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Abstract: New magnetic carbon materials were prepared by the catalytic growth of 

graphitic carbon and carbon nanofibers using methanol as carbon source with a series 

of red mud wastes from different sources. Both the raw red mud samples and products 

of the graphitic carbon and carbon nanofibers were characterized using powder X-ray 

diffraction, scanning electron microscopy, Raman spectroscopy, Brunaeur Emmett 

and Teller surface area analysis, thermogravimetric analysis and carbon content 

analysis. Hematite and goethite in high iron content red muds were reduced into 

magnetite in 10 minutes at 500 oC, and graphitic carbon reflections were evident in 

the resultant powder X-ray diffraction pattern. Thus, the samples become magnetic 

and change color from red to black. After six hours reaction at 500 oC, the carbon 

content of the composite based on a high iron content Bayer Process derived red mud 

reached as high as ca. 72% and its surface area increased from 17 to 312 m2/g. 

Key words: red mud; methanol; carbon deposit; iron 

Introduction 

Red mud is the main waste discharged during alumina extraction by means of the 

Bayer Process or the Sintering Alumina Process.1-2 About 90% of the alumina 

produced in the world is obtained by the Bayer Process which is an effective 

procedure for processing high grade bauxite ores. However most local bauxite ores in 

China are low grade, diaspore type bauxite, for which the alternative sintering 
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alumina process is applied.2-4 Historically, the treatment and disposal of red mud has 

posed a huge challenge for the alumina plants and the alumina industry, and have 

caused a significant problem leading to environmental pollution, as exemplified by 

the failure of the dam of the red mud reservoir in Ajka (Hungary), which collapsed in 

October, 2010, causing rivers and lands to be contaminated with red mud and causing 

ten fatalities.5 Thus, the development of new technologies for utilization of red mud is 

an aspiration of great interest for the alumina industry as well as for society as a 

whole. Red mud has been investigated for various applications, such as construction 

materials,6-7 production of ceramics,8 gas and water purification,4,9-10 and 

catalysis.11-13 

Recent studies have demonstrated that red mud is catalytically active to produce 

carbon from different sources, such as methane,14-15 ethylene,16 ethanol,17-18 

associated petroleum gas,19 and a crude untreated waste stream from bio-diesel 

production.20 The resultant carbon materials can be used as functional materials, such 

as for treatment of metal-contaminated water,21 whilst the co-product of hydrogen 

formed in the cracking of hydrocarbons can be used as fuel.22 

In this study we demonstrate that using methanol as carbon resource can be used to 

obtain graphitic carbon and carbon nanofibers in presence of a series of red mud 

wastes, including high iron content red mud and low iron content red muds, and red 

muds from both the Bayer Process and from the Sintering Alumina Processes. 

Methanol has been chosen as a reactant due to its reactivity and also widespread 

availability given that it is mass produced on an industrial scale. 

Experimental 

Red mud samples from 5 different sources (1 from India, 4 from China) were used in 

this study, including Bayer Process derived red mud (BRM), red mud from the 

Sintering Process (RMS), high iron Bayer Process derived red mud and low iron 

content Bayer Process derived red mud. The chemical compositions were determined 

using an Oxford Instruments Energy 250 energy dispersive spectrometer system 
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(EDS). Samples for scanning electron microscopy (SEM) were sprinkled on carbon 

coated stubs and were coated with Pd/Au. Each sample analysis was replicated in the 

whole screen area, and then the average composition was obtained (Table 1). The 

composition of a number of the materials applied in this study have been determined 

by bulk analytical techniques such as inductively coupled plasma based analyses and 

X-ray fluorescence have been reported previously and have been found to be similar 

to those reported here.  These samples are RM7, 14 GZ1 (referred to as PBAP), and 

GZ3 (referred to as GZHE) 23. 

 

Table 1 Elemental content (wt%) of original red mud samples. 

Labels Na Al Si K Ca Ti Fe Types and location 

RM7 8.59 12.02 6.78 - 0.61 0.52 23.85 BRM, India 

GZ1 5.45 9.50 7.10 1.40 10.74 3.30 9.23 BRM, Guizhou, China 

GZ3 2.72 4.03 7.47 1.23 21.41 1.68 5.41 RMS, Guizhou, China 

SD 9.43 12.28 8.69 - - 2.61 21.15 BRM, Shandong, China 

GX 5.84 7.98 6.06 - 9.45 4.21 19.86 BRM, Guangxi, China 

BRM, Bayer Process derived red mud; RMS, Red mud from Sintering Process 

The reactor employed for methanol cracking to deposit carbon was comprised of 

temperature and flow controllers, and a quartz microreactor tube inside which red 

mud samples (250 mg) were loaded and sat on a frit. Trace heating was applied to all 

reactor lines. Methanol was delivered at a rate of 0.03 ml min-1 and was vaporised in a 

flow of 25 ml min-1 of Ar (BOC gas) carrier. A high performance liquid 

chromatography pump (Knauer, K-501) was used to deliver the methanol feed. 

