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Abstract Pinggu District is adjacent to the county of
Miyun, which contains the largest drinking water source
of Beijing (Miyun Reservoir). The Wanzhuang gold field
and tailing deposits are located in Pinggu, threatening
Beijing’s drinking water security. In this study, soil sam-
ples were collected from the surface of the mining area
and the tailings piles and analyzed for physical and chem-
ical properties, as well as heavy metal contents and parti-
cle size fraction to study the relationship between degree
of pollution degree and particle size. Most metal concen-
trations in the gold mine soil samples exceeded the back-
ground levels in Beijing. The spatial distribution of As,
Cd, Cu, Pb, and Zn was the same, while that of Cr and Ni
was relatively similar. Trace element concentrations in-
creased in larger particles, decreased in the 50–74 μm size
fraction, and were lowest in the <2 μm size fraction.
Multivariate analysis showed that Cu, Cd, Zn, and Pb
originated from anthropogenic sources, while Cr, Ni, and
Sc were of natural origin. The geo-accumulation index
indicated serious Pb, As, and Cd pollution, but moderate

to no Ni, Cr, and Hg pollution. The Tucker 3 model re-
vealed three factors for particle fractions, metals, and
samples. There were two factors in model A and three
factors for both the metals and samples (models B and
C, respectively). The potential ecological risk index
shows that most of the study areas have very high poten-
tial ecological risk, a small portion has high potential eco-
logical risk, and only a few sampling points on the perim-
eter have moderate ecological risk, with higher risk closer
to the mining area.
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Introduction

Contamination of soil environments with metals from an-
thropogenic sources is an important global issue
(Sterckeman et al. 2000; Acosta et al. 2011). During min-
ing, metals in tailings and the surrounding rock are left in
the surroundings and accumulate in the soil, causing
heavy metal pollution, which is latent, cumulative, long
term, and recalcitrant. Additionally, it is possible for
heavy metals accumulated in soil to migrate into vegeta-
tion and, subsequently, the human body via the food chain
or groundwater, thereby affecting human health (Li et al.
2014; Zhuang et al. 2009). Currently, most studies are
focused on the polluting characteristics of heavy metals
in metal mines (Guo et al. 2011; Liu et al. 2010), while
there were few investigations of heavy metals in environ-
mentally sensitive areas, such as those containing impor-
tant drinking water sources. Therefore, this study was
conducted to investigate soil pollution of an important
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drinking water source region by heavy metals originating
from the tailings of closed mines.

Soil particle size is an important factor influencing the
mobility of trace elements. Since the 1980s, many studies
have investigated the distribution of particle size of trace
elements in surface soil (Ahmed and Ishiga 2006;
Viklander 1998). Because of the erosion, ease of transport
and size of specific surface area, etc., the concentration
(Förstner and Wittmann 2012), migration, and transforma-
tion of trace element pollutants are all closely related to
particle size, with fine particulate matter acting as a car-
rier for trace elements in soils, bringing potential risks to
the environment and human health (Dominici et al. 2006;
Vallejo et al. 2006). The concentrations of trace elements
in soils increase with decreasing particle size because fine
particles have a greater specific surface area, and most of
them were negative charge, high clay content, and high
organic content (Baek et al. 1997; Barberis et al. 1991;
Charlesworth and Lees 1999). Different types of clay
minerals, particularly montmorillonite, kaolinite, and il-
lite, also adsorb trace elements (Brady and Weil 1996).
Research and evaluation of the activity and potential en-
vironmental risk generated by trace elements in different
size fraction components can further strengthen our un-
derstanding of the transfer and transformation of trace
elements and may provide strategies to repair and control
the pollution.

The primary objective of the study was to examine
heavy metals in a gold ore area near the Zhongqiao water
source in Pinggu. To accomplish this, we collected soil
samples typical of gold ore mining and established the
source and distribution of trace elements in the region
through clustering analysis and principal component anal-
ysis (PCA), Furthermore, we investigated the level of
trace element pollution by applying a geo-accumulation
index (Igeo), while the relationship between the contents
of heavy metals, particle size distribution of soil, and the
distribution of the space was studied by the Tucker 3
model. The results presented herein provide a scientific
basis for preventing and controlling heavy metals
contamination.

Materials and methods

Study area

Beijing has recently undergone very rapid development
that has included transformation into a political and cul-
tural center. The metropolis with more than 20,000,000
population only has one major source of drinking water,
the Miyun Reservoir. Drinking water safety is the top
priority of urban development. The Zhongqiao water

source in the Pinggu District of Beijing serves as an emer-
gency water source; accordingly, its quality directly af-
fects the safety of water in Beijing. The Pinggu district
is located about 70 km northeast of downtown Beijing.
The District covers an area of 1075 km2, 59.7 % of which
is mountain area. Pinggu has a warm temperate continen-
tal monsoon climate, with hot and rainy summers and
cool and humid autumns. The average maximum temper-
ature is 17.3 °C, while the average annual rainfall is about
644 mm.

Upstream of the Zhongqiao water source is abundant gold
resources. Although smelting activities in Wanzhuang gold
mining area are now closed, they have influenced the soil
surrounding the water sources. In this study, we collected
and analyzed soil from Wanzhuang tailings and the surround-
ing areas.

Sampling and analytical methods

Gold mining process in the study area generated a lot of
waste rock, deposited on the slopes, and trench freely,
without any interception measures. Consider the mining
lot, tailing pond, transportation route of peripheral ore
mining area, and the position of the residential areas.
Combining with the local terrain, we avoid the crowds
to sample as far as possible. A total of 25 soil samples
were collected from 25 locations (P1–P25) in the
Wanzhuang mining area according to the sampling grid
shown in Fig. 1. GPS was used to locate the sample
points throughout the survey process. Samples were
placed in labeled polyethylene bags for transport to the
laboratory, where they were air-dried, gently crushed,
and sieved at 2 mm with a plastic sieve and then
ground, homogenized with an agate mortar, and sieved
again through a mesh sieve (<2 mm) for laboratory
analyses.

We selected the first 10 samples (p1∼p10) around
KongChengYu village, then the samples were partitioned into
five size fractions : <2, 2–5, 5–10, 10–50, and 50–74 μm. For
separation, air-dried soil samples were passed through a
200mesh sieve (74μm).Next, 100 g of soil from the 200mesh
sieve was dispersed with Na-hexametaphosphate for 16 h by
horizontal shaking. The <2 μm fraction was separated by cen-
trifugation, after which the remaining fractions were subjected
to repeated sedimentation and decanting. Following separa-
tion, all the fractions were dried and weighted.

Total concentration of heavy metals

Soil samples were analyzed for their chemical and physical
properties. The pH was determined potentiometrically in a
soil–CaCl2 (0.01 M) suspension (soil/solution 1:5, ISO

2832 Environ Sci Pollut Res (2016) 23:2831–2847



10390). The total organic carbon content was measured using
a TOC analyzer (Elementar Company, Germany).

The concentrations of Cu, Zn, Cd, Cr, Ni, and Pb were
determined for bulk soil samples and size fractions by
inductively coupled plasma mass spectrometry. Briefly,
samples (0.10 g) were placed into a Teflon beaker, after
which 1.5 ml HF, 1 ml HNO3, and 2 ml H2O2 were added.
The beaker was then placed on a hot plate (∼140 °C) for
48 h until the sample was completely dissolved and va-
porized to dryness. Next, 1 ml HNO3 was added with an
appropriate amount of ultrapure water, and the mixture
was heated so that the salts dissolved completely. The
resulting solution was placed in a 50-ml plastic bottle
and measured against the internal standard. All analyses
were conducted alongside standards.

