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The Woxi Au–Sb–W deposit, hosted by the Neoproterozoic low-grade metamorphic clastic rocks, is located in a
brittle-ductile shear zone within the Xuefengshan Range, South China. Orebodies are predominantly banded
quartz veins, which are strictly controlled by bedding faults and display significant vertical extents (up to
2 km) without obvious vertical metal zoning. Fluid inclusions hosted in quartz, scheelite, and stibnite from
quartz–scheelite and quartz–sulfide–gold veins have been studied using conventional and infrared microscopy,
respectively. Four types of fluid inclusions were identified based on petrography, including type I (two-phase,
liquid-rich aqueous inclusions), type II (two- or three-phase, CO2-rich inclusions), type III (two-phase, vapour-
rich aqueous inclusions), and type IV (single-phase aqueous inclusions). The fluid inclusions in ore minerals
(scheelite and stibnite) and their coexisting quartz largely share similar characteristics in terms of their types,
homogenization temperatures and salinities. This is consistent with the fact that these ore minerals are always
intergrown with quartz. Microthermometric and laser Raman data indicate a low-to-moderate temperature
(140–240 °C), low salinity (b7.0 wt.% NaCl equiv.), CO2-rich, N2-bearing aqueous ore-forming fluid. Such fluid
is further identified as a deeply non-magmatic crustal fluid rather than a mantle-source fluid by the significantly
low 3He/4He ratios (0.002–0.281 Ra), and a small amount of meteoric water or host-rock-buffered fluid could be
involved.Wore precipitationwas probably associatedwithmixing between a deeply-originated crustalfluid and
host-rock-buffered fluid based on the fluid inclusion features in scheelite and quartz-I. However, Au and Sb ore
deposition probably resulted from boiling which was caused by the marked pressure drop. Geological features
(such as banded structure and crack-sealing structure) also indicate that fluid pressure fluctuation induced by
fault-valve mechanism occurred during ore precipitation. These characteristics of the ore-forming fluids in the
Woxi deposit are in good agreement with the definition of orogenic gold deposits and the Woxi Au–Sb–W
deposit is probably an atypical orogenic gold deposit for its unique ore-forming element association.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The physico-chemical properties of fluids and solids trapped in ore
minerals and coeval gangue minerals provide key information about
controls on metal deposition in ore deposits. Although a few metallic
minerals such as scheelite and some sphalerite are transparent, most
are opaque under the traditional transmitted-light microscope. Thus,
in the past several decades, fluid inclusions were usually studied only
within transparent gangue minerals, and their microthermometric
data were extrapolated to the coexisting ore minerals. With the
Deposit Geochemistry, Institute
50002, PR China.
application of infrared microscopy in earth sciences in recent years,
fluid inclusions in some opaque ore minerals, e.g. wolframite (Bailly
et al., 2002; Campbell et al., 1984; Lüders, 1996; Wei et al., 2012), stib-
nite (Bailly et al., 2000; Buchholz et al., 2007; Hagemann and Lüders,
2003; Lüders, 1996), and pyrite (Kouzmanov et al., 2010; Lindaas
et al., 2002; Lüders and Ziemann, 1999; Zhu et al., 2013), can be directly
observed and analysed, revealing that different homogenization tem-
peratures and salinities probably exist between the spatially associated
gangue and ore minerals in some hydrothermal deposits (e.g. Bailly
et al., 2000; Campbell and Panter, 1990; Wang et al., 2013; Wei et al.,
2012), even for those documented cases where unambiguous textural
evidence demonstrates a clear coeval timing between gangue and ore
minerals (Campbell and Robinson-Cook, 1987; Giamello et al., 1992).
Thus, examining fluid inclusions in ore minerals is crucial; it can
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Fig. 1. Geological sketch map of the Xuefengshan Range in western Hunan, China
(modified after Peng and Frei, 2004).
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preclude any doubtwhether fluid inclusions studied in gangueminerals
adequately reflect the ore-forming fluids from which ore minerals
precipitated.

Gold-only lode deposits are genetically associated with low salinity
(typically b6 wt.% NaCl equiv.) aqueous, CO2-bearing fluid inclusions
similar to fluids generated during transitional sub-greenschist to
amphibolite facies metamorphism of altered volcanosedimentary
rocks (Goldfarb et al., 2005; Groves et al., 1998; Kerrich et al., 2000;
Tomkins, 2013). These deposits are found from the Archean to recent
orogenic belts (Chen et al., 2012a; de Boorder, 2012; Goldfarb et al.,
2001; Hronsky et al., 2012; Zachariáš et al., 2013), and considered to
be an inherent part of an orogeny (Fu et al., 2012; Groves et al., 2005).
Lode gold deposits arewidespread in the Precambrian low-grademeta-
morphic clastic rocks throughout the Xuefengshan Range, western
Hunan, South China, and are also considered to be orogenic deposits
(Chen, 2006; Zhou et al., 2002). However, compared to typical orogenic
“gold-only” ore deposits, the ore-forming element associations for these
gold deposits are unique, predominated by Au–Sb–W, Au–W, and
Au–Sb. As the largest gold deposit occurred in the Xuefengshan Range,
the Woxi Au–Sb–W deposit is representative of these unique metal
association gold deposits in this region, it provides an important natural
laboratory for investigating the nature and source of ore-forming fluid
of lode gold deposits in the Xuefengshan Range.

Few systematic fluid inclusion studies on ore minerals (especially
opaque ore minerals) have been performed on the Woxi Au–Sb–W
deposit, although many genetic opinions have been proposed for
this deposit, including (1) sedimentary exhalative (SEDEX) origin
(Gu et al., 2007, 2012; Zhang, 1985), (2) magmatic hydrothermal origin
(Mao and Li, 1997; Peng and Frei, 2004), and (3) metamorphic hydro-
thermal origin (Luo et al., 1984; Yang, 1992). In this study, fluid inclu-
sions hosted in scheelite and stibnite, as the most important ore
minerals in different ore-forming stages, are examined. For comparison,
fluid inclusions in their coexisting quartz are also studied. In addition,
noble gas isotope data on ore minerals are determined, for the purpose
of tracing possible fluid sources andmineralization processes of the ore-
formingfluids (e.g. Burgess et al., 1992; Kendrick et al., 2011; Landis and
Hofstra, 2012; Li et al., 2011; Zeng et al., 2014). The objectives of this
paper are: (1) to decipher the nature and sources of the fluids
involved in the formation of gold, antimony and tungsten ores in the
Woxi deposit; (2) to determine the characteristics of the hydrothermal
fluids responsible for gold, stibnite, and/or scheelite deposition in the
Xuefengshan Range on the basis of fluid inclusion data obtained
in this study and previous studies; and (3) to give some new genetic
constraints for the Woxi deposit.

