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Abstract Practically all physical, chemical, and biologi-

cal processes can induce mass-dependent fractionation of

mercury (Hg) isotopes. A few special processes such as

photochemical reduction of Hg(II) and photochemical

degradation of methylmercury (MeHg) can produce mass-

independent fractionation (MIF) of odd Hg isotopes (odd-

MIF), which had been largely reported in variable natural

samples and laboratory experiments, and was thought to be

caused by either nuclear volume effect or magnetic isotope

effect. Recently, intriguing MIF of even Hg isotopes (even-

MIF) had been determined in natural samples mainly

related to the atmosphere. Though photo-oxidation in the

tropopause (inter-layer between the stratosphere and the

troposphere) and neutron capture in space were thought to

be the possible processes causing even-MIF, the exact

mechanism triggering significant even Hg isotope anomaly

is still unclear. Even-MIF could provide useful information

about the atmospheric chemistry and related climate

changes, and the biogeochemical cycle of Hg.

Keywords Mass-independent fractionation � Even
mercury isotopes � Processes producing even-MIF �
Mechanisms triggering even-MIF � Self-shielding �
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1 Introduction

Mercury (Hg) is a globally distributed and highly toxic

pollutant [1–3]. It virtually exists in all natural ecosystems

on earth. In recent years, more and more Hg has been

emitted into earth’s biogeochemical system by human

activities such as the burning of fossil fuel and cement

production [4]. Unlike other heavy metals, Hg has a

stable gaseous form (Hg0) that has a residence time of

*1 year in the atmosphere [5, 6]. Thus, Hg released by

point sources can be transported far from the sources in the

atmosphere and may affect the ecosystems even in remote

regions after deposition (e.g., the Arctic and Antarctic) [7–

12]. More importantly, mercury can be methylated into

neurotoxic and bioaccumulative methylmercury (MeHg),

which can pose serious threat to the human health via fish

or rice consumption [13–15]. Therefore, it is critical to

fully understand the source, transformation, and fate of Hg

in the environment in order to appropriately target the

remediation of Hg contamination and maintain emission of

Hg at the sustainable levels [16]. Although significant

progress has been made in previous research on Hg bio-

geochemical cycle, many processes involved in Hg trans-

formation and dispersion in variable ecosystems still

remain unidentified or unquantified. Some new approaches

are thus needed to be developed for better understanding

the conundrums of identifying Hg source and ascertaining

Hg fate in the environment. The recently developed Hg

stable isotope method sheds new insight into tracing pol-

lution sources and behavior of Hg in nature [7, 17–21].

To date, more than 100 papers have been published on Hg

isotope ratios, which demonstrated the potential of Hg iso-

tope in tracing the source, processes and the fate of Hg in the

atmosphere, biosphere, lithosphere, and hydrosphere [22].
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These studies have reported very large mass-dependent

fractionation (MDF, d202Hg) of Hg isotopes in natural

samples (up to 20 % of d202Hg) due to its active chemical

property. In addition to MDF, recent studies reported sig-

nificant mass-independent fractionation (MIF, D199Hg and

D201Hg) of odd Hg isotopes (odd-MIF) in natural samples,

renderingHg, a heavymetal having significantMIF in nature

[3, 7, 23–25]. The magnetic isotope effect (MIE) and the

nuclear volume effect (NVE) are thought to be the most

possible mechanisms causing such odd-MIF [3, 26–35].

Unlike MDF, only a few processes can cause odd-MIF, such

as photochemical reduction, abiotic dark reduction, evapo-

ration, and photodegradation [3, 30, 31, 34].

Intriguingly, MIF of even isotopes (even-MIF) has

recently been observed mainly in atmospheric samples (up

to ?1.24 %) [24, 36–42]. Since no even-MIF was reported

in laboratory experiments up to now and the two causes of

odd-MIF (MIE and NVE) unlikely produce significant

even-MIF [27, 32, 36, 38, 43], the mechanisms and the

processes triggering even-MIF remain unclear. Interest-

ingly, only samples related to the atmosphere display such

even isotope anomaly, indicating the potential of even-MIF

as a useful tracer of upper atmosphere contribution.

