
to the other three plutons (TCG, b3 ppm, average 0.6 ppm; PL,
b1.4 ppm, average 0.9 ppm; TXWC, b0.9 ppm, average 0.5 ppm).

Th enters apatite by complex substitutions such as Th4+ = 2Ca2+,
Th4+ + Si4+ = REE3+ + P5+ and Ca2+ + Th4+ = 2REE3+ (Casillas
et al., 1995). Apatite crystals from the CXWC pluton and the TCG pluton
have less Th contents (CXWC, 18–82 ppm, average 35 ppm; TCG,16–
44 ppm, average 31 ppm) than those from the PL pluton and the
TXWC pluton (PL, 45–87 ppm, average 68 ppm; TXWC, 25–84 ppm av-
erage 56 ppm), which is the reverse of Th contents in whole rocks.

Ga enters apatite by substituting Ca2+. The highest Ga content (14–
44 ppm, average 22 ppm) is detected in the apatite from the CXWCplu-
ton. Apatite from the PL and TXWC plutons has moderate Ga content
(PL:12–21 ppm, average17 ppm; TXWC: 11–19 ppm, average
15 ppm). Apatite from the TCG pluton has lowest Ga content (7–
15 ppm, average 10 ppm). Such order is different from that of the
whole rock Ga that shows nearly similar content (17–20 ppm). It thus
means the different Ga content in apatite is not entirely controlled by
the magma composition.

Individual REE enters apatite by complex substitutions such
as 2REE3+ + [V] = 3Ca2+, REE3+ + Na+ = 2Ca2+ and
REE3+ + Si4+ = Ca2++P5+(Pan and Fleet, 2002; RØnsbo, 1989; Sha
and Chappell, 1999). The results show the highest total REE contents
in apatite from the CXWC pluton (4582–14,373 ppm, average
7239 ppm), intermediate total REE contents in apatite from the PL plu-
ton (4066–7290 ppm, average 6008 ppm) and the TXWCpluton (3456–
6303 ppm, average 4826 ppm), and the lowest total REE contents in
apatite from the TCG pluton (2424–4115 ppm, average 3334 ppm).
The total REE contents in apatite are not systematically correlated
with whole rock REE concentrations.

The chondrite-normalised REE patterns of apatite from the four se-
lected plutons (Fig. 9) all show light REE enrichments relative to
heavy REE and variable degrees of negative Eu anomaly. The degrees
of light REE enrichments in apatite from the four selected plutons, in de-
scending order, are PL, TCG, TXWC and CXWC. The degrees of Eu anom-
aly in apatite from the plutons, in descending order, are TCG, PL, TXWC
and CXWC.

6. Discussion

6.1. Controls on REE characteristics in apatite

As shown in Fig. 5, apatite from the four selected granite plutons
commonly occurs as euhedral crystals enclosed in silicate minerals.
This textural relationship combined with high apatite saturation tem-
peratures of more than 850 °C(Appendix 1) indicates that apatite in
these rocks is one of the early crystal phases to appear on liquidus.
Thus, the abundances of trace elements such as REE in apatite are main-
ly controlled by their concentrations in the parental melt and their par-
tition coefficients between apatite and melt.

It is common to usewhole-rock compositions of granitoids to repre-
sent the compositions of their parental melt, because crystal fraction-
ation in felsic magma is generally insignificant due to the high magma
viscosity. Experiments showed that the apatite/melt partition coeffi-
cients for middle REE such as Sm are higher than those for light REE
such as La and heavy REE such as Yb (Fujimaki, 1986; Watson and
Green, 1981). This explains why apatite crystals from granitoids
commonly have lower (La/Sm)N and (Yb/Sm)N than host rocks. This re-
lationship is also present in three out of the four granite plutonswehave
studied. The PL pluton is an exception. Most apatite crystals from this
pluton have higher (La/Sm)N ratios (2.8–8.7) than that of the host
rock (3–3.5).

There are two possible explanations for the unusual relationship in
REE compositions between apatite and whole rock in the PL pluton.
Firstly, the experimental results from Watson and Green (1981) and

Image of Fig. 8


Fig. 9. Chondrite-normalised REE distribution patterns for apatites from the four selected plutons. Data fromAppendix 2; chondrite normalizing values and primitivemantle values follow
Sun and McDonough (1989).