2. Regional geology

The Xuefengshan Range in western Hunan, South China, is located
between the Yangtze Block and the Cathaysia Block (Fig. 1). It consists
mainly of the Mesoproterozoic Lengjiaxi Group and Neoproterozoic
Banxi Group (HBGMR, 1988). The Lengjiaxi Group is composed of
flysch-type sedimentary rocks, includingmarine clastic rocks intercalated
with lava flows. The Banxi Group consists of flyschoid-type clastic rocks
and argillite. All the Proterozoic strata were extensively deformed and
metamorphosed to sub-greenschist facies during regional metamor-
phism at ~1000 and ~800 Ma (HBGMR, 1988). The cover sequence in-
cludes Sinian and Cambrian strata, with minor Ordovician and Silurian
strata. Recent studies suggest that the Xuefengshan Range was involved
in the early Paleozoic and early Mesozoic intracontinental orogens, re-
corded by magmatism, folding, faulting and metamorphic deformation
(Chu et al., 2012; Li et al., 2009; Zhang et al., 2013). In addition, compared
to the eastern Xuefengshan Range, magmatic activity in the western part
is relatively scarce.

Lode gold deposits are widespread throughout the Xuefengshan
Range. Gold mineralization usually occurs in the Proterozoic, Sinian
and Cambrian low-grade metamorphic clastic rocks, and has metal
associations of Au–(Sb–W). For example, the Woxi Au–Sb–W deposit
(Peng and Frei, 2004; Peng et al., 2003a), the Fuzhuxi and Xichong
Au–Sb deposits (Yao and Zhu, 1993), the Xi'an Au–W deposit, and the
Mobin and Herenping Au deposits. The Woxi deposit is the largest
gold deposit in the Xuefengshan Range and displays a unique Au–Sb–W
metal association.

3. Ore deposit geology

The Woxi Au–Sb–W deposit is located in the Xuefengshan Range in
western Hunan, South China (Fig. 1). It was discovered in 1875, and
mining began in 1895. The Au, Sb, and WO3 metal reserves for the
Woxi deposit amount to N50, 220,000, and 25,000 t, and the average
grades of Au, Sb, and W in the ores are 9.77 ppm, 2.84%, and 0.3%,
respectively. In general, the metal minerals display an obvious lateral
zoning, ranging from W–Au in the east, to W–Sb–Au in the middle,
and Sb–Au in the west, accompanying tungsten mineral phase from
scheelite to wolframite (GHCPAPF, 1996).

The strata exposed in theWoxi regionmainly consist of the Protero-
zoic Lengjiaxi Group and Banxi Group (Fig. 2). The latter, which is a
series of flyschoid consisting of slate and phyllite interbedded with
local volcanic materials, can be subdivided into the Madiyi Formation
and theWuqiangxi Formation. TheWuqiangxi Formation concordantly
overlies the Madiyi Formation, and the latter discordantly overlies the
Lengjiaxi Group (Luo et al., 1984). The lithologic sequence of theMadiyi
Formation consists of low-grade metamorphic purple-red sericite slate,
sandstone slate, and calcareous sericitic slate; orebodies in this deposit
are restrictedwithin the purple-red calcareous sericitic slate in themid-
dle Madiyi Formation, and controlled by interlay faults (Fig. 2A–B). No
magmatic activities are preserved in the mining district or adjacent
regions (Fig. 2A).

Orebodies in theWoxi mining district are predominantly composed
of quartz veins, which occur in the footwall of the E–W striking Woxi
Fault (GHCPAPF, 1996). These quartz veins can be divided into banded
vein, network vein (or veinlet), and discordant vein (e.g. Fig. 3A–C;
Luo et al., 1984; Gu et al., 2007). Economically, the banded veins
rank as the most important, contributing about 70% of the metal



Fig. 2. Sketch map of the Woxi deposit district (modified after GHCPAPF, 1996). (A) Geological map; (B) Cross section a-b (marked in A) through the Woxi deposit.
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accumulations for this deposit (Luo et al., 1984). They are E–W striking,
gentle dipping (~20°–30°),with significant vertical extents (up to 2 km)
and without obvious vertical metal zoning.

These gently-dipping veins are commonly parallel to the host strata
and the Woxi Fault (Fig. 2B), and display open-space filling textures
(Fig. 3D–E), containing brecciated vein fragments (Fig. 3D) or wall
rocks (Fig. 3E). Boudinage and folding of some veins are also observed
(Fig. 3F; Li et al., 1983; Liu, 1992), reflecting their pre-kinematic to,
more commonly, syn-kinematic timing. The alteration halo around
these ore veins in clastic sedimentary rocks is distinguished as wide-
spread silicification, pyritization, carbonatization and sericitization.

Metallic minerals are dominated by scheelite (Fig. 4A), pyrite
(Fig. 4B–E), stibnite (Fig. 4C–F), native gold (Fig. 4G–H) and locally
wolframite, with minor arsenopyrite, sphalerite, and galena; the gangue
minerals include quartz (Fig. 4A–H) and minor amounts of sericite, car-
bonate, and chlorite (GHCPAPF, 1996). Detailed mineralogical features
have been previously documented (GHCPAPF, 1996; Liang and Zhang,
1986; Shao et al., 1996; Zhang et al., 1996) and the mineral paragenesis
for the Woxi deposit was divided into the quartz–carbonate stage,
quartz–scheelite stage, quartz–sulfide–gold stage, and quartz–carbonate
stage (GHCPAPF, 1996; Liang et al., 1981; Liu, 1992). Features of each
stage are summarized in Fig. 5.

The early quartz–carbonate stage is barren with no discernible wall
rock alteration zones present (GHCPAPF, 1996).

The quartz–scheelite stage consists mainly of massive quartz
(Fig. 4A, C) with scheelite (Fig. 4A), wolframite, carbonate, apatite,
minor arsenopyrite and siderite. Wolframite is less abundant than
scheelite and usually occurs in the western mining area (GHCPAPF,
1996; Zhu et al., 2014). Scheelite occurs as irregularly shaped and
massive aggregates in quartz veins, commonly cut by the later quartz
veinlets containing pyrite, stibnite, or native gold (Fig. 4A). Quartz, the
most abundant mineral, mainly appears as subhedral–anhedral grains
and is commonly brecciated (Fig. 4A, C, D, E).