In addition, 0.3000 g of sieved sample was added to 10 mL
fresh HCl/HNO3 (v/v=3:1) and placed in a 95 °C water bath
for 2 h, during which time it was hand shaken four times (Li
2004). Once it had cooled, the digestion solution was then
diluted to 50 mL by ultrapure water (resistivity =
18.2 MΩcm−1). Next, 25 mL of dilute solution was removed,
mixed with 5 mL HCl (1.19 g mL−1), and 5 mL solution of
CH4N2S (50 g L−1) and diluted to 50 mL. Finally, the sample
was allowed to stand for 30 min, after which the dilute solu-
tion was analyzed by Atomic Fluorescence Spectrometry
(AFS-920, Ji Tian) for As and Hg.

Multivariate statistical method

Multivariate statistical methods offer powerful tools for moni-
toring soil properties. Such methods have been widely applied
to investigate the concentration, accumulation, and distribution
of trace elements in soils (Lin et al. 2002; Qishlaqi and Moore
2007; Salman and Ruka’h 1999), as well as the behavior, dis-
tribution, and interrelationship of trace elements in soils.

Principal component analysis (PCA) can reduce the com-
plexity of large-scale data sets and are broadly used in envi-
ronmental impact studies (Perona et al. 1999) to elucidate the
relationships among variables by identifying common under-
lying processes (Farnham et al. 2003; Webster and Oliver
1990). The number of significant principal components was
selected on the basis of a Kaiser criterion of eigenvalues
higher than 1 (Kaiser 1960) and a total explained variance
equal to or higher than 85 %.

Cluster analysis (CA) is often coupled with PCA to check
results and group individual parameters and variables
(Facchinelli et al. 2001). Cluster analysis (CA) is a group of
multivariate techniques that allows the assembly of objects
based on their characteristics. CA classifies objects so that
each is similar to others in the cluster with respect to a
predetermined selection criterion. Hierarchical agglomerative
clustering, which is the most common approach, provides
intuitive similarity relationships between any one variable
and the entire data set and is typically illustrated by a
dendrogram.

Because data describing particle size fractions are al-
ways compiled in tridimensional or higher arrays, it is not
possible to analyze the environmental characteristics of
particle fractions directly. Accordingly, PCA and other
two-way approaches cannot identify complicated relation-
ships in the surroundings well. Therefore, Stanimirova
et al. (2006) developed a more advanced technique known
as the Tucker N-way to analyze data sets arranged in
groups of three or more. Furthermore, Stanimirova postu-
lated that more advanced methods such as the Tucker N-
way will become more popular in the future. Pardo et al.
(2008) used two-way and N-way PCA to analyze heavy
metal data and found that the Tucker 3 model provided
more detailed information for use in the development of
remediation strategies for contaminated soil and sediment.
Ding and Ji (2010) and Huang et al. (2013) used the

Fig. 1 Schematic map of the study area and sampling points
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Tucker 3 model to analyze heavy metal fraction data and
found more detailed information for contaminated sedi-
ment and soil.

Geo-accumulation index

The geo-accumulation index (Igeo) introduced by Müller
(1969) was used to quantify heavy metal pollution in aquatic
sediment. The formula of Igeo is as follows:
Igeo ¼ log2 Cn=1:5Bnð Þ

where Cn is the measured concentration of metal n, Bn

is the background value (average shale) of metal n, and
factor 1.5 is the background matrix correlation factor
due to lithogenic variation. Seven classes of the geo-
accumulation index were suggested by Mülller (1969):
class 0 (unpolluted), Igeo<0; class 1 (unpolluted to mod-
erately polluted), 0polgeo<1; class 2 (moderately pollut-
ed), 1olgeo<2; class 3 (moderately to heavily polluted),
2≤Igeo<3; class 4 (heavily polluted), 3≤Igeo<4; class 5
(heavily to extremely polluted), 4≤Igeo<5; and class 6
(extremely polluted), Igeo≥5.

Potential ecological hazard index

Hakanson (1980) reflects not only the effects of a single trace
element in a particular environment, but also the effects of
multiple trace elements. He uses quantitative methods to de-
termine the degree of potential ecological hazard and is widely
used in pollution assessments of trace elements in soils and
sediments. The calculation includes four steps:

1. The contamination factor of a single trace element, orCr
i is

determined by:

Ci
r ¼ Ci

surface=C
i
n

Where Csurface
i is the measured concentration of trace

elements in the soil (or sediment), and Cn
i is the

reference value. The reference value is set as the
highest background value of trace elements in sedi-
ments in modern preindustrial times as suggested by
Hakanson, although some scholars use national soil
environmental standard values as the reference.

2. The toxic response factor of trace elements, Tr
i, is

used to reflect the response of trace elements in
water, sedimentary, and biological phases. A stan-
dardized trace element toxic response coefficient
was taken as the assessment standard as suggested
by Hakanson. The toxic response coefficients were
Zn=1<Cr=2<Cu=Ni=Pb=5<As=10<Cd=30<Hg=40
(Xu et al. 2008; Xv et al. 2008);

3. The potential ecological risk index, Er
i , can then be calcu-

lated for each trace element:

Ei
r ¼ Ti

r � Ci
r

4. The potential ecological risk index of various trace ele-
ments, or RI, can be divided into five levels such that the
potential ecological harm is:

RI ¼
Xn

i¼1

Ei
r

Results

Soil physical and chemical properties

The pH and organic matter (OM) content of surface soils (0–
20 cm) in the area of the Wanzhuang gold ore near Zhongqiao
water sources are shown in Table 1. The soil pH is mainly
acidic, ranging from pH 3.77 to 6.60. The most acidic was
topsoil near the highest altitude and close to the tailings reser-
voir where the tailings stocked in half hillside directly or filled
in natural ditch. This value might reflect the dust and tailings
generated by smelting and the acidic mine drainage produced
by the gold ore oxidation. The OM contents in the study are
arranged from 0.34 to 7.28 %, with the highest found in sur-
face soil from grassland near the gold ore. This may reflect
that grassland soils are naturally richer in OM than others.
These conclusions are consistent with the results of previous
studies (Gao et al. 2012; Huang et al. 2013; Qin et al. 2014).

Total metals content of surface soils

The total heavy metals concentrations in surface soils (0–20 cm)
in the Wanzhuang gold mining area are presented in Table 1.

As shown in Table 1, the ratio of the mean/background
v a l u e s i n B e i j i n g w a s i n t h e o r d e r
Cd>As>Pb>Zn>Cu>Ni>Cr>Hg, with values 53.49, 29.88,
22.42, 3.57, 2.62, 1.37, 1.35, and 0.81 times those of the
background value, respectively. The Cd content of P-1, P-2,
P-3, P-20, and P-4 was highest. Because there is no nearby
farmland and planting areas, there is almost no use of fertil-
izers; this was likely because P-1–P-4were closer to the min-
ing area and P-20 was near the tailing reservoir relative to the
other sample sites.

Characteristics of soil elements in particle size fractions

The concentrations of Cu, Zn, Cd, Cr, Ni, Pb, Hg, and Y in
various size fractions are shown in Table 2 and Fig. 2. Trace
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element concentrations increased in larger particles, decreased
in the 50–74 μm size fraction, and were lowest in the <2 μm
size fraction.