Several papers have previously reviewed Hg isotope

systematics [7, 20–22, 44–46]. Here, we give a careful

review of publications on even Hg isotope anomalies, with

a main focus on sample strategies and possible processes

and mechanisms triggering MIF of even Hg isotopes. Our

newly measured results from Tibetan and Guiyang pre-

cipitation were also added in the data set to show that even-

MIF is a phenomenon largely distributed in the world.

2 Mercury isotope ratio nomenclature

Hg has seven stable isotopes: 196Hg, 198Hg, 199Hg, 200Hg,
201Hg, 202Hg, and 204Hg, with approximate abundance of

0.155 %, 10.04 %, 16.94 %, 23.14 %, 13.17 %, 29.73 %,

and 6.83 %, respectively. Mass-dependent fractionation

(MDF) refers to the fact that the distribution of different Hg

isotopes in variable materials or phases is proportional to

their isotopic masses during the physical, chemical, and

biological processes. The MDF of Hg isotopes is expressed

as d (%) notation defined as:

dxHg ¼ ½ðxHg/198Hg)sample=ð
x
Hg/198HgÞstd � 1� � 1000;

ð1Þ

where x represents 199, 200, 201, 202, and 204 amu, std is

the international NIST SRM 3133 standard suggested by

Blum and Bergquist [47].

The MIF refers to any chemical or physical process that

aims to separate isotopes, where the amount of separation

is not in proportion to different mass of the isotopes [48].

MIF is reported in ‘‘capital delta’’ notation (DxHg; the

deviation from MDF in units of per mil, %), calculated

from the differences between the measured isotope value

and the theoretically predicted isotope value using the

MDF fractionation law:

D199Hg ¼ d199Hg� 0:252� d202Hg, ð2Þ

D200Hg ¼ d200Hg� 0:502� d202Hg, ð3Þ

D201Hg ¼ d201Hg� 0:752� d202Hg, ð4Þ

D204Hg ¼ d204Hg� 1:493� d202Hg: ð5Þ

Blum and Bergquist [47] had measured the isotopic

composition of UM-Almaden and suggested that all

laboratories adopt UM-Almaden as a secondary standard

to get consensus values and correct the analytical bias.

3 Mainstream observation of odd-MIF

The odd-MIF were reported in a large set of environmental,

geological, and biological samples, including atmospheric

samples [23–25, 36–39, 42, 49, 50], sediments [49, 51–67],

soils [37, 68–70], peats [71], rocks [72], coals [24, 68, 73,

74], mosses and lichens [50, 75–77], human hairs [78–80],

plants [37, 50, 81], fishes [3, 62, 78, 80–83], and even

seabirds [53, 84]. Blum et al. [22] have given a detail

description of these data in a recent review article.

The odd-MIF has been proven to occur in laboratory

experiments. Bergquist and Blum [3] firstly studied Hg

isotopic fractionation during the photoreduction of Hg(II)

and photodegradation of MeHg. Their results showed that

the residual Hg(II) was enriched in odd Hg isotopes. Zheng

and Hintelmann [33] found that the photoreduction of

Hg(II) was controlled by Hg/DOC ratio, and the reactant

Hg(II) was enriched in 199Hg and 201Hg. Different types of

ligands may induce opposite magnetic isotope effects

during photochemical processes. For example, Zheng and

Hintelmann [35] showed that during the photochemical

processes of S-containing ligands, magnetic isotopes

(199Hg and 201Hg) were specifically enriched in the product

(Hg0) rather than in the reactant Hg(II). Odd-MIF was also

reported in abiotic processes. During the evaporation of

liquid Hg, a small positive D199Hg was observed in gaseous

elemental Hg (Hg0) [31, 32]. Zheng and Hintelmann [34]

also reported a small positive odd-MIF in the reactant

during the abiotic dark reduction of Hg(II).