The quartz–sulfide–gold stage is characterized by the widespread
occurrence of pyrite (Fig. 4B–E), stibnite (Fig. 4C–E), and native gold
(Fig. 4G–H), with minor arsenopyrite, sphalerite, galena, and sulfosalt
minerals. The earlier quartz–scheelite ore fragments sometimes occur
in the quartz–sulfide–gold veins (Fig. 3D, 4D–4E). Pyrite is the most
abundant gold-bearing mineral in these veins, followed by stibnite,
scheelite, and quartz (GHCPAPF, 1996). Pyrite appears as euhedral–
subhedral grains with variable size, and mainly occurs as banded
veins, disseminated grains, and veinlets in themassive quartz or the al-
tered host rocks (Fig. 4A–E). Native gold is locally present along the
boundaries or in the fissures of pyrite grains (Fig. 4H). Stibnite is irreg-
ular in shape and is present in the quartz veins as isolated grains or as
euhedral–anhedral massive aggregates, commonly coexisting with
fine quartz and pyrite (Fig. 4C–F).

The later quartz–carbonate stage is marked by the appearance of
carbonate and quartz with trace amounts of native gold and pyrite
(GHCPAPF, 1996). These minerals fill the fissures in early veins, or
occur in the vugs.

4. Samples and analytical methods

4.1. Fluid inclusions

All samples in this study were collected from underground expo-
sures. Fluid inclusionswere examined in scheelite and coexisting quartz
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Fig. 3. Occurrences of ore veins in the Woxi deposit. (A) Bedding-parallel banded Au- and Sb-mineralization vein. (B) Quartz–scheelite veinlets intersected at nearly right angles. (C) A
pinch-out bedding-parallel vein and two discordant veins. (D) Brecciated quartz vein in massive stibnite. (E) Brecciated host rocks in quartz vein. (F) Boudinage of banded stibnite–
gold–quartz vein.
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(quartz-I; e.g. Fig. 4A) from the quartz–scheelite veins, and in stibnite
and coexisting quartz (quartz-II; e.g. Fig. 4D, F) from the quartz–
sulfide–gold veins. Microthermometric measurements of fluid inclu-
sions in stibnitewere carried out on a heating–freezing systemmounted
on an Olympus BH51 infraredmicroscope. Tominimize the effects of the
infrared light intensity on the salinity and homogenization temperature
Fig. 4. Photographs of hand specimen samples and photomicrographs of ore and gangueminera
ture of scheelite-quartz vein. (B) Banded vein. The band is composed of pyrite precipitated du
pyrite or stibnite or altered slate fragment. (D) Brecciated quartz vein in massive stibnite. (E)
(F) Euhedral fine-grained quartz-II in stibnite. (G) Native gold disseminated in the quartz vein. (
of the early stage veins. Abbreviations for minerals are Py: pyrite; Sch: scheelite; Qz: quartz; S
of the fluid inclusions in opaque minerals, microthermometric analyses
were carried out carefully with the lowest possible light intensity, and
with all possible diaphragms nearly closed (Moritz, 2006). Fluid inclu-
sions in scheelite and quartz were measured by a Linkam THMSG 600
programmable heating–freezing stage mounted on a Leica microscope,
calibrated with melting-point standards (CCl4, −22.99 °C; KNO3,
ls from theWoxi deposit. (A) Crack-sealing structure. Pyrite and quartz-IIfilled in the frac-
ring successive hydraulic fracturing events. (C) Banded veins. The bands are composed of
Mesh-vein structure. Pyrite and stibnite formed in the mesh fissures of early stage veins.
H) Native gold occurs along the boundary of pyrite grains. A, D and E reflect the reopening
t: stibnite.
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Fig. 5. Paragenetic sequence of minerals from the Woxi deposit (modified after GHCPAPF, 1996).
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333 °C) and themelting point of CO2 (−56.6 °C) in synthetic fluid inclu-
sions. The uncertainty of temperature measurements in this study was
approximately ±0.2 °C below 50 °C and±2 °C above 100 °C. A heating
rate of 0.1 °C/min is adopted near the melting temperatures of carbonic
phase, clathrate, and ice. Compositions of individual fluid inclusion in
quartz and scheelite, including vapour and liquid, were identified by
using laser Raman spectroscopy. All of these above experiments were
performed at the State Key Laboratory of Ore Deposit Geochemistry,
Institute of Geochemistry, Chinese Academy of Sciences.

Salinities of two-phase aqueous inclusions and CO2-rich inclusions
were respectively calculated from the final melting temperature of
ice or clathrate following the method proposed by Bodnar (1993) and
Lu et al. (2004). Bulk composition and density of aqueous and carbonic
phases of the two-phase aqueous inclusions were calculated by using
the online calculation (gcmodel.kl-edi.ac.cn/archives/), whereas those
of the CO2-rich inclusions were determined with the MacFlinCor
Program (Brown and Lamb, 1989).

4.2. Noble gas isotope

Fresh pyrite and stibnite samples have been collected from the
quartz–sulfide–gold veins and their adjacent alteration wall rocks of
theWoxi deposit. Noble gas compositions of the fluid inclusions hosted
in these sampleswere released by stepwise heating,which is a powerful
and widely adopted technique in noble gas analysis (Bruno et al., 1997;
Hou et al., 2011; Kendrick et al., 2001; Rai et al., 2003; Reynolds et al.,
1970;Wieler et al., 1986). Pyrite appears to be oneof the best preservers
for noble gases (Ballentine et al., 2002; Burnard et al., 1999; Hu et al.,
1998; Stuart et al., 1994). Due to extremely low concentration of U, Th
and K in sulfide, in situ additions of radiogenic 4He and 40Ar in pyrite
and stibnite are likely to be negligible. The effect of cosmogenic nuclides
can also be ignored because all samples were collected from under-
ground exposures. After these samples were crushed, mineral separates
were handpicked under a binocularmicroscope. The concentrations and
isotopic compositions of noble gases were measured using a MM5400
mass spectrometer at the Key Laboratory of Petroleum Resources
Research (Lanzhou), Institute of Geology and Geophysics, Chinese
Academy of Sciences. The analytical procedures adopted in this study
have been described in detail by Ye et al. (2007).