126 L.-C. Pan et al. / Lithos 254–255 (2016) 118–130
Fujimaki (1986) may not be suitable for the PL magmatic system due to
different conditions between nature and the experiments. However,
many recent experiments that were conducted under these conditions
are significantly different from those of Watson and Green (1981) and
Fujimaki (1986) (e.g. Ayers and Watson, 1993; Macdonald et al., 2008;
Prowatke and Klemme, 2006), which also show that middle REE are
more compatible in apatite than both light REE and heavy REE. Thus,
this explanation can be ruled out.

The second possibility is that the whole-rock REE could not repre-
sent the REE in the melt when apatite crystallized owing to the earlier
saturation of other REE-rich minerals. It is worthwhile to note that
euhedral sphenes occur in the PL pluton. The experimental results
from Green and Pearson (1986) have indicated middle REE such as
Sm is more compatible than light REE such as La in sphene. Thus, early
saturation of shpenedepleted Sm relative to La in residualmelt. Apatites
crystallized from such residual melt inherited higher (La/Sm)N ratio
than that calculated through whole-rock REE.

6.2. Apatite Ga content and δEu as indicators of magma oxidation state

The abundances of Mn, Eu, S and Ce in apatite may be used to eval-
uate the oxidation state of magma (e.g. Cao et al., 2012; Drake, 1975;
Imai, 2002, 2004; Peng et al., 1997; Sha, 1998; Sha and Chappell,
1999; Streck and Dilles, 1998). More oxidized magma increase Mn4+,
Eu3+ Ce4+ at the expense of Mn2+, Eu2+, Ce3+ in the melt. Mn2+,
Eu3+ and Ce3+ are favored by apatite, because they can substitute
Ca2+ in apatite (Belousova et al., 2002; Sha and Chappell, 1999). As a re-
sult, apatite crystallizing from more oxidized magma will have higher
Eu but lower Mn and Ce than more reduced magma if the concentra-
tions of these elements in the magmas are equal.

However, the variation of a single element in apatite cannot be used
to determine the change in magma oxidation state because it may be
controlled by other factors. For example, The concentration of Mn in
magma may vary during crystallization (Belousova et al., 2002; Chu
et al., 2009) and the content of Eu in magmamay decrease due to feld-
spar fractionation (Ballard et al., 2002; Bi et al., 2002; Buick et al., 2007).
Consequently, The variations of twomulti-variance elements such as Eu
and Ce, which have opposite partitioning behavior into apatite in re-
sponse to change in oxidation state, are more useful. As shown in
Fig. 10b, δEu and δCe in apatite from the CXWC pluton are negatively
correlated, indicating that these proxies are intensely affected by oxida-
tion state in this magma system. In contrast, apatite crystals from the
TCG, PL and TXWC plutons don't display such correlation, indicating
that oxidation state is not the only major controlling factors for the
abundances of these elements in apatite in these magmatic systems.
Such factors could also explain the noncorrelation between MnO and
δEu in apatite(Fig. 10c).

Our results show that the concentrations of Ga vary only slightly in
host rocks but dramatically in apatite crystals, which implies the melt
composition is not the controlling factor of different Ga content in apa-
tite. δEu as a valid oxidation state proxy for granitic has been successful-
ly applied (e.g. Cao et al., 2012). The negative correlation between
apatite Ga and δEu (Fig. 10a), further indicates Ga variation ismore like-
ly to result fromdifferent oxidation states in the selected plutons. Ga has
two common valence states, +2 and +3. Ga2+ is preferred by apatite
because of the same valence state with Ca2+. Thus, lower oxidation
state increases Ga in apatite if other controlling factors such as Ga con-
tents in magma remain the same. The order of Ga concentrations in ap-
atite, in decreasing order, is the CXWC pluton (14–44 ppm, average
22 ppm), the PL pluton (12–21 ppm, average17 ppm), the TXWCpluton
(11–19 ppm, average 15 ppm) and the TCG pluton (7–15 ppm, average
10 ppm). This, together with a negative correlation between Ga and δEu
for all of the samples (Fig. 10a), indicates that the parental magmas be-
camemore reduced in this order: TCG, TXWC, PL and CXWC. This result
is consistent with the calculated Fe2+/Fe3+ ratios in whole rocks (TCG,
1.8 and 1.5; TXWC, 2.3; PL, 3.5 and 2.6; CXWC, 4.7–9.7).

6.3. Apatite Sr/Y and δEu as proxies for adakite-like rocks

Based on the chemical classification of Defiant and Drummond
(1990) and Drummond and Defant (1990), the PL, TCG and TXWC plu-
tons are adakite-like, whereas the CXWC pluton is not. Adakitic magma
is characterized by higher Sr, lower Y and Yb, and lack of negative Eu
anomaly than other types of felsic magma, because adakitic magma is
generated at greater depth in the crust where feldspar, which is a sink
for both Sr and Eu, is unstable. Partial melting of the same source at
shallower depth where feldspar is a residual phase will produce
magma containing higher Y and Yb, and lower Sr and Eu (Peacock
et al., 1994; Rapp and Watson, 1995; Rapp et al., 1999, 2002; Sen and
Dunn, 1994, 1995).