Application of chemometric analysis

The data obtained from analytical methods were analyzed
using SPSS version 16.0 for Windows. Pearson’s correlation
coefficient analysis, PCA, and cluster analysis (CA) were

performed to identify the relationships among soil heavy
metals and their possible sources.

PCA and derivative methods have been widely applied to
various environmental media, such as soils (Tahri et al. 2005;
Zheng et al. 2008; Facchinelli et al. 2001), dust (Meza-
Figueroa et al. 2007), and water (Tahri et al. 2005), to identify
pollution sources and apportion natural versus anthropogenic
contributions. In this study, CAwas applied to identify differ-
ent geochemical groups based on similar heavy metals con-
tents according to the Ward-algorithmic method. The results

Table 1 Contents of heavy metals and organic carbon, and pH value in bulk samples of surface soils of the study area

Samples Contents of heavy metals/mg·kg−1 pH OM

Cu Zn Cd Cr Ni Pb As Hg %

P-1 79.7 1680 14.0 93.5 44.1 6380 2386 0.097 6.55 0.73

P-2 121 2460 23.2 78.8 45.2 2345 1279 0.117 6.68 7.28

P-3 175 1270 14.2 85.2 42.3 932 881 0.038 6.58 2.32

P-4 71.8 472 4.6 104 46.2 335 366 0.024 6.98 0.37

P-5 30 118 0.8 90.2 35.9 91.6 47 0.022 6.89 0.39

P-6 60.8 137 0.6 106 50.3 67.6 36 0.038 6.8 1.7

P-7 163 172 1.1 83.1 35.8 97.4 50 0.038 6.36 0.37

P-8 46.4 118 0.5 93.3 38.6 78 34 0.047 6.4 1.76

P-9 36 118 0.5 86.2 32.7 87.8 57 0.075 7.1 1.87

P-10 60.7 182 1.5 83.2 31 655 316 0.132 6.74 1.05

P-11 49.1 110 0.7 73.7 24.3 361 164 0.057 6.96 0.37

P-12 26.5 72 0.2 95.6 36.3 43.1 40 0.011 6.78 0.46

P-13 46.4 169 1.2 77.9 28.6 426 192 0.038 7.9 1.17

P-14 37.1 88.9 0.6 67.1 23.8 258 130 0.08 7.39 0.6

P-15 27.6 73.8 0.2 86.9 35.1 34.3 22 0.012 7.41 0.34

P-16 35.2 112 0.5 95.6 39.3 136 88 0.02 6.76 0.41

P-17 58.9 118 0.4 177 91.3 96.2 53 0.043 6.66 1.26

P-18 38.8 108 0.5 97.7 45.1 95.6 56 0.04 3.77 1.69

P-19 32.3 90 0.4 92.4 43.8 62.6 39 0.031 6.88 0.89

P-20 106 365 2.8 77.1 31.5 321 213 0.029 6.62 0.49

P-21 39.8 103 0.4 91.4 38.7 78.3 29 0.024 6.69 1.15

P-22 31 98.3 0.4 89.8 33.4 101 49 0.039 6.48 1.33

P-23 46.8 128 0.5 75.7 34.2 95.3 53 0.024 6.55 1.47

P-24 56.4 191 1.0 85.7 34.4 423 271 0.054 6.79 1.24

P-25 35.2 130 1.1 68.8 23 241 171 0.032 6.6 0.88

Minimum 26.5 72 0.2 67.1 23 34.3 22 0.011 3.77 0.34

Maximum 175 2460 23.2 177 91.3 6380 2386 0.132 7.9 7.28

Median 46.4 118 0.6 86.9 35.9 101 57 0.038 6.74 1.05

Mean 60 347 3 90 39 554 281 0.05 6.7 1.3

Background in Beijinga 23.1 97.2 0.0534 66.7 28.2 24.7 9.4 0.0576 – –

Mean/background in Beijing 2.62 3.57 53.49 1.35 1.37 22.42 29.88 0.81 – –

SD 40.18 582.56 5.67 20.63 13.13 1303.42 525.55 0.03 0.70 1.38

Skewness 1.86 2.83 2.75 3.22 2.74 4.13 3.23 1.49 −2.97 3.72

Kurtosis 2.90 7.67 7.17 13.57 10.84 18.16 11.18 1.75 13.51 16.27

a China National Environmental Monitoring Centre. Soil Element Background Values of China[J](in Chinese). China Environmental Science Press,
1990
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Table 2 Contents of heavy metals in particle size fractions samples of surface soils of the study area