5. Fluid inclusion petrography

Representative samples of scheelite, stibnite, and their correspond-
ing coexisting quartz were selected for fluid inclusion analysis. The
quantity and quality of fluid inclusions were relatively variable. The
criteria proposed by Roedder (1984) were used to discriminate among
primary, pseudosecondary and secondary fluid inclusions. Measure-
ments in this studywere only performed on those inclusions considered
as primary or pseudosecondary (e.g. Figs. 6–7). These inclusions are
mainly classified into four types at room temperature on the basis of
phases, phase proportions, and composition: type I (two-phase,
liquid-rich aqueous inclusions), type II (type IIa: two-phase CO2-rich
inclusions, and type IIb: three-phase CO2-rich inclusions), type III
(two-phase, vapour-rich aqueous inclusions), and type IV (single-
phase aqueous inclusions).

Type I inclusions are the most abundant in all minerals, with the
vapour phase ranging from 5% to 45% of the total volume of the inclu-
sions at room temperature. They are negative crystal, elliptical, flat,
tubular, or irregular in shape, from a few microns to 20 μm (N50 μm in
stibnite) in size, and occur isolated or in groups (Figs. 6A, B, D and E;
7A, B, E, F and H).

Type II inclusions, have not been reported in previous studies (Ding
et al., 1981;Dong et al., 2008;Niu andMa, 1991), but are relatively com-
mon in the samples examined in this present study. Large quantities of
type II inclusions are observed in scheelite (Fig. 6F) and quartz-II
(Fig. 7A, C and D) samples, lesser quantities exist in quartz-I (Fig. 6C),
and few are present in stibnite (Fig. 7I). The CO2 phase of type II
inclusions can occupy 15%–90% of the inclusion volumes at room

image of Fig.�5


Fig. 6. Photomicrographs of representative fluid inclusion types at room temperature in quartz–scheelite stage. (A) Type I inclusions in quartz-I. (B) Coexistence of type I and type III
inclusions in quartz-I. (C) Type II inclusions containing a vapour CO2 and a liquid CO2 and H2O phase in quartz-I. (D) Type I inclusions in scheelite. (E) Coexistence of type I and type III
inclusions in scheelite. (F) Type II inclusions in scheelite.
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temperature (e.g. Figs. 6F and 7C). These inclusions mainly occur
isolated or in groups, with flat or tubular shapes of 4–40 μm in size;
type IIb inclusions predominated in the Woxi deposit.

Type III inclusions are scarce in all the selected samples and are char-
acterized by the vapour phase, which constitutes more than 60% of the
total volume of the inclusion at room temperature. These inclusions
form rounded rectangles and ellipsoids, which are 10–30 μm in diame-
ter, and occurmainly in groups together with type I, type II, and/or type
IV inclusions (Figs. 6B, 6E, 7B, 7D and 7G).

Type IV inclusions are rare andmainly found in scheelite and quartz-
II samples. They display rounded rectangle shapes, with size varying
from a few microns to 10 μm. These inclusions occur in isolation or in
groups together with type II inclusions (Fig. 7D).

6. Results

6.1. Microthermometry

Microthermometric studies aremainly carried out on type I and type
II inclusions in this study. The cycling method proposed by Goldstein
and Reynolds (1994) was adopted for measuring the final melting tem-
perature (Tm) and homogenization temperature (Th) values in some
inclusions whose phase transitions could not be clearly observed.
Microthermometric results of fluid inclusions in scheelite and quartz-I
from the quartz–scheelite veins as well as stibnite and quartz-II from
the later quartz–sulfide–gold veins are summarized in Table 1.

6.1.1. Scheelite
Type I inclusions have eutectic temperatures (Te) ranging from

−27.1 °C to −25.2 °C (Table 1). The final ice-melting temperature
(Tm-ice) ranges from −3.6 °C to −2.8 °C (n = 14), corresponding to
the salinities of 4.65–5.86 wt.% NaCl equiv. (Fig. 8A), with an average
of 5.24 wt.% NaCl equiv. Homogenization temperatures (Th) fall
between 151.3 °C and 337.3 °C (n = 78), mostly in the range of
160–240 °C (Fig. 8B). The bulk densities of the ore-forming fluids vary
from 0.86 to 0.94 g/cm3.

Type IIb inclusions form solid CO2 upon cooling below −95 °C. The
final melting temperatures of the solid CO2 phase (Tm-CO2) can reach
from −62.7 °C to −56.7 °C (n = 8), indicative of some other volatile
components mixed with CO2, further identified as N2 by laser Raman
spectroscopy. For type IIb inclusions, the CO2 phase homogenized to
liquid (Th-CO2) at the temperatures of 17.7–28.0 °C (n = 18, mean =
24.3 °C), and for type IIa, at 10.3 °C (Fig. 9A). The final clathrate-
melting temperatures (Tm-clathrate) range from 8.6 °C to 9.1 °C
(n = 16), corresponding to salinities of 1.81–2.77 wt.% NaCl equiv.
(Fig. 8A). Although some type II inclusions decrepitate before total ho-
mogenization, others homogenized to the aqueous phase at the temper-
atures of 217.0–269.9 °C (n = 11, mostly between 240 °C and 270 °C)
and to the CO2 phase at 286.8 °C. In addition, two type IIa inclusions
homogenized to the vapour phase at 258.7 °C and 263.4 °C (Fig. 8B).
Their bulk densities range from 0.84 to 0.96 g/cm3.

6.1.2. Quartz-I
Eutectic temperature of type I inclusion in quartz-I (Te =−24.5 °C,

Table 1) is similar to those measured in scheelite in this study. Type I
inclusions have Tm-ice with the range of −3.4 °C to −1.4 °C (n = 7),
corresponding to salinities of 2.41–5.56wt.% NaCl equiv. with a bimodal
distribution (Fig. 8C). All type I fluid inclusions homogenized to the liq-
uid phase at temperatures between 162.5 °C and 342.2 °C (n = 34,
mostly 200–220 °C; Fig. 8D). The bulk densities of these fluid inclusions
vary between 0.89 and 0.92 g/cm3. Two inclusions of type IIb homoge-
nized to the vapour phase at 258.6 °C and 357.0 °C, with Th-CO2
(homogenized to the CO2 liquid phase) of 24.3 °C and 26.3 °C,
respectively (Fig. 9A). Type III inclusions are rare and only one has
been measured in this study, it displays a homogenization temperature
(to the vapour phase) of 353.6 °C (Fig. 8D).