Unlike MDF of Hg isotopes that occur in most of equi-

librium and kinetic processes, odd-MIF has only been found

in several specific processes (see above discussion). The

nuclear volume effect and the magnetic isotope effect were

thought to be the two possible mechanisms triggering odd-

Sci. Bull. (2016) 61(2):116–124 117

123



MIF [3, 26–28, 30–32, 34]. The MIE is caused by angular

momentum of electrons and magnetic nuclei. Among all

seven isotopes of Hg, only odd isotopes 199Hg and 201Hg

have nuclear spins and magnetic moments. As a result, MIE

can only affect 199Hg and 201Hg isotopes [22, 29]. The NVE

was proposed by Bigelesen et al. (1996) to explain the unu-

sual fractionation of odd U isotopes observed by Fujii et al.

(1989) that cannot be explained by the classical MDF theory

of chemical isotope effect [26, 85]. The NVE is related to the

difference in nuclear shapes and sizes of isotopes. In general,

nuclear radius and mass are both proportional to the number

of neutrons in an isotope. However, the odd isotopes 199Hg

and 201Hg have slightly smaller nuclear charge radii than

expected, which leads to the ground-state energies of odd

isotopes closer to the adjacent lower even isotopes [3, 32,

86]. As a result, isotopic fractionation may be triggered by

the even–odd difference that will not correlate with the dif-

ference in mass [26]. The NVE is negligible for light ele-

ments, but can be significant for heavy elements such as Hg,

Pb, Tl, and U [32].

4 Observation of even-MIF in natural samples

The observation of even-MIF is intriguing and provides new

insight into Hg stable isotope systematics. Recently, several

studies have reported significant MIF of even-mass-number

isotopes of Hg (200Hg and 204Hg) mainly in atmospheric

samples [24, 36–42]. Gratz et al. [38] first reported a positive

MIF of 200Hg (D200Hg less than ?0.25 %) in precipitation

samples [mainly Hg(II)] coupled with slightly negative MIF

of 200Hg in vapor-phase samples in the Great Lakes region,

USA (mean D200Hg = -0.04 % ± 0.09 %, 2SD). Subse-

quently, Chen et al. [36] confirmed the presence of larger

magnitude of D200Hg (up to ?1.24 %) in snow and rain

samples in Peterborough (ON, Canada) and found a definite

seasonal variation ofD200Hg,with relatively higher values in

winter but lower in summer. Demers et al. [37] observed

positive D200Hg (mean D200Hg = 0.18 ± 0.05 %, 1SD) in

precipitation but negativeD200Hg (meanD200Hg = -0.1 %
± 0.02 %, 1SD) in total gaseous mercury in Wisconsin,

USA. On the contrary, the same samples displayed negative

D204Hg in precipitation (mean D204Hg = -0.25 % ±

0.21 %, 1SD) but positive D204Hg in total gaseous mercury

(mean D204Hg = 0.13 % ± 0.05 %, 1SD). Rolison et al.

[39] reported similar results in atmospheric samples of a

coastal environment in Florida, USA, with negative D200Hg

(from-0.19 % to-0.06 %) in gaseous elemental Hg (Hg0)

but positiveD200Hg (from?0.06 % to?0.28 %) in reactive

gaseous Hg (Hg(g)
II ) and particle-bound Hg (Hgp). Mead et al.

[43] documented unusual values for 200Hg anomalies (up to

-10.69 %) and D204Hg (up to 27.57 %) in the special

compact fluorescent lamp (also all odd isotopes), where the

intensity of illumination and Hg concentration are much

higher than natural environment. Štrok et al. [40] found a

positive D200Hg value (up to 0.50 %) in seawater from the

Canadian Arctic Archipelago. Recently, Wang et al. [41]

also reported a relatively smaller positive D200Hg values (up

to 0.20 %) in precipitation collected in Guiyang, China.