Sample Particle size fractions Contents of heavy metals/ mg kg−1

Cu Zn Cd Cr Ni Pb Y Hg

P-1 <2 μm 40.6 373 2.8 136 52.1 2324 19.3 0.024

2–5 μm 62.8 596 4.16 123 70.4 3592 25.6 0.082

5–10 μm 79.5 767 6.05 157 87.8 4769 30.2 0.080

10–50 μm 70.2 817 4.95 171 83.2 4317 27.5 0.095

50–74 μm 76.5 806 5.99 164 88.1 4644 30 0.090

P-2 <2 μm 99.8 1455 17.9 73.3 38.2 1431 19.9 0.187

2–5 μm 138 2281 21.6 69 42.4 2287 20.9 0.283

5–10 μm 229 4145 32.3 103 70.3 4200 28.8 0.717

10–50 μm 244 4887 31.7 118 78.4 3969 31.8 0.771

50–74 μm 259 5064 33.8 121 81.8 4259 29.2 0.431

P-3 <2 μm 24.6 78.7 0.269 70.4 28.6 52.8 27.7 0.028

2–5 μm 37.2 121 0.426 90.1 43.7 77.4 33.7 0.061

5–10 μm 40.5 137 0.491 95.7 48.3 92.6 33.9 0.046

10–50 μm 45.8 240 0.467 108 55.8 106 36.7 0.043

50–74 μm 27.5 116 0.239 66.6 31.7 59.7 30 0.033

P-4 <2 μm 42.3 88.2 0.358 61.5 23.9 52.4 25.9 0.052

2–5 μm 51.4 138 0.426 88 41.2 66.8 33.8 0.096

5–10 μm 59.9 191 1.01 99.3 54.1 91.6 33.9 0.129

10–50 μm 67.1 250 0.72 117 63.2 104 40.5 0.148

50–74 μm 43.8 117 0.565 64.7 26.3 68.2 26.7 0.075

P-5 <2 μm 106 242 2.17 66.4 25.8 1125 23.2 0.115

2–5 μm 79.8 272 2.39 81 38.9 986 30.2 0.379

5–10 μm 147 848 2.33 107 53.6 1502 37.6 0.402

10–50 μm 107 1689 3.05 102 58 1556 41.2 0.419

50–74 μm 113 617 2.22 65.4 27.1 1126 24.9 0.138

P-6 <2 μm 84.8 171 0.792 43.9 21 402 18.1 0.044

2–5 μm 62.1 224 1.52 63.5 29.1 607 24 0.079

5–10 μm 82.8 939 1.85 83.2 42.5 960 29 0.150

10–50 μm 78.6 662 1.95 77.2 44.8 904 27.6 0.158

50–74 μm 52.3 524 1.29 50.1 24.9 463 18.6 0.104

P-7 <2 μm 68.5 149 0.534 59.3 21.8 226 21.6 0.031

2–5 μm 37.7 120 0.167 74 38 139 28 0.056

5–10 μm 44.3 147 0.458 88.5 46.5 158 33.5 0.054

10–50 μm 46.7 189 0.464 92.5 49 162 34 0.071

50–74 μm 60.3 236 1.16 87.3 43.3 346 31.5 0.170

P-8 <2 μm 25.2 69.5 0.245 67.9 23.4 69.1 22.2 0.031

2–5 μm 37.7 117 0.263 76.7 38.1 74.7 29.4 0.093

5–10 μm 43.5 148 0.615 81.2 45.7 90.8 31.3 0.126

10–50 μm 43.9 184 0.344 88.7 46.8 102 32 0.170

50–74 μm 46.7 148 0.531 85.2 47.2 91.9 29.4 0.146

P-9 <2 μm 28.2 94.1 0.43 68.7 25.5 141 24.2 0.024

2–5 μm 37.7 150 0.627 78.2 35.6 113 30.9 0.107

5–10 μm 44.7 195 0.525 96.2 45 140 36.3 0.137

10–50 μm 47.3 251 0.586 99.4 48.7 151 35.2 0.190

50–74 μm 48.5 167 0.35 76.7 52.3 171 33.4 0.121

P-10 <2 μm 59.5 102 0.369 55.4 17 117 23 0.089

2–5 μm 47.3 195 1.26 84 33.4 301 28.8 0.122

5–10 μm 97.5 258 1.36 106 43.7 398 32.8 0.198

10–50 μm 56.4 302 1.14 94.1 43.4 383 31.9 0.243

50–74 μm 47.6 180 0.578 96 46.9 134 33.2 0.213

Minimum 24.6 69.5 0.167 43.9 17 52.4 18.1 0.024

Maximum 259 5064 33.8 171 88.1 4769 41.2 0.771

Median 54.35 l 0.756 86.25 43.7 198.5 29.7 0.111
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are presented in a dendrogram (Fig. 4), representing the hier-
archical clustering solution and values of the distances be-
tween clusters (squared Euclidean distance). Correlation coef-
ficients were used to identify the relationship between the 10
elements. Pearson’s product moment correlation coefficient
was calculated in the forms of matrices (Kotz et al. 1984).
Other statistical parameters, such as the range, mean, median,
standard deviation, standard error, skewness, kurtosis, and co-
efficient of variation, were computed using SPSS 16.0.

The particle size fractions result in a tri-dimensional structure
with an X, a parallelepiped of size (nfrac×nmet×nsamp), nsamp

being the number of objects (sampling sites), nmet the number
of variables (trace elements and heavy metals), and nfrac the
number of particle size fractions. The X can be unfolded to be
Xaug with dimensions that can then be subjected to 2-PCA. This
method, which is known as MA-PCA, is commonly used to
analyze environmental science data (Guevara-Riba et al. 2004;
Jain 2004). Although MA-PCA allows full recovery of the

Fig. 2 Mean contents (mg kg−1)
of selected essential trace
elements in five particle size
fractions (μm) (n=10)

Table 2 (continued)

Sample Particle size fractions Contents of heavy metals/ mg kg−1

Cu Zn Cd Cr Ni Pb Y Hg

Mean 72.44 645.15 3.96 89.85 45.33 994.06 29.26 0.157

Background in Beijing 23.1 24.1 25.1 26.1 27.1 28.1 0.0576

Mean/background in Beijing 3.14 26.77 0.16 3.44 1.67 35.38 2.72

SD 51.71 1127.31 8.30 27.35 17.84 1444.14 5.49 0.16

Skewness 2.36 3.08 2.89 1.14 0.80 1.67 −0.16 2.43

Kurtosis 5.74 9.17 7.38 1.54 0.28 1.41 −0.32 6.53
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information from the variables, the information from samples
and fractions becomes mixed (Pardo et al. 2004). Conversely,
N-way PCA, which is an extension of 2-PCA to higher orders,
accounts for the true tri-dimensional nature of X. As a result, the
information corresponding to each of the three dimensions or
ways, metals, samples, and fractions can be fully separated and
interpreted. The Tucker 3 model is the most commonly used N-
way model and has frequently been utilized to evaluate environ-
mental data (Pardo et al. 2004; Singh et al. 2006). This method
decomposes X according to (Henrion 1994):

Xi jk ¼
XP

p¼1

XQ

q¼1

XR

r¼1

aipb jqckrgpqr þ ei jk

where aip, bjq, and ckr are the elements of the loadingmatrixes A,
B, and C with (nfrac×P), (nmet×Q), and (nsamp×R) dimensions,
respectively. gpqr denotes the elements (p, q, r) of the core array
G (P×Q×R), and eijk is the error term of the element xijk in theX
dataset.

Correlation analysis

Inter-element relationships of total heavy metal contents
not only provide interesting information regarding the
sources and pathways of the heavy metals, but can also
be applied to explain the behavior and fate of heavy
metals effectively and efficiently (Yalcin et al. 2008;
Yalcin et al. 2010).

The results of the correlations between heavy metals, pH,
and OM illustrate different origins and behaviors of trace ele-
ments in bulk samples (Table 3). The coefficients calculated
for bulk samples indicated there is no correlation between any
of the metals and the pH, indicating that pH almost no impact
on distribution of heavy metals. The reason may be that the
waste rock and tailings in the study area accumulation has
been for decades, and some of the metal is easily influenced
by the pH has been moved due to the leaching effect or other
effects. The rest of the metals have more stable structure. The
significant positive correlation between As, Zn, Cd, and Pb is

Table 3 Correlation coefficients for trace elements, organic matter, and pH in the surface soils of the study area

Cu Zn Cd Cr Ni Pb As Hg pH OM

Cu 1.000

Zn 0.586a 1.000

Cd 0.623a 0.994a 1.000

Cr −0.062 −0.094 −0.108 1.000

Ni 0.135 0.155 0.144 0.948a 1.000

Pb 0.282 0.748a 0.694a −0.047 0.086 1.000

As 0.429b 0.865a 0.832a −0.074 0.099 0.970a 1.000

Hg 0.217 0.527a 0.501b −0.151 −0.053 0.530a 0.544a 1.000

pH −0.087 −0.028 −0.022 −0.148 −0.207 −0.018 −0.013 0.018 1.000

OM 0.345 0.729a 0.736a −0.046 0.187 0.236 0.366 0.490b −0.129 1.000

a Correlation is significant at the 0.01 level (2-tailed)
b Correlation is significant at the 0.05 level (2-tailed)

Table 4 Principal component
loadings of selected metals in the
bulk and size fractions soil sample
soils

Bulk sample Size fractions soil samples

1 2 1 2 3

Total 4.254 1.969 Total 4.833 1.787 1.019

% of Variance 53.179 24.611 % of Variance 60.407 22.342 12.739

Cumulative % 53.179 77.790 Cumulative % 60.407 82.749 95.488

Cu 0.603 0.064 Cu 0.895 −0.341 0.136

Zn 0.959 0.027 Zn 0.928 −0.309 0.085

Cd 0.942 0.018 Cd 0.894 −0.371 −0.020
Cr −0.098 0.982 Cr 0.594 0.740 −0.262
Ni 0.125 0.986 Ni 0.775 0.598 −0.114
Pb 0.865 0.000 Pb 0.851 0.121 −0.471
As 0.946 −0.001 Y 0.144 0.685 0.704

Hg 0.643 −0.168 Hg 0.819 −0.222 0.440
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consistent with a common source for these metals. Cr and Ni
showed a significant positive correlation.