6.1.3. Stibnite
Tm-ice of type I inclusions ranges from−3.1 °C to−1.3 °C (n= 39),

corresponding to salinities varying from 2.24 to 5.11 wt.% NaCl equiv.
(Fig. 10A), with an average of 3.2 wt.% NaCl equiv. Type I inclusions
mainly homogenized to the liquid phase within the temperature
range of 109.0–273.9 °C (n= 30), with one homogenized to the vapour
phase at 190.0 °C, but most in the range of 140–180 °C (Fig. 10B). Two
Th values (248.1 °C and 273.9 °C) of type I inclusions are significantly
higher than their actual homogenization temperatures because leaking
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Fig. 7. Photomicrographsof representativefluid inclusion types at room temperature in quartz–sulfide–gold stage. (A)Coexistence of type I and type II inclusions in quartz-II. (B) Coexistence
of type I with variable liquid/vapour ratios and type III inclusions in quartz-II. (C) Type II inclusions in quartz-II. (D) Coexistence of type II and type III and type IV inclusions in quartz-II. (E–F)
Type I inclusions with tubular shape in stibnite. (G) Type III inclusion in stibnite. (H) Type I inclusion with irregular shape in stibnite. (I) Type II inclusions in stibnite.
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probably takes place during heating. Their bulk densities fall in the
range of 0.79–0.96 g/cm3.

6.1.4. Quartz-II
Type I inclusions have Te with the range of −26.9 °C to −22.3 °C

(Table 1). Their Tm-ice values vary from −4.3 °C to −0.5 °C (n = 43),
corresponding to the salinities of 0.88–6.88 wt.% NaCl equiv.
(Fig. 10C), with an average of 3.47 wt.% NaCl equiv. These fluid
Table 1
Microthermometric data in the Woxi deposit, western Hunan.

Mineral Type Te (°C) Tm-CO2 (°C) Th-CO2 (°C) Tm-cla
Tm-ice

Quartz–scheelite–wolframite stage
Quartz-I I −24.5 (1) −3.4 t

IIb 24.3–26.3 (2)
III

Scheelite I −27.1 to −25.2 (2) −3.6 t
IIa 10.3 (1)
IIb −62.7 to −56.7 (8) 17.7–28.0 (18) 8.6–9.1

Quartz–sulfide–gold stage
Quartz-II I −22.3 to −26.9 (2) −4.3 t

IIb −57.8 to −55.8 (16) 17.8–28.0 (26) 9.4–10
Stibnite I −3.1 t

Note: Numbers in parentheses are the number of measurements. Salinity is in wt.% NaCl equiv
inclusions homogenized to the liquid phase within the temperature
range of 131.3 °C to 252.4 °C (n = 94), mostly varying between 160 °C
and 200 °C (Fig. 10D). The bulk densities vary from 0.83 to 0.98 g/cm3.

For type IIb inclusions, Tm-CO2 ranges from −57.8 °C to −55.8 °C
(n = 16, mean = 56.6 °C). Their Tm-clathrate values fall in between
9.4 °C and 10 °C (n = 17, mean = 9.7 °C), corresponding to the
salinities of 0.02–1.22 wt.% NaCl equiv. (Fig. 10C). Some of the type IIb
inclusions have Tm-clathrate above 10 °C, always accompanied by Tm-CO2
thrate or
(°C)

Salinity Th or Th-tot
(→L) (°C)

Th or Th-tot
(→V) (°C)

D (g/cm3)

o −1.4 (7) 2.41–5.56 (7) 162.5–342.2 (34) 0.89–0.92 (7)
258.6–357.0 (2)

353.6 (1)
o −2.8 (14) 4.65–5.86 (14) 151.3–337.3 (78) 0.85–0.94 (11)

258.7–263.4 (2)
(16) 1.81–2.77 (16) 217.0–269.9 (11) 286.8 (1) 0.84–0.96 (9)

o −0.5 (43) 0.88–6.88 (43) 131.3–252.4 (94) 0.83–0.98 (42)
.0 (17) 0.02–1.22 (17) 189.5–246.2 (16) 0.91–0.96 (13)
o −1.3 (39) 2.24–5.11 (39) 109.0–273.9 (30) 190.0 (1) 0.79–0.96 (19)

.

image of Fig.�7


Fig. 8. Histograms of salinities and homogenization temperatures of fluid inclusions in scheelite (A–B) and coexisting quartz-I (C–D) collected from the Woxi deposit.
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below−56.6 °C, indicating the presence of volatile components besides
CO2, which have been identified as N2 by the laser Raman analyses. All
the type IIb inclusions homogenized to the aqueous phase within the
temperature range of 189.5 °C–357.8 °C (n = 16, mostly varying be-
tween 200 °C and 260 °C; Fig. 10D). CO2 vapour phase homogenized
to the liquid phase at temperatures between 17.8 °C and 28.0 °C
(n= 26, mean= 23.0 °C) (Fig. 9B). Their corresponding bulk densities
vary from 0.91 to 0.96 g/cm3.
Fig. 9. Histograms of CO2 homogenization temperatures in scheelite an
6.2. Raman spectroscopy

A detailed Raman spectroscopic analysis of fluid inclusions in
quartz-I and quartz-II was performed. CO2 is themajor non-H2O volatile
component in all fluid inclusions, and minor N2 was also detected in
some fluid inclusions (Fig. 11). The relative higher N2 concentrations
measured in the type II fluid inclusions are consistent with an obvious
decrease of the melting point of pure CO2 in these fluid inclusions.
d quartz-I (A) and quartz-II (B) collected from theWoxi deposit.
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Fig. 10. Histograms of salinities and homogenization temperatures of fluid inclusions in stibnite (A–B) and coexisting quartz-II (C–D) collected from the Woxi deposit.

Fig. 11.Representative Raman spectra offluid inclusions in quartz-I (A–B) of quartz–scheelite stage and quartz-II (C–D) of quartz–sulfide–gold stage. A andC show that the vapour bubbles
are mainly of H2O; B and D show that the bubbles contain some N2 in addition to CO2.
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Table 2
Noble gas compositions and isotopic ratios of fluid inclusions trapped in pyrite and stibnite samples from the Woxi deposit, western Hunan.