5 Hidden alternate systematics of even-MIF

The even-MIF may also occur for other even isotopes. As

mentioned above, even-MIF is expressed as DxHg, where

x can represent 196, 198, 200, 202, and 204. Since
202Hg/198Hg ratio is arbitrarily chosen for describing MDF,

and the MIF of Hg isotopes were calculated based on

202/198 ratio, so other evenHg isotopesmay also fractionate

in a mass-independent manner including 202Hg and 198Hg

themselves. However, due to the design limitation of the first

generation MC-ICP-MS and the very low abundance of
196Hg (thus the low sensitivity), only D200Hg and D204Hg

were calculated and reported in some previous studies.

In the following, even Hg isotope anomalies will be

recalculated in order to explore the alternative even-MIF

systematics. We can choose 202Hg as the denominator in

dxHg expression and calculate the D200/202Hg value. Sim-

ilarly, we can obtain D198/200Hg value using 200Hg as a

denominator:

dxHg ¼ ½ðxHg/200Hg)sample=ð
x
Hg/200HgÞstd � 1� � 1000;

ð6Þ

dxHg ¼ ½ðxHg/202Hg)sample=ð
x
Hg/202HgÞstd � 1� � 1000;

ð7Þ

where x represents 198, 199, 200, or 201. D198/200Hg and

D200/202Hg can thus be calculated using the following

Eqs. (8) and (9), respectively [87]:

D198=200Hg ¼ d198=200Hg� �1:0097ð Þ � d202=200Hg, ð8Þ

D200=202Hg ¼ d200=202Hg� 0:4976� d198=202Hg: ð9Þ

The recalculated D198/200Hg and D200/202Hg using

Eqs. (8) and (9) for the same data reported in Chen et al.

[36] are shown in Fig. 1. The recalculated result displayed

even higher values for MIF of 198Hg or 200Hg isotopes

(Fig. 1). Interestingly, all rain or snow samples displayed

negative D198/200Hg (from -0.41 to -2.47 %) but positive

values of D200/202Hg (from ?0.21 to ?1.24 %) and an

obvious seasonal variation in D198/200Hg or D200/202Hg.

Alternatively, we can also calculate the even isotope

anomalies using an odd isotope (e.g., 199Hg) as numerator

and an even isotope (e.g., 198Hg) as a denominator in the
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dxHg definition, and the even-MIF can thus be defined for
200Hg, 202Hg and 204Hg by the following equations [87]:

D200=198Hg ¼ d200=198Hg� 1:9935� d199=198Hg, ð10Þ

D202=198Hg ¼ d202=198Hg� 3:9679� d199=198Hg, ð11Þ

D204=198Hg ¼ d204=198Hg� 5:9234� d199=198Hg: ð12Þ

Figure 2 shows a linear relationship between D200/198Hg

and D202/198Hg calculated using odd/even isotope ratio for

the same precipitation samples reported in Chen et al. [36].

Therefore, given the conventional calculation of D200Hg

(D200Hg = d200Hg - d202Hg 9 0.502), it cannot allow us

to identify which of the three even isotopes (198Hg, 200Hg

and 202Hg) is anomalous. In fact, it is suspected that all

even isotopes are controlled by the same fractionating

process and thus are subject to fractionation that does not

change linearly with mass (Fig. 2). Moreover, the simul-

taneous measurements of 204Hg and 196Hg are also neces-

sary and helpful in answering such question. However, in

the absence of a clearer understanding of the underlying

mechanism, we can only pretend at this stage that the

calculative deviations reported in recent studies are due to

the anomalous behavior of 200Hg, but it should be under-

stood that any or all of the even isotopes may be con-

tributed to the observed results. Obviously, the Hg isotope

system is extremely complex and we have a long way for

fully understanding its intricacies [36].

6 Pre-treatment methods used for discovering even-

MIF

Three pre-treatment methods have been used in previous

studies in which even-MIF has been found. The first

method was a chromatographic pre-concentration method

[88], which was used in the study of Hg isotopes in pre-

cipitation from Peterborough, ON, Canada [36], and in rain

samples in Guiyang and Tibetan Plateau, China [41, 42].