Principal component analysis

We used PCA to identify the sources of pollutants. To reveal
the origins of trace elements and their intrinsic relations, we
analyzed the concentrations of Cu, Zn, Cd, Cr, Ni, Pb, As, and
Hg from 25 bulk soils and the concentrations of Cu, Zn, Cd,
Cr, Ni, Pb, Y, and Hg from 50 size fractions samples.

Table 4 shows the results of factor loadings with a varimax
rotation, as well as the eigenvalues and communalities in the
bulk and size fractions of soil samples. The results indicate
that there were two eigenvalues higher than 1, and these two
factors explain 77.79 % of the total variance in bulk soil sam-
ples. The first factor explains 53.18 % of the total variance and
loads heavily on Zn, Cd, As, and Pb. The second principal
component (PC2) revealed higher contributions of Cr and Ni,
accounting for 24.61 % of the total variance. The relationships
among heavy metals based on the first two principal compo-
nents are illustrated in Fig. 3a.

Fig. 3 PCA results in the two or
three-dimensional space: plot of
loading of the first two principal
components (a bulk soils); plot of
loading of the first three principal
components (b size fractions
soils)
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Three PCs with eigenvalues greater than 1 were obtained
for the size fractions, together explaining more than 95.49 %
of the variance. The first PC exhibited elevated loadings of
Cu, Zn, Cd, Ni, Pb, and Hg, while PC 2 indicated significant
loadings in favor of Cr, Ni, and Y and PC 3 revealed higher
contributions of Y. The relationships among heavy metals
based on the first three principal components are illustrated
in Fig. 3b in three-dimensional space.

Cluster analysis

The heavy metal concentration data were standardized by
means of z-scores before CA, and Euclidean distances for
similarities in the variables were calculated. Hierarchical clus-
tering was then conducted by applying Ward’s method to the
standardized data set (Sundaray et al. 2006).

The CA results of bulk soils revealed three clusters of ele-
ments (Fig. 4). The first cluster (C1) included elements that
had previously been interpreted as anthropogenic elements
(Zn, Cd, Pb, and As), while the second cluster (C2)
contained Cu and Hg and the third cluster (C3) consisted
of Cr and Ni, while Cr and Ni had been interpreted as a
mixed source element.

Tucker analysis

The scaled data were analyzed using the Tucker 3 model (Bro
and Smilde, 2003). The first step in Tucker analysis is selec-
tion of an optimal model in terms of complexity. This is done
to identify a model that explains the highest percentage of
variance using the least latent factors in each mode. To select
the optimal model, we calculated the percentage of the ex-
plained variance for all models according to the product,
starting from one factor in each mode, [1 1 1] to [5 8 10]. As
shown in Fig. 5, [2 3 3] explained 87.1 % of the total data
variance. A further increase in terms better explained the var-
iance, but made the models too difficult to interpret.
Therefore, [2 3 3] was selected as the optimal model for this
paper.

To fully separate the information provided in the Tucker 3
model, the structure of the core matrix, G (Leardi et al. 2000),
must be also considered. In our case, model [2 3 3] generated
the following core matrix:

g111 g121 g131 g211 g221 g231

−14.2823 1.8796 1.249 −0.158 −0.2436 −1.7378
g112 g122 g132 g212 g222 g232

0.6484 3.6791 −3.5845 −4.2488 −4.223 −2.9474
g113 g123 g133 g213 g223 g233

−0.3156 −6.2033 1.0942 −2.7067 −1.6702 −2.8487

Figure 6 shows a summary of the components of the
Tucker 3 [2 3 3] model, which was composed of the loadings
of the three matrixes, particle fractions (A), metals (B), and
samples (C). There were two factors in model A and three
factors for both the metals and samples (models B and C,
respectively).

In model A (particle fraction), the first factor (A1)
was composed of highly positive loadings for 5–10,
10–50, and 50–74 μm with larger magnitudes, but also
with smaller magnitudes (<2 and 2–5 μm). We believe
that heavy metals are mainly distributed in the larger
particle size of soil and lower in the smaller particle
sizes, which is consistent with the metal content distri-
bution shown in Fig. 2. Heavy metals in large particle
size soil are usually from mineral constituents. It can be
assumed that the heavy metals observed in the present
study originated from gold mining. Fine particulate mat-
ter can migrate with the atmosphere, so the heavy
metals in the fine particles of the soil can be easily
influenced by atmospheric deposition. This resulted the
difference between the heavy metals in the fine particles
and in the other particles.

The first component (B1) of the B model had nega-
tive loadings for all metals, with Y having the lowest
value. Y is generally attributed to compounds originating
from the earth’s crust, while being less affected by an-
thropogenic actives; therefore, it may be considered rep-
resentative of the natural sources. In the first main com-
ponent, there is a great difference between loadings of
Y and other elements. It is believed that other elements
are largely influenced by anthropogenic factors, which
result in the differences. In the second component (B2),
Cr, Ni, Pb, and Y have negative loadings. It can be
assumed that Cr, Ni, and Pb were partially affected by
natural sources, while Cu, Zn, Cd, and Hg were less
influenced by these. In the third component (B3), Y
and Hg show greater negative loadings, indicating that
Hg and Y also showed consistent characteristics in a
few test results, which may have been derived from
natural sources.

The first component (C1) of the C model had nega-
tive loadings for all metals except P-1, P-2, and P-5.
All metal content was high in P-1 and P-2; however,
P-5 showed a similar metal distribution as P-1 and P-2.
While P-1 and P5 are both in area surrounding the gold
mines, P-5 was located farther away. However, the ele-
vation of P-1, P-2, and P-5 was higher than that of P-3
and P-4. Moreover, P-3 and P-4 were located close to
the road and subject to frequent traffic activities,
resulting in the difference between these samples and
the others. Loading in the second component (C2),
P-1, which was located nearest to the mining activities,
was the only one that showed negative loading. This
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Fig. 5 Explained percentage of
variance versus model
dimensionality as determined by
Tucker 3 modeling of the particle
size fractions result

Fig. 4 Cluster analysis of
selected metals in the bulk soil
samples
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indicates that the heavy metal content of P-1 was sig-
nificantly different from that of other sampling points.
However, in the third component (C3), P-2 and P-1
showed opposite loadings, indicating that P-2 is not on-
ly affected by mining, but also by other factors.

Discussion

Pollution degree and source identification

High levels of As may be caused by the mining residue.
Elevated As concentrations in the residues are associat-
ed with the inherent mineralogy of the ores which con-
tain arsenopyrite (FeAsS) (De Lacerda and Salomons
2012), a mineral normally associated with significant
amounts of gold, serving as an indicator of gold bearing
reefs. Runoff and wind could transport particles rich in
As to the surroundings.

The result of total Cd, Pb, and As in the study area
suggests that these metals were higher than the back-
ground in Beijing (Zhongming et al. 1990). Cu, Zn,
Cr, and Ni are similar to those previously exposed by
Huang et al. (2013) and Qin et al. (2014). While Pb
and As are higher than those previously exposed by
Huang et al. (2013) and Qin et al. (2014), especially
As, nearly 10 times the value of previous reports in
the adjacent area (Qin et al. 2014; Huang et al. 2013).
Values of As reported in this study are similar to those
previously exposed by Faz et al.(2014) in primary gold
mining districts of Western Bolivia.