Sample Mineral 3He (E−12) 4He (cm3STP/g) (E−7) 40Ar (cm3STP/g) (E−7) 36Ar (cm3STP/g) (E−7) 3He/4He (Ra) 40Ar/36Ar 4He/36Ar %40ArE F4He

WX-119 Pyrite 0.021 428 10.22 0.008 0.005 1341.7 56,189 78 339,508
WX-155 Pyrite 0.009 417 4.41 0.007 0.002 624.2 59,023 53 356,634
XXJK-34 Pyrite 0.017 396 1.97 0.001 0.004 2585.9 519,805 89 3,140,817
WX-159 Pyrite 0.025 486 2.05 0.003 0.005 722.2 171,214 59 1,034,527
XXJK-33 Pyrite 0.047 551 11.34 0.008 0.009 1446.1 70,265 80 424,560
XXJK-35 Pyrite 0.097 512 2.63 0.004 0.019 698.1 135,904 58 821,171
WX-121 Pyrite 0.030 166 5.00 0.003 0.018 1715.9 56,968 83 344,217
WX-146 Pyrite 0.038 522 5.92 0.011 0.007 528.8 46,659 44 281,926
WX-27-3 Pyrite 0.486 294 2.49 0.009 0.165 281.3 33,240 – 200,849
WX-24-5 Pyrite 0.112 80 1.15 0.005 0.139 247.0 17,176 – 103,785
WX-27-1 Pyrite 0.304 356 2.93 0.008 0.086 388.6 47,269 24 285,615
WX-23-12 Pyrite 0.111 139 1.80 0.007 0.080 264.2 20,445 – 123,537
XXJK-21 Pyrite 0.036 156 5.15 0.022 0.023 229.9 6990 – 42,235
WX-23-10 Stibnite 0.005 7 9.39 0.027 0.063 347.8 275 15 1663
WX-28-5 Stibnite 0.366 130 15.24 0.036 0.281 420.0 3591 30 21,698
WX-34-4 Stibnite 0.004 17 13.29 0.051 0.022 260.3 328 – 1983
YRS-15 Stibnite 0.005 11 7.53 0.024 0.044 313.6 470 6 2843
WX-24-8 Stibnite 0.016 62 20.82 0.042 0.026 495.0 1471 40 8887
XXJK-15 Stibnite 0.014 50 7.01 0.015 0.028 468.4 3310 37 20,000

Note: F4He values reflect enrichment of 4He in the fluid relative to air; F4He = (4He / 36Ar)sample / (4He / 36Ar)air where (4He / 36Ar)air = 0.1655 (Kendrick et al., 2001).
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6.3. Noble gas isotopes

Pyrite and stibnite samples analysed in this study are well-
crystallized euhedral grains without any obvious subsequent deforma-
tion. With the exception of eight pyrite samples collected from the
altered wall rocks, all the remaining samples show a paragenesis with
quartz-II in the quartz–sulfide–gold veins. Therefore, we are confident
that the extracted fluids from those sulfides (especially from the
veins) are related to hydrothermalmineralization, and thus they should
be identical to the fluid inclusions hosted in the quartz-II and stibnite in
this study. Because in-situ additions of radiogenic 4He and 40Ar and cos-
mogenic nuclides are negligible for these sulfide samples collected from
underground exposures, the measured compositions of noble gas iso-
topes can truly represent the initial composition of the fluid inclusions.

The noble gas isotope compositions of fluid inclusions in the samples
mentioned above are listed in Table 2. The data show that 4He concen-
trations vary from 7 to 551 × 10−7 cm3STP/g and 40Ar concentrations
fall in between 1.15 and 20.82 × 10−7 cm3STP/g. The 3He/4He ratios
vary in the range of 0.002–0.281 Ra (Ra = 1.4 × 10−6 for air). The
40Ar/36Ar ratios vary from 229.9 to 2585.9. The F4He values for the
hydrothermal fluids at Woxi, defined as F4He = (4He / 36Ar)sample /
(4He / 36Ar)air where (4He / 36Ar)air = 0.1655 (Kendrick et al., 2001),
are above 1000 (Table 2).

7. Discussion

7.1. Nature of ore-forming fluids

At the quartz–scheelite stage, fluid inclusions trapped in scheelite
and quartz-I display the same types (Fig. 6) and largely share similar
temperatures and salinities (Fig. 8). The majority of fluid inclusions in
scheelite and quartz-I have homogenization temperatures in the range
of 180–240 °C and 200–220 °C, respectively. The salinities offluid inclu-
sions in quartz-I and scheelite exhibit a bimodal distribution (Fig. 8A
and C). Some fall in between 1.5 and 3.5 wt.% NaCl equiv. with a mode
around 2.0 wt.% NaCl equiv., while the others vary between 4.5 and
6.0 wt.% NaCl equiv. with a mode at 5.0 wt.% NaCl equiv. The lower sa-
linities in scheelite were determined from the final clathrate-melting
temperatures of type II inclusions, and those relatively higher salinities
were determined from the final ice-melting temperatures of type I
inclusions. However, all the lower and higher salinity inclusions in
quartz-I were determined from the final ice-melting temperatures of
type I inclusions. An alternative explanation for the low salinities for
type I inclusions in quartz-I is that these inclusions also contain minor
heterogeneously-trapped CO2 (but undetected by the conventional
petrography observations and microthermometric measurement)
(Guillemette and Williams-Jones, 1993). Such heterogeneous entrap-
ment of CO2 will result in anomalously high homogenization tempera-
tures (Guillemette and Williams-Jones, 1993), which is consistent
with the higher homogenization temperatures of the quartz-I hosted
type I inclusions determined in this study (Fig. 8D). Therefore, it can
be concluded that the fluid inclusions in scheelite and quartz-I probably
have been trapped under a similar condition during the tungsten
mineralization, consistent with the intergrown texture of scheelite
and quartz-I in these samples.

At the quartz–sulfide–gold stage,most inclusions in stibnite are type I,
whereas quartz-II hosts a range of inclusion types (except type IV)
(Fig. 7A–I). Fluid inclusions in stibnite and quartz-II display similar
microthermometric results (Fig. 10). Homogenization temperatures of
fluid inclusions in stibnite mostly vary from 140 to 180 °C (Fig. 10B),
and those in quartz-II fall in between 160 and 200 °C (Fig. 10D).
Salinities of fluid inclusions in stibnite and quartz-II are mostly in
the range of 2.5–4.0 wt.% NaCl equiv. and 2.5–4.5 wt.% NaCl equiv.,
respectively (Fig. 10A, C). This is consistent with the fact that stibnite
commonly coexists with quartz-II (Fig. 4F).