Using this method, pre-treated (acidified and BrCl-di-

gested) water samples were loaded onto a chromatographic

column charged with 0.5-ml AG 1-X4 resin. After the

removal of matrix, Hg was finally eluted with 10 mL

0.5 mol/L HNO3 containing 0.05 % L-cysteine for final

isotopic measurement on MC-ICP-MS [88]. In addition,

solutions, which were prepared with NIST SRM 3133 Hg

and TraceCERT ICP standard Hg, were also processed

using the same protocol to confirm that laboratory manip-

ulation and isotopic measurement themselves do not induce

any 200Hg anomaly [36]. Štrok et al. [89] developed an

analogous method for the pre-concentration of Hg from

large volumes of seawater. After digesting, seawater was

loaded onto pre-cleaned anion exchange column for pre-

concentrating Hg, and Hg that adsorbed on the resin was
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finally eluted by 0.05 % L-cysteine in sodium citrate

dehydrate [89]. The second method was employed by Gratz

et al. [38] for the pre-treatment of precipitation samples in

the Great Lakes region. During the procedure, the BrCl-

digested sample was first reduced by agents containing

10 % SnCl2, 50 % H2SO4, and 1 % NH2OH in a frosted-tip

gas–liquid separator. The reduced Hg(g)
0 was then trapped

in 25 g of 2 % KMnO4 solution for isotopic measurement.

The third method was mainly composed of a thermal

combustion stage followed by a solution trapping and was

used in several studies on Hg isotopes in the atmosphere

[37–39]. In this method, gaseous elemental Hg (Hg(g)
0 ),

reactive gaseous Hg(Hg(g)
II ) and aerosol Hg(Hg(p)) that were

either trapped onto gold traps or collected on filters were

first thermally released (by slowly heating to[500 �C) and
then transferred by argon or nitrogen gases into a trap

solution (e.g., KMnO4-contained solution). The final solu-

tion was ready for Hg isotopic measurement [37–39].

We mentioned here that, in most of these studies, the

methods were of course carefully calibrated and validated

in order to accurately determine Hg isotopes in natural

samples. Though a few studies reported incomplete

recovery of Hg in some samples, it would not induce any

even isotope anomaly [36]. Moreover, the isotopic mea-

surement on MC-ICP-MS instrument itself could also not

produce any MIF. Thus, the discoverable MIF of even Hg

isotopes was unlikely a phenomenon induced by artificial

manipulation. As a result, even-MIF does exist in nature.

7 Processes inducing MIF of even Hg isotopes

Though significant odd-MIF was induced by processes

such as photo-reduction, photo-degradation, abiotic dark

reduction, and evaporation, no 200Hg anomalies have been

reported during these interactions [3, 30, 31, 33, 34, 90].

This suggests that even-MIF is likely triggered by different

bio-geological processes. This can probably be confirmed

by the fact that D199Hg and D200Hg displayed contrasting

seasonal variations in Chen et al. [36]. Since almost all

samples that displayed 200Hg anomalies are related to

atmospheric Hg, even-MIF may be somehow produced in

the atmosphere [24, 36–39, 41, 42].