In fact, Tapia et al. (2012) also observed in the Oruro
mining district of Bolivia that backgrounds of As are
significantly enhanced in comparison with the upper
continental crust concentrations and those of industrial
sites, suggesting that surface soils are probably influ-
enced by mining activities and impacted by airborne
particulates.

Fig. 6 Loadings of the Tucker 3 [2 3 3] model of the particle size fractions result
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The results of chemometric analysis show that As,
Zn, Cd, and Pb have similar content characteristics (cor-
relation analysis, PCA, and CA all show this result).
These metals may be affected by the mine, resulting
in higher levels. We refer to the ore composition test
report, the content of As reached 0.36 %, and this is
consistent with our conjecture. It has been reported that
the availability and mobility of As is highly dependent
on the parent mineral form (Al-Abed et al. 2008).

Generally, the parent rock has larger particle size in
soil, while in smaller grain size soil easily influenced by
wind erosion and other factors, it is often a source of a
variety of effects. Figure 2 shows that Zn, Cd, and Pb
in the larger grain size were significantly higher than in
fine particle size. We can deduce that Zn, Cd, and Pb
may mainly from the parent rock influenced by mining
activities in this study. This inference is consistent with
the results of previous chemometric analysis.

In order to further analyze the potential relationship
between particle size, sampling point, and metal content,
the Tucker 3 model is used to process the tri-
dimensional dataset. The results also show that it has
a greater correlation between the larger grain sizes of
the soil particles. In addition, Pb affected by mining
activities, also seems to be affected by other factors,
showed slight differences with Pb and Zn. From the
results of the sample point analysis, it can be seen that
P-3, P-4 points near the road with lower altitude show

different characteristics with other high concentration
points, and we hypothesized that road is an important
factors influencing the metal distribution in p-3, p-4
points. In the previous reports (Birch and Scollen
2003; Ning et al. 2010; Liu et al. 2014), the Pb ele-
ments in the soil around the road were significantly
enriched and usually enriched at a distance of less than
500 m from the road.

Risk assessment

The geo-accumulation index is a quantitative measure of the
pollution index in soils. The contamination level was assessed
by comparing the observed heavy metal levels in soils to the
background concentrations of metals in Beijing soils.
Any increase in observed levels indicates an anthropo-
genic nature of the observed metal. The natural fluctu-
ations in the metal contents of the soils are countered
by a constant factor 1.5.

Table 5 Reference values (Cn
i ) and toxicity coefficient (Tr

i) of heavy
metals in soils

Cu Zn Cd Cr Ni Pb As Hg

Cn
i 23.1 97.2 0.0534 66.7 28.2 24.7 9.4 0.0576

Tr
i 5 1 30 2 5 5 10 40

Fig. 7 Distribution maps of concentrations of trace elements in the topsoil
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We also mapped the distributions of Igeo in soils.
Thus, the impact of the soils was assessed by develop-
ing an individual pollution map for each element found
in bulk samples. The distribution patterns of Cu, Zn,
Cd, Cr, Ni, Pb, Hg, and As were prepared using
ARCGIS 10.2 by the interpolation method with inverse
distance weighting (Zhu et al., 2013). The pollution
spatial distribution patterns of trace elements in soils
are shown in Fig. 7.

As shown in Fig. 7, Zn, Pb, and As showed a uniform
distribution, differing from the pollution-derived elements.
Overall, these results indicate serious pollution with metals
in the mine area.

The potential ecological risk index of Hakanson was
evaluated by eight parameters (Hg, Cd, As, Pb, Cu, Cr,
Zn, and PCBs). However, PCBs were excluded, and the
Ni was added in this study. The soil background values
in Beijing (China National Environmental Monitoring
Centre, 1990) were adopted as reference values. The
reference values and the toxic response factors are
shown in Table 5. The evaluated criteria for the individ-
ual potential ecological factor Er

i and potential ecologi-
cal index (RI) are shown in Table 6. The potential eco-
logical indices Er

i and RI in surface sediments are
shown in Table 7. The results indicated moderate to
very high potential risk for all sites, where the RI

Table 7 Heavy metals ecological
risk indexes of the study area Samples Er

i RI

Cu Zn Cd Cr Ni Pb As Hg

P-1 17.25 17.28 7865.17 2.80 7.82 1291.50 2538.30 67.36 11,807.48

P-2 26.19 25.31 13,033.71 2.36 8.01 474.70 1360.64 81.25 15,012.17

P-3 37.88 13.07 7977.53 2.55 7.50 188.66 937.23 26.39 9190.81

P-4 15.54 4.86 2556.18 3.12 8.19 67.81 389.36 16.67 3061.73

P-5 6.49 1.21 449.44 2.70 6.37 18.54 50.00 15.28 550.04

P-6 13.16 1.41 342.70 3.18 8.92 13.68 38.30 26.39 447.73

P-7 35.28 1.77 601.12 2.49 6.35 19.72 53.19 26.39 746.31

P-8 10.04 1.21 280.90 2.80 6.84 15.79 36.17 32.64 386.40

P-9 7.79 1.21 258.43 2.58 5.80 17.77 60.64 52.08 406.31

P-10 13.14 1.87 820.22 2.49 5.50 132.59 336.17 91.67 1403.65

P-11 10.63 1.13 376.40 2.21 4.31 73.08 174.47 39.58 681.81

P-12 5.74 0.74 106.74 2.87 6.44 8.72 42.55 7.64 181.44

P-13 10.04 1.74 646.07 2.34 5.07 86.23 204.26 26.39 982.14

P-14 8.03 0.91 314.61 2.01 4.22 52.23 138.30 55.56 575.86

P-15 5.97 0.76 123.60 2.61 6.22 6.94 23.40 8.33 177.84

P-16 7.62 1.15 275.28 2.87 6.97 27.53 93.62 13.89 428.92

P-17 12.75 1.21 224.72 5.31 16.19 19.47 56.38 29.86 365.90

P-18 8.40 1.11 252.81 2.93 8.00 19.35 59.57 27.78 379.95

P-19 6.99 0.93 196.63 2.77 7.77 12.67 41.49 21.53 290.77

P-20 22.94 3.76 1550.56 2.31 5.59 64.98 226.60 20.14 1896.87

P-21 8.61 1.06 202.25 2.74 6.86 15.85 30.85 16.67 284.89

P-22 6.71 1.01 230.34 2.69 5.92 20.45 52.13 27.08 346.33

P-23 10.13 1.32 258.43 2.27 6.06 19.29 56.38 16.67 370.55

P-24 12.21 1.97 573.03 2.57 6.10 85.63 288.30 37.50 1007.30

P-25 7.62 1.34 601.12 2.06 4.08 48.79 181.91 22.22 869.14

Table 6 Grading standard of the
potential ecological risk for heavy
metals (Hakanson 1980)

Er
i Potential ecological risk for single regulator RI Ecological risk for all factors

En
i <40 Low RI<150 Low

En
i ≥40 Moderate RI≥150 Moderate

En
i ≥160 Considerable RI≥300 High

En
i ≥320 High RI≥600 Very high

2844 Environ Sci Pollut Res (2016) 23:2831–2847



values are all higher than 150. P-12, P-15, P-19, and P-
21 showed moderate ecological risk, while P-5–6, P-8–
9, P-14, P-16–18, and P22–23 showed high ecological
risk. The rest of the sites showed very high ecological
risk. The order of potential ecological risk factor Er

i of
heavy metals in soils was Cd>As>Pb>Hg>Cu>Ni>
Zn>Cr. As, Pb, and Cd showed the highest potential
ecological risk factor, while the rest had lower potential
ecological risk factors. Therefore, As, Pb, and Cd
should receive a great deal of attention as ecological
hazards and be considered priority pollutants. The count
map of RI for the studied area based on the contents of
Hg, Cd, As, Pb, Cu, Cr, Zn, and Ni is shown in Fig. 8.
As shown in Fig. 8a, most of the study area had very
high potential ecological risk, a small part had high
potential ecological risk, and only a few sampling
points on the perimeter had moderate ecological risk.
As shown in Fig. 8b, the potential ecological risk in-
creased closer to the mining area.