According tomanyprevious studies (e.g. Bailly et al., 2000; Campbell
and Panter, 1990;Wang et al., 2013; Wei et al., 2012), the homogeniza-
tion temperatures and salinities of fluid inclusions in ore minerals are
distinct from those in coexisting gangueminerals. However, the consis-
tency of fluid inclusions in ore minerals and gangue minerals also have
been previously reported (e.g. Kucha and Raith, 2009). In this study,
fluid inclusions in ore minerals (scheelite and stibnite) and their
corresponding coexisting quartz share similar characteristics. The
ore-forming fluids of the Woxi deposit are characterized by low-to-
moderate temperatures, low salinities, CO2-rich and N2-bearing aque-
ous fluids. Likewise, fluid inclusions from other lode gold deposits in
the Xuefengshan Range mainly include H2O-rich aqueous inclusions
and CO2-rich inclusions with large variable liquid/vapour ratios. Their
homogenization temperatures range from 100 °C to 330 °C (mostly
150–200 °C) and their salinity values are lower than 9 wt.% NaCl
equiv. (Chen and Yu, 1994; Ding and Wang, 2009; He et al., 1996;
Lu et al., 2012; Niu and Ma, 1991; Yao and Zhu, 1993; Yu, 1997).
Minor components of N2 and/or CH4 are also detected in the vapour
phase by laser Raman spectroscopy (Lu et al., 2012).
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7.2. Sources of ore-forming fluids

The ore-forming fluids characterized by CO2-rich may be derived
from magmatic water (Fan et al., 2003; Yang et al., 2012, 2013), meta-
morphic water (Fairmaid et al., 2011; Goldfarb et al., 1988; Harlov,
2012; Lamadrid et al., 2013; Lawrence et al., 2013) or mantle (Luque
et al., 2014; Mao et al., 2003; Tripathi et al., 2012; Xu et al., 2013).
Although previous studies reveal that the δ18O values of mineralization
fluids in the Woxi deposit vary between 2.0‰ and 13.6‰ (Chen, 2012;
Luo et al., 1984), these oxygen data cannot discriminate between a
metamorphic or magmatic or evolved meteoric source.

The noble gas data determined in this study allow us to further eval-
uate these possible sources for the ore-forming hydrothermal fluids.
Compared with the higher concentrations of 4He in coexisting pyrite
from veins (80–356 × 10−7 cm3 STP/g), the lower values in intergrown
stibnite (7–130 × 10−7 cm3 STP/g) can be best explained by He loss
(e.g. Hu et al., 1999b), since the helium diffusion is extremely slow in
pyrite (Baptiste and Fouquet, 1996). However, the 3He/4He ratios for
stibnite (mean of 0.099 Ra) are similar to those for coexisting pyrite
(mean of 0.077 Ra), indicating that the mass fractionation of He caused
by He loss in stibnite could be negligible (Fig. 12). The extremely low
concentrations of 3He (0.009–0.486 × 10−12 cm3 STP/g) in pyrite
and helium isotope ratios (0.002–0.281 Ra) in all pyrite and stibnite
provide reliable evidence that He can't be originated from a mantle
source (N3 × 10−12 cm3 STP/g, Burnard et al., 1999; or 7–9 Ra, Ozima
and Podosek, 2002).

Because even small magmatic additions to crustal fluid systems are
readily detected (Ballentine et al., 2002), the involvement of magmatic
fluids in many hydrothermal deposits are characterized by 3He/4He ra-
tios commonly more than 0.1 Ra (e.g. Burnard et al., 1999; Sun et al.,
2009; Zhu et al., 2013). In South China, the maximum 3He/4He ratios
for many intrusion-associated gold, tungsten, and tin deposits are
above 1 Ra (Burnard et al., 1999; Cai et al., 2012; Hu et al., 1997,
1999a, 2004; Sun et al., 2006; Zhai et al., 2012). Nevertheless, in the
Woxi deposit, with the exception of sample WX-27-3 (0.165 Ra),
WX-24-5 (0.139 Ra) andWX-28-5 (0.281 Ra), all the helium isotope ra-
tios in the remaining samples are less than 0.1 Ra (Table 2). This proba-
bly indicates that the ore-forming fluids responsible for gold, antimony,
and tungsten mineralization in Woxi are not of magmatic in origin.
Moreover, as the F4He values for sulfides in this study (N1000, Table 2)
are remarkably higher than that for the atmosphere (F4He = 1,
Kendrick et al., 2001) and ASW (F4He = 0.18–0.28, Kendrick et al.,
2001), the fluids in Woxi probably contain negligible contributions from
atmospheric He, the measured 3He/4He ratios are probably derived
from a crustal He source.
Fig. 12. 3He/4He vs. 40ArE/4He diagram for fluid inclusions in pyrite and stibnite collected
from the Woxi deposit.
The estimated 40Ar/36Ar ratios range from 229.9 to 2585.9 (Table 2).
40Ar/36Ar values lower than the atmospheric ratio of 295.5 have mainly
been interpreted to be the result of mass fractionation (Nagao et al.,
1979, 1981; Schaaf and MÜller-Sohnius, 2002; Singer and Brown,
2002) and perhaps require a non-geological explanation (Singer and
Brown, 2002), while those higher than 295.5 indicate a significant pro-
portion of excess 40Ar (40ArE) from a mantle or crustal origin. Because a
minor addition of mantle component will dramatically change the He
isotopic composition, the 40ArE (up to 89%, Table 2) is probably derived
from a crustal source rather than a mantle component, and might be
generated by the host rocks or old basement (Fairmaid et al., 2011;
Kendrick et al., 2002). This is consistent with the extremely high Sr iso-
tope compositions in scheelite (0.743–0.750; Peng et al., 2003b; Peng
and Frei, 2004) and in fluid inclusions in quartz coexisting with stibnite
(0.754–0.766; Shi et al., 1993) in this deposit, which has been consid-
ered to be a result of either preferential leaching of Proterozoic rocks
or leaching of the underlying older rocks (Peng et al., 2003b).
7.3. Mineralization mechanism

Mixing and boiling are themost important physical processes affect-
ing ore deposition (Wilkinson, 2001). Fluid mixing has been recognized
in many tungsten deposits worldwide (e.g. Beuchat et al., 2004; Wei
et al., 2012; Yokart et al., 2003). Noticeably, boiling is an efficient mech-
anism for gold precipitation in many lode gold deposits (e.g. Sigma de-
posit, Canada, Robert and Kelly, 1987; Bronzewing deposit, Australia,
Dugdale and Hagemann, 2001; Wiluna deposits, Australia, Hagemann
and Lüders, 2003; Wangfeng deposit, China, Zhang et al., 2012),
and some stibnite deposits (Bailly et al., 2000; Guillemette and
Williams-Jones, 1993).