Image of Fig. 9


Fig. 10. Plots of (a) δEu vs Ga contents (ppm), (b) δEu vs δCe and (c) δEu vs MnO contents (wt.%) in apatites from the four selected plutons.
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As shown in Fig. 11, a positive correlation between Sr/Y and δEu in
apatite exists for two adakite-like plutons plus a non-adakite pluton.
Overall, apatite crystals from the adakite-like plutons have higher Sr/Y
and δEu than apatite crystals from the non-adakite pluton. Thismatches
thewhole rock compositional variations and indicates that Sr/Y and δEu
in apatite can be used to identify adakite-like rocks, especially for those
highly altered or weathered rocks that do not preserve the original Sr/Y
ratios. This finding is significant, because Sr and Eu in felsic rocks are
mainly hosted in feldspars that are susceptible to alteration. In contrast,
apatite is not susceptible to alteration compared to feldspar. However, it
would be very carefully to use this methodwhen apatite is not the early
phase. Because apatite crystallized from the evolving magma undergo-
ing massive fractional crystallization may not reflect real Sr/Y ratio
and δEu value of the parental magma.

6.4. Apatite REE ratios and Sr contents as indicators of fractionation
pathway

The change of trace element composition in apatite may reflect
magma compositional variation as the result of crystallization of other
minerals. For example, crystallization of feldspars, the main host of Sr
in felsic magma, will decrease Sr in the residual melt. During this pro-
cess, apatite crystallizing late will have lower Sr content than that
Fig. 11. Plots of δEu vs Sr/Y in apatites from the four selected plutons.
crystallizing earlier. Thus, the variation of Sr contents in apatite from a
suite of rocks may be used to track magma evolution by this process.
REE-rich mineral crystallization from magma will fractionate these ele-
ments in the magma and hence the apatite crystallizing from such
magma as well. Thus, the combination of REE ratios such as (La/Sm)N
(La/Yb)N,(Sm/Yb)N and Sr content in apatite may be used to evaluate
the crystallization history of a pluton.

As shown in Fig. 12, all of the analyses for apatite from the four se-
lected granite plutons together show that the(La/Sm)N (La/Yb)N, and
(Sm/Yb)N ratios are positively correlatedwith Sr contents. Such correla-
tion presenting in a single pluton such as the CXWC, TCG andPL plutons,
indicate that early crystallization of feldspars played a significant role in
magma differentiation. Allanite involved magmatic fractionation
resulting in the decreasing ratios of (La/Sm)N, (La/Yb)N, and (Sm/Yb)N
in apatite from the first two plutons. The TXWC pluton show the rather
constant contents of Sr in apatite. This means that feldspars are not im-
portant early phases. However, The rapid decrease in (La/Sm)N, (La/
Yb)N and (Sm/Yb)N ratios with the decreased or constant Sr content in
apatite from the PL and TXWC plutons are not likely to result from the
fractionation of other LREE-rich minerals, because no allanite or mona-
zite have been found in samples. Instead of it, the exsolution of bearing-
Cl hydrotherm is a possible cause for the rapid decrease in (La/Sm)N,
(La/Yb)N and (Sm/Yb)N ratios. Previous experiments (e.g. Flynn and
Burnham, 1978; Keppler, 1996) have indicated the exsolution of
bearing-Cl hydrotherm could take away more LREE than MREE and
HREE frommelt. Apatites crystallized from suchmelt inherit decreasing
(La/Sm)N, (La/Yb)N and (Sm/Yb)N. This supposition could be supported
by the negative correlations of F/Cl and (La/Yb)N in apatites (Fig. 13).

6.5. Apatite halogen composition as a record of magmatic volatiles

The Cl/F ratios in apatite from the four granite plutons studied by us,
in decreasing order, are PL (0.01–0.16, average 0.06), TCG (0.01–0.14,
average 0.06), TXWC (0.01–0.08, average 0.03) and CXWC (b0.01,
average b 0.01). The results show that apatite crystals from the plutons
that host the porphyry-type Cu deposit (PL) or Mo deposit (TCG) have
higher Cl/F ratios than those from the pluton that hosts vein-type Mo
deposit (CXWC) and unmineralized pluton (TXWC). It is widely
known that apatite is not vulnerable to subsolidus halogen exchange
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Fig. 12. Plots of (La/Sm)N, (La/Yb)N and (Sm/Yb)N vs Sr contents (ppm) in apatites from the four selected plutons.
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(Piccoli and Candela, 1994; Roegge et al., 1974; Tacker and Stormer,
1989). Cl/F ratio in fresh apatite, to a great extent, reflects this ratio in
the systems they crystallized from. Thus, our results provide indirect ev-
idence for different Cl/F ratios in theparentalmagmasof the granite plu-
tons with different types of mineralization.