Conclusions

Mining activities in the upstream areas of the Zhongqiao
Reservoir have caused serious heavy metals contamination
of soils. This was especially true for Cd, As, and Pb, for which
observed values were much higher than the background
values. The lowest metal content was observed in the <2 μm
size fraction, while the concentration of each trace element
increased in larger particles, then decreased in the 50–74 μm
size fraction. According to multivariate analysis (correlation
coefficient analysis, PCA, CA) and the contents of selected
metals, Zn, Cd, As, and Pb originated from anthropogenic
sources in bulk soil, while Cr and Ni had natural and anthro-
pogenic origins. The geo-accumulation index demonstrated
moderate to high contamination of a few metal bulk soil sam-
ples. Overall, these findings indicate that gold mining activi-
ties have the potential to adversely affect drinking water

sources of Beijing and should therefore receive increased
attention.

Acknowledgments We thank Ms. Chen Xiaomin for her assistance
with samples analysis. This work was jointly supported by the National
Natural Science Foundation of China (41173113), the International
Cooperation Foundation (2012DFA21000) and the Hundred Talents
Program of the Chinese Academy of Sciences.

References

Acosta J, Faz A, Mart Nez-Mart Nez S, Zornoza R, Carmona D, Kabas S
(2011) Multivariate statistical and GIS-based approach to evaluate
heavy metals behavior in mine sites for future reclamation. J
Geochem Explor 109:8–17

Ahmed F, Ishiga H (2006) Trace metal concentrations in street dusts of
Dhaka city, Bangladesh. Atmos Environ 40:3835–3844

Al-Abed SR, Jegadeesan G, Scheckel KG, Tolaymat T (2008) Speciation,
characterization, and mobility of As, Se, and Hg in flue gas
desulphurization residues. Environ Sci Technol 42:1693–1698

Baek S-O, Choi J-S, Hwang S-M (1997) A quantitative estimation of
source contributions to the concentrations of atmospheric suspended
particulate matter in urban, suburban, and industrial areas of Korea.
Environ Int 23:205–213

Barberis E, Marsan FA, Boero V, Arduino E (1991) Aggregation of soil
particles by iron oxides in various size fractions of soil B horizons. J
Soil Sci 42:535–542

Birch G, Scollen A (2003) Heavy metals in road dust, gully pots and
parkland soils in a highly urbanised sub-catchment of Port
Jackson, Australia. Soil Res 41:1329–1342

Brady NC, Weil RR (1996) The nature and properties of soils. Prentice-
Hall Inc, Upper Saddle River

Bro R, Smilde AK (2003) Centering and scaling in component
analysis[J]. J Chemom 17(1):16–33

Charlesworth S, Lees J (1999) Particulate-associated heavy metals in the
urban environment: their transport from source to deposit, Coventry,
UK. Chemosphere 39:833–848

De Lacerda LD, Salomons W (2012) Mercury from gold and silver min-
ing: a chemical time bomb? Springer Science & Business Media.
doi:10.1007/978-3-642-58793-1

Ding H, Ji H (2010) Application of chemometric methods to analyze the
distribution and chemical fraction patterns of metals in sediment
from a metropolitan river. Environ Earth Sci 61:641–657

Fig. 8 Spatial distribution map of RI in the study area: the distribution of moderate ecological risk to very high risk (a); natural grade distribution
potential ecological risks (b, 10 grades)

Environ Sci Pollut Res (2016) 23:2831–2847 2845

http://dx.doi.org/10.1007/978-3-642-58793-1


Dominici F, Peng RD, Bell ML, Pham L,Mcdermott A, Zeger SL, Samet
JM (2006) Fine particulate air pollution and hospital admission for
cardiovascular and respiratory diseases. JAMA 295:1127–1134

Facchinelli A, Sacchi E, Mallen L (2001)Multivariate statistical and GIS-
based approach to identify heavy metal sources in soils. Environ
Pollut 114:313–324

Farnham I, Johannesson K, Singh A, Hodge V, Stetzenbach K (2003)
Factor analytical approaches for evaluating groundwater trace ele-
ment chemistry data. Anal Chim Acta 490:123–138

Faz Á, Zornoza R, Muñoz MÁ, Acosta JA (2014) Metals and metalloids
in primary gold mining districts of Western Bolivia: anthropogenic
and natural sources. Environ Earth Sci 71:5027–5036

Förstner U, Wittmann GTW (2012) Metal pollution in the aquatic envi-
ronment. Springer Science & Business Media. doi:10.1007/978-3-
642-69385-4

Gao Y-X, Feng J-G, Tang L, Zhu X-F, Liu W-Q, Ji H-B (2012) Fraction
distribution and risk assessment of heavy metals in iron and gold
mine soil of Miyun Reservoir upstream. Environ Sci 33:1707–1717

Guevara-Riba A, Sahuquillo A, Rubio R, Rauret G (2004) Assessment of
metal mobility in dredged harbour sediments fromBarcelona, Spain.
Sci Total Environ 321:241–255

Guo W, Zhao R, Zhang J, Bao Y, Wang H, Yang M, Sun X, Jin F (2011)
Distribution characteristic and assessment of soil heavy metal pol-
lution in the iron mining of Baotou in Inner Mongolia. Environ Sci
(in Chinese) 32:3099–3105

Hakanson L (1980) An ecological risk index for aquatic pollution control.
A sedimentological approach. Water Res 14:975–1001

Henrion R (1994) N-way principal component analysis theory, algo-
rithms and applications. Chemom Intell Lab Syst 25:1–23

HuangX, ZhuY, Ji H (2013) Distribution, speciation, and risk assessment
of selected metals in the gold and iron mine soils of the catchment
area of Miyun Reservoir, Beijing, China. Environ Monit Assess
185:8525–8545

Jain C (2004) Metal fractionation study on bed sediments of River
Yamuna, India. Water Res 38:569–578

Kaiser HF (1960) The application of electronic computers to factor anal-
ys is . Educ Psychol Meas 20:141–151. doi :10 .1177/
001316446002000116

Kotz S, Pearn W, Wichern DW (1984) Eigenvalue-eigenvector analysis
for a class of patterned correlation matrices with an application. Stat
Probab Lett 2:119–125

Leardi R, Armanino C, Lanteri S, Alberotanza L (2000) Three‐mode
principal component analysis of monitoring data from Venice la-
goon. J Chemometr 14:187–195

Li Y (2004) Simultaneous determination of Arsenic and Mercy in soil by
atomic fluorescence spectrometry with hydride generation. Agro-
Environment and Development 1:41–42