Samples and the composite products were characterized by powder X-ray diffraction 

(XRD), Raman spectroscopy (λ = 532.09 nm), Brunaeur Emmett and Teller (BET) 

surface area analysis, CHN elemental analysis, thermogravimetric analysis TGA and 

SEM.  

Powder X-ray diffraction measurements were performed using a Siemens D5000 
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diffractometer with Cu Kα radiation. A 2θ range between 5o and 85o was scanned 

using a counting rate of 1 s per step with a step size of 0.02o. Samples were prepared 

by compaction into a silicon sample holder. 

The Raman Spectrometer was a LabRAM HR system, manufactured by Horiba Jobin 

Yvon with Ventus 532 laser system, 100 mW, 532 nm. 

BET surface areas were determined where appropriate from N2 physisorption 

isotherms measured at 77 K following out-gassing, using a Micromeritics Gemini. For 

the determination of carbon content, CHN analysis was performed by combustion 

using a CE 440 elemental analyzer. 

TGA was performed on a TA Instruments SDT Q600 instrument. Post-reaction 

samples were investigated using air or N2 (BOC gases), and a temperature ramp rate 

of 10 oC min-1 from room temperature to 1000 oC was applied. 

Samples for SEM were dispersed on carbon coated stubs and were coated with Pd 

prior to being viewed in a Philips/FEI (XL30) scanning electron microscope with an 

Oxford Instruments Energy 250 energy dispersive spectrometer system (EDS). 

Results and discussion 

Powder X-ray diffraction was performed (Figure 1) to identify the mineral phase 

composition of the five original red mud samples since they are from different sources 

and processes and possess very different chemical compositions. As has been widely 

recognised,24 red mud is always complex and multi-component in terms of 

composition. For the iron-containing phase, hematite can be matched in four of the 

five raw samples, except GZ3, the sintering process red mud. As previously reported, 

goethite and hematite are major crystalline components of the RM7.15 Given the fact 

that the samples are complex mixtures containing a number of different components, 

identification of the exact composition of the red mud samples by XRD can be highly 

challenging and not fully reliable. Surveying the literature, major phases present in 

many red mud samples can be expected to be hematite, goethite and Gibbsite, along 

with various sodium aluminium hydrosilicates 24. In view of the ensuing discussion, 
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only the predominant iron-containing phases (hematite and goethite) are marked on 

the patterns.   A more detailed match for the RM7 sample can be found elsewhere 14.   

It is apparent that the phase composition of the GZ3 sample is clearly different and in 

this case major reflections can be matched to the presence of calcium silicate. 

  

 

 

 

Figure 1 XRD pattern of the five raw red mud samples. H: hematite (Fe2O3, 24-0072); G: 

goethite (FeOOH, 17-0536).  

 

Methanol cracking experiments have been performed in the presence of red mud 

wastes. The red mud samples were used as obtained, without any modification or 

pretreatment. Figure 2 shows the XRD patterns of RM7 with varying reaction time at 

500 oC. After the reaction run for 10 minutes, the diffraction pattern changed 

significantly. Hematite and goethite were reduced into magnetite. Unlike the reaction 

with methane at much higher temperature,13-14 Fe and Fe3C were not observed as a 

result of the reduction of the iron oxides in red mud and methanol. Furthermore, broad 

carbon peaks were observed beyond 2 hours reaction, are indicative of the production 
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of disordered carbon. The relative intensity of magnetite peaks became weaker with 

the increasing reaction time because of the accumulation of carbon. 