Chen et al. [36] proposed a conceptual model for

explaining even-MIF occurrence based on the geochemical

parameters of precipitation samples and the air mass tra-

jectories. As 200Hg anomaly exists mainly in Hg(II) phase

of precipitation samples and the main gaseous Hg phase is

characterized by close to zero or slightly negative D200Hg,

and subsequent mainly physical processes (scavenging into

droplets or onto particle) are unlikely to produce MIF, the

even-MIF seems to derive from specific oxidation of Hg0 to

Hg(II) (RGM or Hgp). The back trajectory model showed

that the air masses of samples with relatively higher

D200Hg (e.g., winter snow) mainly came from the inter-

layer between stratosphere and troposphere (tropopause),

which is characterized by high content of oxidants such as

H2O2, ozone, hydroxyl, and halogen radicals and intense

UV irradiation, both favoring the oxidation of Hg0 [5, 36,

91–94]. It is therefore likely that even-MIF occurs in the

tropopause. In fact, the large presence of snow crystals and

frozen aerosols in the tropopause may serve as the potential

vectors that capture both oxidants and Hg0 to facilitate Hg0

oxidation. After interaction, the Hg with 200Hg anomaly

could be transported downward by stratosphere-to-tropo-

sphere incursion to the surface (Fig. 3). Since the tropo-

sphere was shallower in the high latitude region (e.g., the

North Pole) than the low latitude region, the intensity of

stratosphere-to-troposphere invasion will decrease toward

lower latitude region. In fact, even-MIF of all precipitation

samples worldwide, including our unpublished D200Hg

data from the Tibetan Plateau (China), displayed a general

increase with latitude, confirming the upper atmosphere as

the possible origin of even-MIF (Fig. 4) [24, 36–39, 41,

42].

Additionally, even-MIF was also found for Hg trapped

in the glass wall of compact fluorescent lamp (CFL) [43].

During lamp use, a small fraction of Hg, which comes from

Hg amalgam pellet in the CFL, was trapped within the

glass wall. Mead et al. [43] found significant unusual

fractionation of even Hg isotopes between the trapped Hg

pool (Hg contained within the glass wall) and the bulk Hg

reservoir (comprising Hg amalgam pellet, Hg vapor, and

adsorbed Hg), with D200Hg = -10.69 % in the wall-

trapped inventory. At the same time, unusual odd Hg iso-

tope anomaly were also observed in used lamps, with

D199Hg = -21.49 % and D201Hg = 13.42 %. These

lamps had been approved to be a closed system by mass

balance of Hg. Because the amount of trapped Hg was less

than 1 % of the bulk Hg in the lamps, the fractionation in

trapped Hg should be roughly 100 times larger than of the

bulk Hg. Obviously, NVE or MIE cannot explain this

opposite trend between D199Hg and D201Hg. Another pro-

cess or mechanism might contribute to the unusual Hg

isotopes fractionation in CFL.

8 Possible mechanisms triggering MIF of even Hg

isotopes

As we discussed above, of all seven isotopes of Hg, only

odd isotopes 199Hg and 201Hg have nonzero nuclear spins

and magnetic moments, and the NVE only can trigger

negligible MIF of the even Hg isotopes [3, 32]. Therefore,

MIE and NVE both could not induce significant MIF of

even isotopes. Among the well-constrained mechanisms up
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to now, the self-shielding effect, known from O isotope

systematics, and neutron capture may be possible causes of

even-MIF.

8.1 Self-shielding

Mead et al. [43] suggested that the observed fractionation

including even-MIF and odd-MIF in CFL likely results

from the self-shielding effect. According to Mead et al.

[43] and Sommerer [95], the hyperfine structure of the Hg

absorption spectrum can lead to a self-shielding effect. Due

to different nuclear spin and mass of the seven Hg isotopes,

the Hg absorption line at 254 nm will split into 10 com-

ponents, which can be reduced to six distinct lines through

thermal and collisional broadening under CFL conditions.

The specific transmittance at each line is related to the

isotopic abundance and thus the transmittances at all lines

are not identical. During Hg interaction, the six compo-

nents mentioned above will be attenuated proportionally to

their isotope abundances. Therefore, the abundant isotopes

can ‘‘shield’’ themselves partially from photoexcitation

because of attenuation. As a result, Hg isotopes with low

abundance (e.g., 196Hg) could be more easily photoexcited

than those with high abundance (e.g., 202Hg), inducing an

unusual isotopic fractionation that does not change linearly

with mass [43, 95]. In this case, 196Hg has the highest

emission/absorption ratio, while 202Hg has the lowest due

to their lowest and highest abundances, respectively. Mead

et al. [43] showed that the combined fractionation factors

induced by both self-shielding and MDF could roughly

describe the features of the measured data; either NVE or

MIE would not significantly improve the match of calcu-

lated result with observation. Therefore, self-shielding is

the most possible mechanism creating even-MIF. However,

given the fact that Hg concentration is very low in the

atmosphere and the sunshine has a different spectrum from

CFL, direct evidence is needed to confirm the self-shield-

ing as an appropriate cause of even-MIF in nature. In fact,

the anomalies resulted from self-shielding will be propor-

tional to the isotope abundances, which is inconsistent with

the actual observation [37–41].
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8.2 Neutron capture