Li Z, Ma Z, van der Kuijp TJ, Yuan Z, Huang L (2014) A review of soil
heavy metal pollution frommines in China: pollution and health risk
assessment. Sci Total Environ 468:843–853

Lin Y-P, Teng T-P, Chang T-K (2002) Multivariate analysis of soil heavy
metal pollution and landscape pattern in Changhua county in
Taiwan. Landsc Urban Plan 62:19–35

Liu C-P, Luo C-L, Gao Y, Li F-B, Lin L-W, Wu C-A, Li X-D (2010)
Arsenic contamination and potential health risk implications at an
abandoned tungsten mine, southern China. Environ Pollut 158:820–
826

Liu E, Yan T, Birch G, Zhu Y (2014) Pollution and health risk of poten-
tially toxic metals in urban road dust in Nanjing, a mega-city of
China. Sci Total Environ 476:522–531

Meza-Figueroa D, de La O-Villanueva M, de la Parra ML (2007) Heavy
metal distribution in dust from elementary schools in Hermosillo,
Sonora, México. Atmos Environ 41:276–288

Muller G (1969) Index of geoaccumulation in sediments of the Rhine
River. Geol J 2(3):108–118

Ning Z, Hudda N, Daher N, Kam W, Herner J, Kozawa K, Mara S,
Sioutas C (2010) Impact of roadside noise barriers on particle size
distributions and pollutants concentrations near freeways. Atmos
Environ 44:3118–3127

Pardo R, Helena B, Cazurro C, Guerra C, Deban L, Guerra C, Vega M
(2004) Application of two-and three-way principal component anal-
ysis to the interpretation of chemical fractionation results obtained
by the use of the BCR procedure. Anal Chim Acta 523:125–132

Pardo R, Vega M, Deb NL, Cazurro C, Carretero C (2008) Modelling of
chemical fractionation patterns of metals in soils by two-way and
three-way principal component analysis. Anal Chim Acta 606:26–36

Perona E, Bonilla I, Mateo P (1999) Spatial and temporal changes in
water quality in a Spanish river. Sci Total Environ 241:75–90

Qin F, Ji H, Li Q, Guo X, Tang L, Feng J (2014) Evaluation of trace
elements and identification of pollution sources in particle size frac-
tions of soil from iron ore areas along the Chao River. J Geochem
Explor 138:33–49

Qishlaqi A, Moore F (2007) Statistical analysis of accumulation and sources
of heavy metals occurrence in agricultural soils of Khoshk River
Banks, Shiraz, Iran. Am Eurasian J Agric Environ Sci 2:565–573

Salman S, Ruka’h YA (1999) Multivariate and principal component sta-
tistical analysis of contamination in urban and agricultural soils from
north Jordan. Environ Geol 38:265–270

Singh KP,Malik A, Singh VK, Sinha S (2006)Multi-way data analysis of
soils irrigated with wastewater–A case study. Chemom Intell Lab
Syst 83:1–12

Stanimirova I, Zehl K, Massart D, Vander Heyden Y, Einax J (2006)
Chemometric analysis of soil pollution data using the Tucker N-
way method. Anal Bioanal Chem 385:771–779

Sterckeman T, Douay F, Proix N, Fourrier H (2000) Vertical distribution
of Cd, Pb and Zn in soils near smelters in the North of France.
Environ Pollut 107:377–389

Sundaray SK, Panda UC, Nayak BB, Bhatta D (2006) Multivariate sta-
tistical techniques for the evaluation of spatial and temporal varia-
tions in water quality of the Mahanadi river–estuarine system
(India)–a case study. Environ Geochem Health 28:317–330

Tahri M, Benyaich F, Bounakhla M, Bilal E, Gruffat J-J, Moutte J, Garcia
D (2005) Multivariate analysis of heavy metal contents in soils,
sediments and water in the region of Meknes (central Morocco).
Environ Monit Assess 102:405–417

Tapia J, Audry S, Townley B, Duprey J-L (2012) Geochemical back-
ground, baseline and origin of contaminants from sediments in the
mining-impacted Altiplano and Eastern Cordillera of Oruro,
Bolivia. Geochem: Explor, Environ, Anal 12:3–20

Vallejo M, Ruiz S, Hermosillo AG, Borja-Aburto VH, Cárdenas M
(2006) Ambient fine particles modify heart rate variability in young
healthy adults. J Expo Sci Environ Epidemiol 16:125–130

Viklander M (1998) Particle size distribution and metal content in street
sediments. J Environ Eng 124:761–766

Webster R, Oliver MA (1990) Statistical methods in soil and land re-
source survey. Oxford University Press (OUP). doi:10.2307/
2290549

Xu ZQ, Ni SJ, Tuo X, Zhang CJ (2008) Calculation of heavy metals’
toxicity coefficient in the evaluation of potential ecological risk in-
dex. Environ Sci Technol 31:112–115

Xv Y, Zhang J, Zhao A, Ke H (2008) Evaluation of the potential ecolog-
ical risk of heavy metals in farmland soils in a certain gold mining
area, Xiaoqinling, China. Geol Bull Chin 27:272–278

Yalcin MG, Narin I, Soylak M (2008) Multivariate analysis of heavy
metal contents of sediments from Gumusler creek, Nigde, Turkey.
Environ Geol 54:1155–1163

Yalcin MG, Tumuklu A, Sonmez M, Erdag DS (2010) Application of
multivariate statistical approach to identify heavy metal sources in
bottom soil of the Seyhan River (Adana), Turkey. Environ Monit
Assess 164:311–322

2846 Environ Sci Pollut Res (2016) 23:2831–2847

http://dx.doi.org/10.1007/978-3-642-69385-4
http://dx.doi.org/10.1007/978-3-642-69385-4
http://dx.doi.org/10.1177/001316446002000116
http://dx.doi.org/10.1177/001316446002000116
http://dx.doi.org/10.2307/2290549
http://dx.doi.org/10.2307/2290549


Zheng Y-M, Chen T-B, He J-Z (2008) Multivariate geostatistical analysis
of heavy metals in topsoils fromBeijing, China. J Soils Sediments 8:
51–58

Zhongming Z, Linong L, Xiaona Y, Wangqiang Z and Wei L (1990)
China National Environmental Monitoring Centre. Soil Element
Background Values of China[J] (in Chinese). China Environmental
Science Press

Zhu X, Ji H, Chen Yet al (2013) Assessment and sources of heavymetals
in surface sediments of Miyun Reservoir, Beijing[J]. Environ Monit
Assess 185(7):6049–6062

Zhuang P, Zou B, Li N, Li Z (2009) Heavy metal contamination in soils
and food crops around Dabaoshan mine in Guangdong, China: im-
plication for human health. Environ Geochem Health 31:707–715

Environ Sci Pollut Res (2016) 23:2831–2847 2847


	Heavy metals in the gold mine soil of the upstream area of a metropolitan drinking water source
	Abstract
	Introduction
	Materials and methods
	Study area
	Sampling and analytical methods
	Total concentration of heavy metals

	Multivariate statistical method
	Geo-accumulation index
	Potential ecological hazard index

	Results
	Soil physical and chemical properties
	Total metals content of surface soils
	Characteristics of soil elements in particle size fractions
	Application of chemometric analysis
	Correlation analysis
	Principal component analysis
	Cluster analysis
	Tucker analysis


	Discussion
	Pollution degree and source identification
	Risk assessment

	Conclusions
	References