In the Woxi deposit, during the early quartz–scheelite stage, the
fluids contain variable amounts of N2 suggesting that the mineralizing
solutions reacted either directly with the host rocks or with fluids
trapped within the host rocks (Mernagh, 2001; Polito et al., 2001).
Peng et al. (2005) also proposed that aqueous effects or water–rock
interaction is responsible for scheelite precipitation in Woxi based on
the REE tetrad-effect characteristics in scheelite. Moreover, a positive
relationship between homogenization temperatures and salinities of
most aqueous inclusions in scheelite and quartz-I as shown in Fig. 13,
further reveals that a hotter, saline fluid mixed with a cooler, dilute
fluid (Wilkinson, 2001). Therefore, fluid mixing between deep crustal
fluid and host-rock-buffered fluid is a possible mechanism associated
with scheelite precipitation in the Woxi deposit.
Fig. 13. Homogenization temperature vs. salinity of different types of fluid inclusions at
the quartz–scheelite stage and quartz–sulfide–gold stage.

image of Fig.�12
image of Fig.�13


67Y.-N. Zhu, J.-T. Peng / Ore Geology Reviews 65 (2015) 55–69
In contrast,fluid inclusion petrography andmicrothermometric data
for the quartz–sulfide–gold stage provide evidence for boiling. Three
types of fluid-inclusion assemblages are observed: (1) type I, IIa, and
IIb inclusions (Fig. 7A); (2) type I aqueous inclusions with considerable
variable liquid/vapour ratios and type III inclusions (Fig. 7B); (3) type
IIb, III, and IV inclusions (Fig. 7D). All fluid-inclusion assemblages usual-
ly display roughly similar homogenization temperature, indicative of
fluid boiling (Ramboz et al., 1982; Van den Kerkhof and Hein, 2001;
Wilkinson, 2001). A negative correlation between the homogenization
temperature and salinity for most inclusions (Fig. 13), and the common
occurrence of H2O-rich, higher salinity inclusions coexisting with
CO2-rich, lower salinity type II inclusions in this study can also be best
explained by fluid boiling (Chen et al., 2012b; Fan et al., 2009; Liu
et al., 2013; Mernagh, 2001; Pichavant et al., 1982; Wilkinson, 2001).
Previous studies suggest that H2S prefers to enter the vapour phase dur-
ing boiling, and sulfur decrease in the fluids probably results in gold de-
position (Guillemette and Williams-Jones, 1993; Naden and Shepherd,
1989). Thus, it can be concluded that boiling is critical for gold and
stibnite deposition in the Woxi deposit.

Moreover, boiling is probably caused by an abrupt drop in pressure
(Wilkinson, 2001) induced by the fault-valve mechanism (McCuaig
and Kerrich, 1998; Sibson et al., 1988) in hydrothermal systems, be-
cause structural evidences for fluid-pressure fluctuations shown in
Figs. 3D–F and 4A–E are common in the Woxi mining district. In order
to evaluate the fluid-pressure conditions at the time of entrapment,
the isochores of type I inclusions were estimated by the online
calculation (gcmodel.kl-edi.ac.cn/archives/); the isochores of type II in-
clusions were calculated with the equation of state for NaCl–H2O–CO2

proposed by Brown and Lamb (1989). At 182 °C, which is the average
homogenization temperature of type I fluid inclusions at the quartz-
sulfide-gold stage, the pressure is estimated to be between 960 and
1850 bars.
7.4. Orogenic-type model for the Woxi Au–Sb–W deposit

Several genetic models have been proposed for this deposit, includ-
ing (1) a sedimentary exhalative (SEDEX) origin (Gu et al., 2007, 2012;
Zhang, 1985), (2) a magmatic-hydrothermal origin (Mao and Li, 1997;
Peng and Frei, 2004), and (3) a metamorphic-hydrothermal origin
(Luo et al., 1984; Yang, 1992). However, the low salinity, CO2-rich and
N2-bearing aqueous fluid associated with Au–Sb–W mineralization at
Woxi is significantly different from the SEDEX type deposits, the
latter usually have higher salinity (3.5–15 wt.% NaCl equiv.) without
CO2-rich fluid inclusions (Canet et al., 2003; Chen et al., 2007;
Lott et al., 1999). The marked radiogenic87Sr-rich ore-forming fluids
(0.743–0.750; Peng et al., 2003b; Peng and Frei, 2004) for the Woxi
deposit is not compatible with a SEDEX origin (Peng et al., 2003b).
Whereas, the relatively low temperature and salinity values for the
Woxi deposit are different to those typical for magmatic-hydrothermal
deposits.

Instead, the geological and geochemical features documented in
Woxi are compatible with orogenic gold deposits (Goldfarb et al.,
2005; Groves et al., 1998; Groves et al., 2003; Kerrich et al., 2000;
McCuaig and Kerrich, 1998; Ridley and Diamond, 2000). The Woxi de-
posit occurs in an intracontinental orogenic setting of the Xuefengshan
Range (Chu et al., 2012; Li et al., 2009; Zhang et al., 2013). Orebodies are
predominantly quartz veins with minor pyrite, which are hosted by
shear zones in metamorphosed turbidites. Moreover, the low-to-
moderate temperature, low-salinity, H2O–CO2–NaCl deeply-derived
crustal fluid with δ18O and δD values (2.0–13.6‰, −81 to −64‰;
Luo et al., 1984; Chen, 2012) at Woxi is consistent with many orogenic
gold fluid studies worldwide (e.g. Goldfarb et al., 2001; Groves et al.,
1998; Kerrich et al., 2000). However, compared to gold-only orogenic
deposits, the Woxi deposit exhibits the atypical element association of
Au–Sb–W, thus setting it apart from most orogenic gold deposits.
8. Conclusions

(1) In the Woxi Au–Sb–W deposit, the fluid inclusions in ore min-
erals and corresponding intergrown quartz largely share similar
characteristics, and yield homogenization temperatures of
180–240 °C in the quartz–scheelite veins, and 140–200 °C in
later quartz–sulfide–gold veins.

(2) The ore-forming fluids inWoxi are characterized by low salinity,
low-to-moderate temperature, CO2-rich and N2-bearing aqueous
fluids, consistentwith other lode gold deposits in theXuefengshan
Range. They are dominated bydeeply non-magmatic crustal origin
fluids, with a minor contribution of meteoric water or wallrock-
buffered fluid.

(3) Fluid mixing is a possible mechanism for early scheelite precipita-
tion, but boiling caused by the marked pressure drop is critical to
gold and stibnite deposition in the Woxi deposit.

(4) TheWoxi Au–Sb–Wdeposit is probably an atypical orogenic gold
deposit with significant tungsten and antimony mineralization.
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