Figure 2 XRD patterns of RM7 before and after reaction with methanol the carbon deposit 

for different times at 500 
o
C. H: hematite; G: goethite; C: carbon; M magnetite 

The effect of reaction time on carbon content and BET surface area for the RM7 run 

for different durations at 500 oC was investigated (Figure 3). Carbon deposition was 

apparent after the first 10 minutes of reaction. The resultant material was magnetic 

and with color transformation from red to black, as well as a change in BET surface 

area. The carbon content of the post-reaction material increased gradually from ca. 1.1% 

to ca. 5.8% after the first 30 minutes on stream. One hour later the carbon content 

increase was more marked, achieving ca. 72 wt% after six hours. In addition, the BET 

surface area significantly increased over the first 30 minutes of the reaction, and 

reached 10 times that of the original sample after 5 hours reaction, and nearly 20 

times (312 m2 g-1) after 6 hours reaction compared to the original red mud. In 

comparison to methane, methanol is more active for the deposition of carbon when 

used as carbon source, as might be expected from its higher reactivity. In other studies 
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the carbon contents for the composites prepared up to 950 oC based on ethanol were 

ca. 32% (at ca. 6 vol% in N2 with a flow of 30 ml min-1 using 50 mg of red mud, at 

900 oC),17 and composites formed by methane decomposition at up to 800 oC 

contained carbon less than 50% (at a total rate of 60 ml min-1 CH4 over a ca. 0.4 g 

catalyst using feed gas of 80% CH4 and 20% N2).
14 

   Figure 3 Effect of reaction time on carbon content and BET surface area of the products 

based on RM7 and methanol at 500 
o
C  

The carbon content of different original red mud wastes and the materials reacted for 

5 hours are presented in Table 2. For post-reaction samples based on RM7, which is a 

high iron-containing Bayer Process derived red mud, the carbon content decreased 

slightly after 5 hours reaction with methanol at the temperature of 400 oC. At 450 oC 

the content increased significantly, achieving ca. 54%, then 70% at 500 oC, and then 

decreased slightly to ca. 60% at 550 oC. A similar tendency was observed for the 

composites based on GX. Thus, the results of carbon content indicate that the higher 

carbonizing temperature cannot always generate a better effect than lower temperature 
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for the methanol cracking process since loss of carbon by gasification may be possible 

when using a water producing reactant. In the case of the low iron-containing samples, 

such as Bayer Process derived red mud, GZ1 (carbon wt% of 1.28-1.41%), and the 

sintering process red mud, GZ3 (carbon wt% of 1.96-2.08%), after 5 h 500 oC 

reaction the final products only reached 4%. The low carbon content can be accounted 

for by the iron contents in the original red mud samples, which suggests that the iron 

content dominates the amount of carbon deposited. In terms of the behavior of GZ1 

and GZ3, it can be concluded that the compositional variation seems to have no effect 

on the amount of carbon. Thus, components other than iron in red mud are also 

responsible for the amount of carbon deposition. 

Table 2 Replicate carbon contents of raw red mud reacted for 5 hours at different reaction 

temperatures 

Reaction 

temperature 

(oC) 

Carbon content after 5h reaction with methanol (%) 

RM7 GZ1 GZ3 SD GX 

Original RM 1.06/1.11 1.28/1.41 1.96/2.08 0.73/0.89 1.22/1.27 

400 0.87/1.00 1.60/1.67 2.06/2.18 4.42/4.61 5.89/6.02 

450 54.02/54.69 2.34/2.35 2.49/2.69 40.95/41.15 51.27/51.42 

500 70.44/70.92 3.95/4.21 3.64/3.93 44.91/45.78 52.32/57.39 

550 60.30/60.32 4.42/4.66 7.11/7.34 67.41/67.88 38.33/38.58 

Figure 4 presents the Raman spectra in the carbon fingerprint region for RM7 run at 

500 oC with varying reaction time. The main features in Raman spectra of carbon 

materials are G and D peaks. In this case the intensity of D peaks (at around 1340 

cm-1) is stronger than the G peaks (around 1590 cm-1), whereas for GZ1 and GZ3, the 

opposite trend is evident (Figure 5). For the Raman pattern of resultants based on GZ1 

and GZ3, the relative intensity of the G peaks (around 1595 cm-1) is greater than the D 

peaks (at around 1325 cm-1), which is indicative of a lower degree of disorder. Figure 

5 also gives the characterisation of the products based on SD and GX, indicating the 

value of I(D)/I(G) is more than 1.0, which are quite similar to the post-reaction 

samples of RM7. These phenomena suggested that carbons based on RM7, SD and 

GX, were disordered graphitic carbon, and those from GZ1 and GZ3 may be more 
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ordered. As already discussed, the high iron RM7 was much more reactive for the 

deposition of carbon than the low iron samples of GZ1 and GZ3 under the same 

reaction conditions.  