Among the three mineralized plutons we have studied, the inferred
Cl/F ratio in the parental magma of the CXWC pluton is the lowest. The
reasons for this difference are not clear but one possibility is source con-
trol. The parental magma of the CXWC pluton was generated by
anataxis of continental crust (Wang et al., 2014b), a source with ex-
tremely low Cl/F ratio. In contrast, slab-derived fluids, which have
higher Cl/F ratios, were either directly or indirectly involved in the gen-
eration of the parental magmas for the other three plutons (Meng,
2014; Zeng et al., 2006). Alternatively, the difference may have resulted
from variable degrees of degassing which fractionated Cl and F (e.g.
Boudreau and Kruger, 1990; Candela, 1986; Warner et al., 1998). How-
ever, constant Cl/F ratios equal to 0 in apatites from the CXWC pluton
display no systematical changes during degassing. Thus, even though
we cannot entirely rule out this possibility, by comparison, we favor
the former explanation.
Fig. 13. Plots of Cl/F vs (La/Yb)N in apatites from the PL pluton and TXWC plutons.
6.6. Apatite as an indicator of mineralization potential

As described above, apatite trace element and halogen compositions
generally reflectmagma conditions. This, together with the fact that ap-
atite is less susceptible to alteration, which is a key feature of mineral-
ized granite plutons, than other minerals such as feldspar, mica and
hornblende in the plutons, makes apatite a useful tool for evaluating
the mineralization potential of granite plutons in mineral exploration.

Our results reveal that apatite crystals from the adakite-like plutons
that host porphyry-type Cu or Mo deposits have higher Sr/Y and δEu
than those from the pluton that host vein-type Mo deposits. The host
rocks of the vein-type Mo deposit are characterized by significantly
lower Cl/F in apatite than those of porphyry-type deposits. Among the
three adakite-like plutons, the unmineralized pluton (TXWC) is charac-
terized by the lowest Cl/F in apatite but moderate oxidation state. Be-
tween the porphyry-type Cu and Mo deposits, the parental magma of
the latter, as indicated by apatite composition, is more oxidized than
that of the former. The significance of thefinding is yet to be determined
by study of more deposits.

The apatite data show that the parental magmas of the porphyry-
type ore systems were more oxidized than that of the vein-typeMo de-
posit. This is expected because high oxidation state prevents early crys-
tallization of Fe-sulphide that remove Cu and Mo from magma before
the ore-forming fluids are exsolved from the magma (Candela and
Bouton, 1990; Hedenqulst and Lowenstern, 1994; Sillitoet, 2010;
Tacker and Candela, 1987). Vein-type Mo deposit is related to more F-
rich fluids in which Mo can be bounded with S to form ore minerals
under reduced conditions (Liu et al., 2013; Xu and Zhang, 2012) that
may prevent the formation of large deposits (like PL and TCG) in CXWC.

7. Conclusions

Most significant findings from this study are listed below.

(1) Sr, REE and halogens in apatite can be used to track the abun-
dances and changes of these elements in the parental magmas
and crystallization history of the magmas.

(2) Ga contents and its negative correlation with δEu in apatite can
indicate oxidation states of magmas.

Image of &INS id=
Image of Fig. 13


129L.-C. Pan et al. / Lithos 254–255 (2016) 118–130
(3) The combination of Sr/Y ratios and δEu in apatite is a useful tool
to identify adakite-like plutons that have lost initial Sr/Y ratios
in whole rocks due to weathering and hydrothermal alteration.

(4) The parental magmas for two adakite-like plutons containing
porphyry-type Cu and Mo deposits are more oxidized than that
for a different type of pluton containing vein-type Mo deposits.

(5) Apatite crystals from the host rocks of a vein-typeMo deposit are
characterized bymuch lower Cl/F ratios than those from the host
rocks of porphyry-type Cu andMo deposits. Apatite crystals from
a unmineralized adakite-like pluton are characterized by lower
Cl/F ratios than those from Cu- and Mo-mineralized adakite-
like plutons.
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