In addition to self-shielding, neutron capture may be another

mechanism potentially explaining the observed 200Hg

anomalies. The neutron capture cross section is used to

express the likelihood of interaction between an incident

neutron and a target nucleus. The values of capture cross

section are 3,080 ± 180, 2.0 ± 0.3, 2,150 ± 48, \60,

5.7 ± 1.2, and 4.42 ± 0.07 barns for 196Hg, 198Hg, 199Hg,
200Hg, 201Hg, and 202Hg, respectively [96]. Obviously, the

capture cross section of 199Hg is much higher ([99.9 % of

the total Hg neutron cross section) than those of other Hg

isotopes except for 196Hg which has the lowest abundance

and therefore not measurable at this stage [96–98]. In other

words, it is much easier for 199Hg to capture neutron and then

transform into larger mass number Hg isotopes, with a large

possibility to 200Hg. Thus, the neutron capture reactions

occurred in a reservoir with natural Hg isotopes would result

in positive D200Hg but corresponding negative 199Hg

anomalies. This could explain at least part of the inverse

correlation feature of the data reported by Chen et al. [36].

However, the neutron capture generally takes a very long

time (about millions of years) to significantly change the

isotope distribution, and this would unlikely happen in the

higher atmosphere due to a very short lifetime of Hg in

atmosphere (about*1 year). One possibility is the presence

of an extremely old Hg pool somewhere in the space that is

frequently affected by neutron capture reactions. The fact

that Hg released from this possible old Hg pool (thus with
200Hg anomaly) from time to time would leak into the lower

layers (e.g., by stratosphere–troposphere transport events)

could eventually cause positive 200Hg anomalies in precip-

itation samples. However, it is still not clear whether the

presence of such an old Hg pool in the upper atmosphere is

true or not. Anyway, without direct evidence, the cause of

neutron capture for even-MIF remains as a speculation.

9 Conclusion and implication

This paper reviews the recent publication on the MIF of

even-mass Hg isotopes. The definition and possible pro-

cesses and mechanisms triggering even-MIF were carefully

discussed. Given the fact that even isotope anomaly was

observed in variable regions with different altitude and lat-

itude in China and inNorthAmerica, the occurrence of even-

MIF is likely a worldwide phenomenon. This is also sup-

ported by the positive D200Hg (*?0.22 %) just determined

in the tree moss in Sweden (our unpublished data). Though

D200Hg is actually used to refer to the deviation of even Hg

isotopes fromMDF, other even isotopes are probably subject

to the same fractionation. The relationships among even

isotope anomalies need to be fully elucidated. In general,

D200Hg values were mainly determined in samples related to

the atmosphere, implying an upper atmosphere origin of

even-MIF. Laboratory experiments, theoretical contribution

and more data are needed to fully understand the reactions

and mechanisms triggering even-MIF. If the conceptual

model of Chen et al. [36] can hold, even-MIF may serve as a

useful indicator of upper atmosphere chemistry. The impli-

cation of even-MIF as a possible conservative tracer remains

to be largely developed. In fact, 200Hg anomaly is likely

related to solar irradiation, air mass move, and stratosphere

incursion, and thus even-MIF could provide additional

information about atmospheric chemistry, meteorological

condition, and even related climate changes. Moreover, the

conservative behavior of 200Hg anomaly may also be helpful

for better understanding the global biogeochemical cycle of

Hg, especially the surface–atmosphere exchange.
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