 
Figure 4 Raman spectra of the carbon region for different reaction times for RM7.  
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Figure 5 Raman spectra following the 5-hour reactions at 500 
o
C for GZ1, GZ3, SD and GX. 

TGA oxidation studies were carried out to investigate the reactivity of the carbon 

species and to verify the carbon content. Curves from RM7 materials reacted from 1 

hour to 6 hours at 500 oC are shown in Figure 6. The total mass decrease can be 
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attributed to oxidation of carbon and is, in reasonable agreement with the CHN 

analysis. All the curves show a slight mass increase up to around 400 oC followed by a 

sudden drop in the weight for thermal degradation of the material, and an abrupt 

change in the slope (except the 1h sample), leading to a slower weight loss in the 

temperature range 450/490 to 560/590 oC. The mass increase stage was previously 

explained by oxidation of the reduced phases generated by the reaction of RM7 and 

methane.13 In this study, the slight increase can be attributed to oxidation of magnetite 

produced from precursor hematite or goethite phases. It is known that magnetite can 

be oxidized below 400 oC.25 From 2 hours reaction time onwards, the carbon species 

were oxidized in two stages, which may mean that two different carbon species were 

generated during the methanol cracking process. 

 Figure 6 TGA analysis of RM7 derived products as a function of different reaction times. 

TGA curves of samples based on GZ1 and GZ3 show a slight mass increase up to 

around 500 oC before a sudden drop in the weight due to oxidation of carbon (Figure 

7). Like the Raman spectra, TGA curves based on SD and GX (Figure 7) are also 

similar to the samples based on RM7. 
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Figure 7 TGA analysis after 5 hours reaction at 500 
o
C based on GZ1, GZ3, SD and GX.  
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From SEM observation, it appears that there are two types of carbon product based on 

RM7. One is large sheets of graphitic carbon, and the other is a carbon fiber with a 

nano-scale diameter (Figure 8). From SEM observations, the first stage appearing 

from 2 to 6 h reaction time, is due to the formational of disordered graphitic carbons, 

which are lost in the TGA studies at lower temperature because of their disorder. The 

second stage of the TGA may be related to nano-scaled fibers, which are not present 

in the sample run for 1h. In general the mass normalized surface areas obtained in this 

study are lower than is the case for activated carbons (where areas of >1000 m2g-1 

may occur.)   This may be due to both the fact that the composites also comprise 

low surface area dense components resulting from the transformation of the red muds 

and also that the proportion of the large graphitic sheet component is relatively high.  

The results in this study demonstrate that the iron components are important for the 

growth of the carbon from reaction with methanol.   The presence of iron 

components also imparts magnetic behavior to the resultant composites which can 

facilitate their application in, for example, water remediation for which carbonized 

RM7 has been shown to be of greater interest than its parent red mud counterpart 26.  

In addition to acting as sorbents, the resultant carbonized composites could be used as 

catalyst supports or further functionalized to impart higher reactivity.  The approach 

taken in this study has been to apply raw red mud samples directly.   Given the 

findings of this study, this will necessarily lead to variability of product composites 

reflecting the variation of red mud composition.  Such variability may be tolerable 

for high iron content red muds when account is taken of the ease of their direct 

application, otherwise procedures aimed at the selective extraction of iron containing 

components, such as the use of oxalic acid 27, may be a better strategy for the 

preparation of more uniform materials.   Overall, given the vast amount of red mud 

produced annually, its use for the preparation of carbon composite materials would 

only have a very limited impact and would necessarily be a relatively minor part of a 

multi-component solution.   However, red mud can be used as a cheap and readily 

available pre-catalyst, the utilization of which would have an impact upon 
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sustainability. 

 

 

Figure 8 Morphology of magnetic carbon containing materials based on RM7. 
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Conclusion 

It has been demonstrated that red mud waste from a variety of sources prepared using 

different processes are active for methanol cracking to generate composite products, 

comprising graphitic carbon and carbon nanofibers. The carbon content of 

post-reaction can be related with the iron content of the original red mud samples. 

However, iron is not the only factor that affects the carbon deposition. After 5 hours, 

500 oC reaction with methanol, high iron-containing Bayer Process derived red muds, 

eg. RM7, SD and GX, can be used to generate composites with carbon content of ca. 

70%, 45% and 54%, respectively, while for the low iron-containing wastes, GZ1 

(Bayer Process derived red mud) and GZ3 (red mud from the sintering process), the 

final products only reached ca. 4.1% and ca. 3.8%, respectively. 
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